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The radioresistance of tumors affect the outcome of radiotherapy. Accumulating data
suggest that 1a,25(OH)2D3 is a potential anti-oncogenic molecule in various cancers. In
the present study, we investigated the radiosensitive effects and underlying mechanisms of
1a,25(OH)2D3 in vitro and in vivo. We found that 1a,25(OH)2D3 enhanced the radiosensitivity
of lung cancer and ovarian cancer cells by promoting the NADPH oxidase-ROS-apoptosis
axis. Compared to the group that only received radiation, the survival fraction and self-
renewal capacity of cancer cells treated with a combination of 1a,25(OH)2D3 and radiation
were decreased. Both apoptosis and ROS were significantly increased in the combination
group compared with the radiation only group. Moreover, N-acetyl-L-cysteine, a scavenger
of intracellular ROS, reversed the apoptosis and ROS induced by 1a,25(OH)2D3, indicating
that 1a,25(OH)2D3 enhanced the radiosensitivity of cancer cells in vitro by promoting ROS-
induced apoptosis. Moreover, our results demonstrated that 1a,25(OH)2D3 promoted the
ROS level via activating NADPH oxidase complexes, NOX4, p22phox, and p47phox. In
addition, knockdown of the vitamin D receptor (VDR) abolished the radiosensitization of
1a,25(OH)2D3, which confirmed that 1a,25(OH)2D3 radiosensitized tumor cells that depend
on VDR. Similarly, our study also evidenced that vitamin D3 enhanced the radiosensitivity of
cancer cells in vivo and extended the overall survival of mice with tumors. In summary, these
results demonstrate that 1a,25(OH)2D3 enhances the radiosensitivity depending on VDR
and activates the NADPH oxidase-ROS-apoptosis axis. Our findings suggest that 1a,25
(OH)2D3 in combination with radiation enhances lung and ovarian cell radiosensitivity,
potentially providing a novel combination therapeutic strategy.

Keywords: 1a,25(OH)2D3, reactive oxygen species, radiosensitivity, NADPH oxidase, vitamin D receptor
INTRODUCTION

Malignant cancer is a disease with one of the highest mortality rates in the world. At present, the
general treatment for malignant cancer is based on radical surgery, radiotherapy, and chemotherapy
(Miller et al., 2016). Although significant progress has been made in the past two decades, there are
still some types of cancers that are insensitive to radiotherapy, which limits the treatment options
in.org August 2020 | Volume 11 | Article 9451
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for malignant cancers (Barker et al., 2015). The current challenge
is to find a novel strategy to increase the radiosensitivity of
malignant cancers.

Lung cancer is one of the most malignant cancers and has high
morbidity and mortality worldwide, of which approximately 85%
is non-small cell lung cancer. Despite different treatment
strategies, the five-year survival rate of patients has improved
slightly and remains at 4-17%(Hanahan and Weinberg, 2011;
Fehrenbacher et al., 2016; Addeo, 2017; Hirsch et al., 2017).
Similarly, ovarian cancer is also a malignancy tumor with high
mortality (Miller et al., 2016), due to the existence of ovarian
cancer stem cells (Brabletz et al., 2005; Aguilar-Gallardo et al.,
2012; Flesken-Nikitin et al., 2013).

Radiotherapy plays a significant role in the treatment of
tumors. Typically, there are two ways to kill cancer cells using
radiotherapy. The first way is to break the DNA of cancer cells
using high-intensity radiation. The second way is to generate a
number of reactive oxygen species (ROS) to induce apoptosis by
ionizing the water in cancer cells (Barker et al., 2015).
Accumulating evidence has indicated that ROS may be a novel
target for increasing radiosensitivity (Zou et al., 2017). In breast
cancer, cordycepin is found to increase the radiosensitivity of
cancer cells by increasing ROS (Dong et al., 2019). The
mitochondrial and NADPH oxidase-derived ROS, combined
with the radiotherapy, may increase the radiosensitivity of
cancer cells (Chen et al., 2019; Mortezaee et al., 2019).
Increasing ROS may therefore be an effective strategy for
promoting radiosensitivity.

Several clinical studies and experimental studies support that
1a dihydroxyvitamin D [1a,25(OH)2D3] possesses anti-tumor
actions in various cancers, such as breast-, colon-, and ovarian
cancer (Larriba and Munoz, 2005; Pervin et al., 2013; Feldman
et al., 2014; Griffin and Dowling, 2018). Additionally, low 25
(OH)D serum was associated with higher ovarian cancer
susceptibility and a poor prognosis for patients with lung
cancer (Ong et al., 2016; Akiba et al., 2018). Furthermore,
1a,25(OH)2D3 and its analogue EB1089, have been shown to
improve the radiosensitivity of cancer cells (Sundaram and
Gewirtz, 1999; Demasters et al., 2006; Bristol et al., 2012), but
the underlying mechanism is unclear. In this study, we shed light
on the mechanism of how 1a,25(OH)2D3 sensitizes cancer cells
to radiation, and test this both in vitro and in vivo. We found that
1a,25(OH)2D3 enhances the radiosensitivity of lung cancer and
ovarian cancer cells that depend on VDR by promoting the
NADPH oxidase-ROS-apoptosis axis.
MATERIALS AND METHODS

Cell Culture and Reagents
Human ovarian epithelial adenocarcinoma cell line SKOV3 and
lung cancer cell line A549 were obtained from the Type Culture
Collection of the Chinese Academy of Sciences (Shanghai,
China), and maintained in RPMI medium 1640 (Sigma-
Aldrich Chemie GmbHFBS, Steinheim, Germany) with 10%
fetal bovine serum (FBS, Sigma-Aldrich), 100 U/mL penicillin,
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and 100 mg/mL streptomycin (Beyotime Biotechnology,
Shanghai, China) in a humidified atmosphere of 5% CO2 at
37°C. The pre-treatment time for 100 nM 1a,25(OH)2D3 for
cells in the 1640 medium was 48 h, and the 1a,25(OH)2D3 and
medium were changed every 24 h (in the dark). 1a,25(OH)2D3

was purchased from Sigma (Sigma-Aldrich).

Radiation Delivery In Vitro
Briefly, cancer cell lines were irradiated by different doses of
X-ray in vitro. IR was delivered at a dose rate of 1.0 Gy per
minute using RS-2000 Pro (Rad source, USA).

Colony Formation Assay
A549 and SKOV3 cells were trypsinized and dissociated into
single-cell suspensions for plating in 12-well plates or 60 mm
culture dishes. The cells were treated with 1a,25(OH)2D3 for
48 h before X-ray (0, 1, 2, 4 Gy) radiation. After culturing for 14
days at 37°C, the colonies were fixed with 75% alcohol and
stained with 0.3% methyl violet for 20 min at room temperature.
Then the colonies were dissolved by glacial acetic acid and
detected the absorbance value. The inhibition viability of 1 Gy,
2 Gy and 4 Gy were obtained by comparing with the absorbance
of 0 Gy group.

Assessment of Apoptosis Using Flow
Cytometry
A549 and SKOV3 cells were treated with 100 nM 1a,25(OH)2D3

for 48 h, following 4 Gy X-ray radiation. After 24 h, the cells were
harvested, washed with PBS, and incubated for 15 min at room
temperature in a binding buffer containing Annexin V-FITC or
Annexin V-PE and PI or 7-AAD (Jiangsu KeyGEN Bio TECH
Corp., Ltd, China) before flow cytometry (FC500, Beckman
Coulter, Inc., Brea, CA, USA). All the quadrants, except the left
lower quadrant, were determined and analyzed by histograms.

Assessment of Intracellular ROS Using
Flow Cytometry
2,7-dichlorodihydrofluorescein diacetate (DCFH-DA)
(Beyotime Biotechnology) was used to determine intracellular
ROS levels. A549 and SKOV3 cells were treated with 100 nM
1a,25(OH)2D3 for 48 h, following 4 Gy X-ray radiation. After
24 h, cells were pre-incubated with 10 mMDCFH-DA for 30 min
at 37°C. Mean fluorescence intensity was determined after
washing the cells three times with PBS before flow cytometry.

Assessment of Mitochondrial Membrane
Potential (MMP) Using Flow Cytometry
Rhodamine 123 (Beyotime Biotechnology) was used to
determine the MMP levels. In normal cells, Rho123 can enter
the mitochondrial matrix through the mitochondrial
transmembrane potential and the fluorescence intensity
decreases or disappears. When it comes to apoptosis and
mitochondrial membrane integrity, Rho123 is released outside
the mitochondria and expresses a strong green fluorescence
(Hwang et al., 2007; de Menezes et al., 2019). Cells were
treated under the same conditions as described above and were
August 2020 | Volume 11 | Article 945
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then pre-incubated with 10 mM Rho123 for 30 min at 37°C.
Mean fluorescence intensity was determined for cells after three
washes with PBS before flow cytometry. The software used for
evaluating the flow cytometry was CXP Analysis, which is the
part of the FC500 instrument.

Sphere-Formation Assay
A549 and SKOV3 cells tested in the control, 1a,25(OH)2D3,
radiation, and combination groups were trypsinized and
dissociated into single-cell suspensions. Subsequently, 1,000
cells/well were plated in 96-well plates and cultured in serum-
free medium for 10 days. The spheres with a minimum size of 50
mm were counted under the brightfield microscope (CKX41F;
Olympus Corporation, Tokyo, Japan) equipped with a digital
camera. The sphere-formation rate was expressed as the
following formula: (Number of spheres formed/number of
plated cells) x 100.

Limited Dilution Assay
A549 and SKOV3 cells were dissociated into single-cell
suspensions as described above. Subsequently, 250, 125, 50, 25,
12, or 6 cells/hole were plated into 96-well plates and cultured in
serum-free medium for 10 days. The spheres with a minimum
size of 50 mm were counted under the brightfield microscope
equipped with a digital camera. The hole of the neurosphere rate
was expressed as the following formula: (Number of holes with
neurosphere formation/number of holes plating the cells)
x 100%.

Protein Sample Preparation and Western
Blotting
Cancer cells were lysed in protein lysis buffer containing protease
and phosphatase inhibitors (Roche, Mannheim, Germany) for
30 min at 4°C and were then centrifuged at 13,000×g at 4°C for
15 min for the collection of total cell lysates. The protein
concentrations were analyzed using Western blot with methods
we previously described (Ji et al., 2019). VDR (1:1000,
CST:12550S), p47phox (1:1000, CST:4312S), and p22phox

(1:1000, Abcam: ab75941) were diluted in 5% BSA and
incubated overnight at 4°C. GAPDH was determined as a
loading control.

Knockdown of VDR With shRNA
Control shRNA against VDR were procured from Shanghai
Genechem (Shanghai, China). SKOV-3 and A549 cells were
transfected with the shRNA using Polybrene transfection
reagent from Shanghai Genechem according to the
manufacturer’s instructions. The cells were incubated for 24 h,
followed by 2 mg/mL of puromycin selecting for 24 h. The
selected stable cell line expressing shVDR was maintained in
RPMI medium 1640 with 2 mg/mL puromycin. shVDR-1:
CCGGGTCATCATGTTGCGCTCCAATCTCGAGATTGGA
GCGCAACATGATGACTTTTTG. shVDR2: CCGGCCTCCAG
TTCGTGTGAATGATCTCGAGATCATTCACACGAACT
GGAGGTTTTTG.
Frontiers in Pharmacology | www.frontiersin.org 3
RNA Isolation and Real-Time Quantitative
RT-PCR Analysis
Total RNA was isolated using RNAiso Plus (Takara Biomedical
Technology (Beijing) Co., Ltd, China) and 1 µg of RNA was
reverse transcribed with the PrimeScript™ RT Master Mix
(Perfect Real Time) (Takara Biomedical Technology) according
to the manufacturer’s protocol. qRT-PCR was performed using
the Applied Biosystems 7500 Real-Time PCR System (Thermo
Fisher Scientific, Inc. Waltham, MA, USA). Expression of the
genes of interest was analyzed using the GAPDH gene as the
internal control and the DDCt method. Real time primer
information is provided in Table 1.

Tumorigenesis
Female BALB/c nude mice (4–6 weeks, 18–20 g) were purchased
from Soochow University Laboratory Animal Center (Suzhou,
China). Mice were provided with water and food ad libitum and
were housed with five animals per cage. Controlled
environmental conditions were temperature at 21 ± 2°C,
relative humidity at 55 ± 5% and a 12:12 h light–dark cycle.
All surgical procedures and care provided to the animals were
approved by the Institutional Animal Care and Use Committee
(approval number ECSU–201800049). A total of 2x107

OVCAR8-luciferase cells in 200 µl cell suspension mixed with
Matrigel (1:1; BD Biosciences; cat. no. 356234) were injected
subcutaneously into these mice. The subcutaneous model was
used to evaluate the effect of vitamin D3 on the radiosensitivity of
cancer cells. When the tumor volume was around 40 mm3 at 3
weeks post injection, mice were entered into the study. All mice
were randomized into four groups as follows: (1) control (N=5);
(2) vitamin D3 (N=5); (3) local ionizing radiation (IR) (N=10);
and (4) vitamin D3 + local IR (N=10). The mice in the vitamin
D3–treatment group were injected with a single dose of vitamin
D3 (1,000 IU/week) intramuscularly. The luciferase signals were
detected every week. Three weeks after cell injection, the mice
were irradiated with 15Gy X-ray by X-RAD SmART (Precision
X-Ray Inc., USA). The animals were sacrificed 6–8 weeks after
cell injection, when the tumor nodules were identified on their
body surface. The sacrificing of mice were performed using 3%
pentobarbital sodium (150 mg/kg), followed by cervical
dislocation to ensure death.

Immunohistochemical Staining
Immunohistochemical analyses were performed using method
previously described (Wang et al., 2017). Tumor tissue samples
TABLE 1 | Primer sequences for reverse transcription-quantitative polymerase
chain reaction.

Gene Forward Sequence (5’-3’) Reverse Sequence (5’-3’)

p47phox CTGACGAGACGGAAGACCC GGACGGAAAGTAGCCTGTGA
NOX4 GCAAGATACCGAGATGAG ACAGTACAGGCACAAAGG
GAPDH TTGATGGCAACAATCTCCAC CGTCCCGTAGACAAAATGGT
VDR GGAGAAAACACTTGTAAGTTGCT TGGTCAGGTTGGTCTCGAACT
p22phox CATTGTGGCGGGCGTGTT TCCTCGCTGGGCTTCTTGC
August
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were harvested, fixed in 4% paraformaldehyde/PBS, dehydrated,
embedded in paraffin blocks, and cut into 5 mm thick sections.
Deparaffinized tissue sections were rehydrated and stained using
specific antibodies for Ki-67 or TUNEL, before incubating and
staining with biotinylated secondary antibodies. Signal intensity
was determined with an avidin-biotin horseradish peroxidase
complex and 3,3’-diaminobenzidine (BD Biosciences) as the
chromogen. Representative photographs were taken using an
Olympus IX73 microscope (Olympus America, Melville, NY,
USA) at 400× magnification, after analyzing all slides

Statistical Analysis
Experiments were performed independently at least three times,
and the resulting data represented mean ± standard error of the
mean. Statistical comparisons were made for two groups using
Student’s t-test. We also used one-way analysis of variance with
repeated measures, followed by post hoc comparisons using
Tukey’s multiple paired comparison test, to define differences
between groups for statistical significance. P < 0.05 was defined
as statistically significant. GraphPad Prism 7 software (San
Diego, CA, USA) was used for all analyses in this study.
RESULTS

1a,25(OH)2D3 Enhanced the
Radiosensitivity of Human Ovarian Cancer
and Lung Cancer Cells
In the present study, the colony formation and sphere formation
assays were used to evaluate the effects of 1a,25(OH)2D3 on the
radiosensitivity of the cancer cells. With radiation alone, the
colony formation in A549 cells was decreased in a dose-
dependent manner. At 4 Gy radiation, 43.19% of cell
proliferation was inhibited compared with non-radiated cells.
Treatment with 100 nM 1a,25(OH)2D3 combined with radiation
led to significantly less colony formation in comparison with
radiated cells (Figure 1A). Although 4 Gy radiation or 1a,25
(OH)2D3 treatment alone could decrease sphere formation to
62% and 78%, treatment with 1a,25(OH)2D3 combined with
radiation resulted in an 89% reduction compared to non-
radiated cells. This result shows that 1a,25(OH)2D3 and
radiation has a significantly synergistic effect to kill cancer cells
(Figure 1B). The colony formation assay demonstrated that
1a,25(OH)2D3 also significantly decreased the colony
formation when SKOV3 cells were irradiated at 0, 1, 2 and 4
Gy X-ray (Figure 1C).

The limited dilution assay was generally used to determine
the tumorigenicity in vitro. By using this assay to test A549 and
SKOV3, we found that radiation or 1a,25(OH)2D3 treatment
alone decreased the tumorigenicity. Moreover, the treatment
with 1a,25(OH)2D3 for 48 h, combined with radiation,
remarkably reduced tumorigenicity compared to irradiated-
only or 1a,25(OH)2D3 treatment alone (Figure 1D and S1A).
Altogether, the results suggest that 1a,25(OH)2D3 enhances the
radiosensitivity of human ovarian and lung cancer cells.
Frontiers in Pharmacology | www.frontiersin.org 4
1a,25(OH)2D3 Promoted ROS-Induced
Apoptosis in Irradiated Cancer Cells
Cancer radiotherapy largely depends on ROS generation to
destroy malignant cells by inducing apoptosis. In the present
study, the exposure cells to either 1a,25(OH)2D3 or 4 Gy X-ray
resulted in elevated levels of ROS, and both also induced
apoptosis, compared to non-treated A549 cells. Interestingly,
the treatment with 1a,25(OH)2D3 before radiation further
produced ROS and induced apoptosis, which significantly
increased apoptosis and the ROS on the basis of radiation
(Figures 1E, F and S1B). Moreover, we also detected the
autophagy and senescence (Figures S3 and S4). Of note, 1a,25
(OH)2D3 or X-ray per se can promote autophagy, but there is no
synergistic effect between 1a,25(OH)2D3 and X-ray.

N-acetylcysteine (NAC) is not only a scavenger of
intracellular ROS (Halasi et al., 2013), but also an antioxidant
known to lack direct radioprotective properties (Grdina et al.,
2002). To elucidate the role of ROS in inducing apoptosis, NAC
was used to decrease ROS produced by 1a,25(OH)2D3. Indeed,
the administration with NAC for 27 h rescued 1a,25(OH)2D3-
induced ROS to control levels (Figure S1C). Treating cells with
1a,25(OH)2D3 and NAC could significantly decrease the
apoptosis compared to 1a,25(OH)2D3 treatment only,
indicating that 1a,25(OH)2D3 may promote apoptosis by
producing ROS (Figure 1F, line 3 vs line 2 and Figure 1E).
Compared to irradiated-cells alone, the combined NAC and
irradiation treatment decreased apoptosis (Figure 1F, line 5 vs
line 4). But this apoptosis was higher than non-irradiated cells,
suggesting that both elevating ROS and DNA damage were
accountable for the apoptosis induced by radiation (Figure 1F,
line 5 vs line 1). Moreover, apoptosis in the combined radiation
and 1a,25(OH)2D3 group was dramatically decreased when the
ROS was removed by NAC (Figure 1F, line 7 vs line 6). These
indicated that 1a,25(OH)2D3 enhanced the radiosensitivity of
cancer cells by ROS-induced apoptosis.

The Enhancing Radiosensitivity of 1a,25
(OH)2D3 Depends on VDR
1a,25(OH)2D3 exhibits its biological functions mainly through
binding to its receptor (Vitamin D Receptor, VDR). To gain
further insights into the radiosensitivity of 1a,25(OH)2D3, VDR
was knocked down in A549 and SKOV3 cells by short hairpin
RNAs (shVDR). Both mRNA and protein levels of VDR in
SKOV3 and A549 cells were successfully suppressed, compared
with the corresponding negative control (NC) (Figures 2A, B
and S2A, B). Compared to irradiated-NC cells, 1a,25(OH)2D3

inhibited the colony formation rate of NC cells, indicating that
1a,25(OH)2D3 still enhanced the radiosensitivity of cancer cells
(Figures 2C and S2C). However, 1a,25(OH)2D3 did not decrease
the colony formation rate in VDR knock down (shVDR) cells
followed by X-ray irradiation, suggesting that VDR knockdown
could not sensitize 1a,25(OH)2D3-treated cells to radiation
(Figures 2D, E and S2D, E). These results indicated that
the enhancement of radiosensitivity in cancer cells, by 1a,25
(OH)2D3, depends on VDR.
August 2020 | Volume 11 | Article 945
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To test whether the ROS-induced apoptosis by 1a,25(OH)2D3

is associated with VDR, we also detected the ROS and apoptosis
percentages in VDR knockdown cells. As shown in Figures 3A–C,
compared with single irradiated NC cells, 1a,25(OH)2D3 still
promoted the ROS levels, and increased the apoptosis
percentages in combination with radiation. However, when it
Frontiers in Pharmacology | www.frontiersin.org 5
comes to VDR knockdown cells, the effects of 1a,25(OH)2D3 on
increasing ROS and apoptosis percentages were disappeared
(Figures 3A, B, D, E). These results demonstrated that 1a,25
(OH)2D3 promoted cancer cells ROS and apoptosis by binding to
VDR. Together with above results, this suggests that 1a,25(OH)
2D3 enhances the radiosensitivity by the VDR-ROS-apoptosis axis.
A

B

D

E F

C

FIGURE 1 | 1a,25(OH)2D3 enhanced the radiosensitivity of human ovarian cancer and lung cancer cells by ROS-induced apoptosis. (A, B) Results of colony
formation assay and sphere formation assay in A549 cancer cells. (C) Results of colony formation assay in SKOV3 cancer cells. (D) Results of limited dilution assay
in A549 cancer cells. (E) Effects of 1a,25(OH)2D3 and radiation on ROS of A549 cancer cells, related to . (F) Combined effects of 1a,25(OH)2D3, radiation and NAC
on apoptosis of A549 cancer cells, related to . Line 1 represents the control group, line 2 represents the 1a,25(OH)2D3 alone group, Line 3 represents the 1a,25(OH)
2D3 and NAC group, Line 4 represents the radiation alone group, Line 5 represents the radiation and NAC group, Line 6 represents the 1a,25(OH)2D3 and radiation
group, Line 7 represents the 1a,25(OH)2D3, radiation, and NAC group. Data represents the Mean ± SD, *p < 0.05, **p < 0.01, ***p < 0.001, n=3.
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A B

D EC

FIGURE 2 | The enhancing radiosensitivity of 1a,25(OH)2D3 depends on VDR. (A, B) The mRNA and protein levels of VDR were examined when treated with shNC
and shVDR in SKOV3 cancer cells. (C–E) Colony formation assay was examined in SKOV3 cancer cells when treated with shNC and shVDR. The data represents
the Mean ± SD, *p < 0.05, **p < 0.01, ***p < 0.001, n = 3.
A B

D

E

C

FIGURE 3 | Effects of 1a,25(OH)2D3 on ROS and apoptosis depends on VDR. (A, B) ROS was examined in A549 cancer cells when treated with shNC and shVDR.
(C–E) Apoptosis percentages was examined in A549 cancer cells when treated with shNC and shVDR. The data represents the Mean ± SD, *p < 0.05, **p < 0.01,
***p < 0.001, n = 3.
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1a,25(OH)2D3 Enhanced the
Radiosensitivity of Cancer Cells by
Activating the NADPH Oxidase-ROS-
Apoptosis Axis
Given that ROS mainly originated from mitochondria or
NADPH oxidase, the origin of ROS induced by 1a,25(OH)2D3

was investigated in the present study. First, the mitochondrial
membrane potential level was detected, and it was found that
1a,25(OH)2D3 enhanced the mitochondrial injury on the basis
of radiation (Figure 4A). This indicated that ROS generated by
1a,25(OH)2D3 can accumulate in the mitochondria. Meanwhile,
DPI and apocynin, the NADPH oxidase specific inhibitors, were
used to detect the changes of ROS generated by 1a,25(OH)2D3.
Interestingly, DPI and apocynin can both rescue ROS levels
induced by 1a,25(OH)2D3 (Figure 4B). These results implied
two hypotheses, that 1a,25(OH)2D3 may induce ROS both in
mitochondrial and NADPH oxidase; and that 1a,25(OH)2D3

may induce ROS in NADPH oxidase, then ROS is delivered to
mitochondria and injures the mitochondria. To test these
hypotheses, mitochondrial membrane potential on the basis of
removing ROS by DPI and apocynin was detected. The results
showed that the injury induced by 1a,25(OH)2D3 disappeared
(Figure 4C), in agreement with the second hypothesis. To
further investigate whether 1a,25(OH)2D3 could activate the
Frontiers in Pharmacology | www.frontiersin.org 7
NADPH oxidase, the mRNA and protein levels of the NADPH
oxidase complexes, NOX4, p22phox and P47phox, were detected.
The results indicated that 1a,25(OH)2D3 can activate the
NADPH oxidase complexes by binding to VDR in NC cells
but not the VDR knockdown cells (Figures 4D–F). Together
these results demonstrate that 1a,25(OH)2D3 enhances the
radiosensitivity by binding to VDR and activating the NADPH
oxidase-ROS-apoptosis axis.

Vitamin D3 Enhanced the Radiosensitivity
of Ovarian Cancer In Vivo
To determine whether vitamin D increases the radiosensitivity of
cancer cells in vivo, we created a subcutaneous xenograft tumor
mode using female nude mice. Vitamin D3 alone and local IR
could inhibit growth of xenograft tumors that arose from
OVCAR8 cells. But the combination of IR and Vitamin D3

shows joint effects in killing the cancer cells both on relative
luciferase, which is a tracing marker to value the tumor growth
(Figure 5A), and final tumor size and volume (Figures 5B, C).
Meanwhile, vitamin D3 treatment improved overall survival
from 31 to 41 days (vitamin D3 group vs control group),
combined with IR it further improved overall survival from 35
to 42 days (vitamin D3 and IR group vs. IR group) (Figure 5D).
The 25(OH)D levels in serum increased in vitamin D3 treatment,
A B

D

E F

C

FIGURE 4 | 1a,25(OH)2D3 enhanced the radiosensitivity of cancer cells by activating the NADPH oxidase-ROS-apoptosis axis. (A) MMP level was examined by Rho
123 in A549 cancer cells. (B) ROS was examined in A549 cancer cells when treated with DPI and Apocynin. (C) MMP level was examined by Rho 123 in A549
cancer cells treated with DPI and Apocynin. (D) The mRNA levels of NOX4, p22phox and p47phox were examined in shNC and shVDR A549 cancer cells treated with
1a,25(OH)2D3. (E, F) The protein levels of p22phox and p47phox were examined in shNC and shVDR A549 cancer cells treated with 1a,25(OH)2D3. The data
represents the Mean ± SD, *p < 0.05, **p < 0.01, ***p < 0.001, n = 3.
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but the combination of Vitamin D3 and IR seems not to have
further increased 25(OH)D levels (Figure 5E). We also
examined the expression of the cell proliferation marker Ki-67
and the apoptosis signature, TUNEL positive cells, in these
tumors. Immunohistochemical staining showed that compared
with the radiation group, apoptosis percentages in the vitamin
D3 and radiation combined group significantly increased (Figure
5F), which further indicated that vitamin D3 can increase the
radiosensitivity of tumors in vivo. Altogether, considering these
results, we demonstrated that vitamin D3 enhanced the
radiosensitivity of cancer cells in vivo and extended the overall
survival of mice with tumors.
DISCUSSION

Radiotherapy is one of the most effective and frequently used
tumor treatments, however, both the radioresistance of tumors
and the damage caused to healthy tissues nearby tumors under
high-dose ionizing radiation, limit the use of radiotherapy.
Natural and synthetic vitamin D compounds have been proven
Frontiers in Pharmacology | www.frontiersin.org 8
as anticancer agents (Larriba and Munoz, 2005; Pervin et al.,
2013; Feldman et al., 2014; Griffin and Dowling, 2018). It has been
reported that vitamin D and vitamin D analogs radiosensitized
breast cancer and lung cancer cells through altering the nature of
the autophagy, converting it from a protective form to a cytotoxic
form in vitro (Sundaram and Gewirtz, 1999; Demasters et al.,
2006; Bristol et al., 2012). In the present study, we confirmed that
1a,25(OH)2D3 enhances the radiosensitivity of human ovarian
and lung cancer cells by activating NADPH oxidase-ROS-
apoptosis axis in vitro. Moreover, knockdown of VDR abolishes
the radiosensitization of 1a,25(OH)2D3, which implies that 1a,25
(OH)2D3 exhibits a radiosensitizer that depends on VDR. Our
study also evidenced that vitamin D3 enhances the
radiosensitivity of cancer cells in vivo and extends the overall
survival of mice with tumors.

1a,25(OH)2D3 not only affects the metabolism of calcium and
phosphorus, but also inhibits the proliferation, invasion, and
migration of cancers, including colon-(Pendas-Franco et al.,
2008; Leyssens et al., 2013; Klampfer and Vitamin, 2014; Chen
et al., 2015), prostate-(Leyssens et al., 2013), breast-(Wahler
et al., 2015), ovarian-(Lungchukiet et al., 2015), and lung
A B

D

E

F

C

FIGURE 5 | Vitamin D3 enhanced the radiosensitivity of ovarian cancer in vivo. (A) The relative luciferase signals were detected in nude mice of control, vitamin D3, radiation,
and combined groups. (B, C) Image and the volume of tumors. (D) The overall survival of nude mice. (E) Serum 25(OH)D levels of nude mice. (F) Representative images of
tumors stained for HE, Ki67 and Tunel. The data represents the Mean ± SD, *p < 0.05, **p < 0.01, ***p < 0.001, n = 3.
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cancer (Tao et al., 2017). Epidemiological studies have also
observed that high levels of 25(OH)D in serum can reduce the
risk of many types of cancers, and improve the survival of
ovarian cancer patients (Webb et al., 2015; Granato et al.,
2016; Ong et al., 2016; Akiba et al., 2018; Estebanez et al.,
2018; Goulao et al., 2018). Moreover, 1a,25(OH)2D3 and its
analogue EB1089, improved the radiosensitivity of cancer by
inducing autophagy and inhibiting DNA repair in breast cancer
(Sundaram and Gewirtz, 1999; Demasters et al., 2006;
Bristol et al., 2012). Meanwhile, 1a,25(OH)2D3 enhanced
radiosensitivity of prostatic cancer by inhibiting MnSOD and
mitochondrial antioxidant reactions (Xu et al., 2007). Here,
our study evidenced that 1a,25(OH)2D3 enhances the
radiosensitivity of human lung and ovarian cancer cells via
activating NADPH oxidase-ROS-apoptosis axis.

Interestingly, there were inconsistencies with the notion of
the effect of 1a,25(OH)2D3 on oxidative stress. There are some
studies that show that 1a,25(OH)2D3 acts as an antioxidant in
normal epithelial cells (Dai et al., 2018; Tang et al., 2018). Some
other studies also indicate that 1a,25(OH)2D3 promotes DNA
repair when human foreskin (BJs) and lung (IMR90) fibroblasts
were induced by Ras (Bao et al., 2008; Graziano et al., 2016; Mark
et al., 2016). Meanwhile, other studies suggest that 1a,25(OH)
2D3 enhances oxidative stress during the early progression of
breast cancer by inhibiting the activity of pyruvate carboxylase
(Wilmanski et al., 2017). Piotrowska A et al. report that 1a,25
(OH)2D3 promotes the oxidative damage of H2O2 on human
keratinocytes (Piotrowska et al., 2016). In the present study,
consistent with enhancement of oxidative stress in breast cancer
(Wilmanski et al., 2017), we found that 1a,25(OH)2D3 promoted
ROS levels in lung and ovarian cancer cells.

Of note, 1a,25(OH)2D3 plays completely different roles in
normal cells and cancer cells. On one hand, it maintains the
genomic stability of normal cells. First, it promotes the expression
of DNA repair protein RAD50 and ATM, and reduces the genetic
toxicity caused by chemicals (Ting et al., 2012); second, 1a,25
(OH)2D3 promotes SOD, GSH and reduces glutathione reductase
to decrease oxidant damage (Choi and Jung, 2017); third, it
prevents malignant transformation of prostate epithelial cells by
inhibiting oxidant damage (Bao et al., 2008). Most importantly,
1a,25(OH)2D3 protects the lung from radiation-induced injury by
inducing the proliferation of type II lung cells and the synthesis of
surfactant and reducing the vascular permeability caused by
radiation (Yazici et al., 2011). On the other hand, 1a,25(OH)2D3

inhibits growth of cancer cells, which can be divided into the
following aspects: inhibiting the MAPK and ERK pathways;
inducing apoptosis by IGF-PI3K-AKT pathway (Deeb et al.,
2007). Here we demonstrated that 1a,25(OH)2D3 could enhance
radiosensitivity of cancer cells by promoting ROS-induced
apoptosis. Therefore, all the above evidence indicates that 1a,25
(OH)2D3 is a potential radiosensitizer, which enhances the
radiosensitivity of cancer cells and which protects normal cells.

X-rays/g-rays kill tumor cells via inducing direct interactions
with biomolecules and indirectly causing radiolysis of water
molecules within tumor cells to generate ROS (Barker et al.,
2015), which can indirectly induce cell apoptosis. One way of
Frontiers in Pharmacology | www.frontiersin.org 9
reducing the radioresistance has been proposed to increase ROS
generation (Lowe et al., 1994; Lotem et al., 1996; Pelicano et al.,
2004; Azad et al., 2009). In this study, we found that 1a,25(OH)
2D3 further increased the ROS level and apoptosis in cancer cells
irradiated by X-ray. To address whether the apoptosis was
induced by the overproduction of ROS by 1a,25(OH)2D3

(Zhang et al., 2015; Guo et al., 2017; Zhou et al., 2019), we
detected the apoptosis of the cells which were eliminating the
ROS production by NAC (Halasi et al., 2013). We found that the
apoptosis was dramatically decreased upon NAC treatment. This
result indicates that NAC abolished the enhancement of
radiosensitivity caused by 1a,25(OH)2D3. Furthermore, our
results for the first time evidenced that knockdown VDR
impaired the radiosensitivity of 1a,25(OH)2D3 through ROS-
induced apoptosis.

ROS can be derived from different sources, including the
mitochondria electron transport chain, xanthine oxidase, the
cytochrome P450 system, uncoupled nitric oxide synthase, and
myeloperoxidase. ROS also mainly comes from two main parts,
mitochondrial and NADPH oxidase after radiation (Bedard and
Krause, 2007; Bhattacharyya et al., 2014; Cho et al., 2017; Pei et al.,
2017; Kawamura et al., 2018; Sakai et al., 2018; Shimura et al.,
2018; Mortezaee et al., 2019). To explore the origin of ROS
induced by 1a,25(OH)2D3, both NADPH oxidase inhibitors,
DPI and Apocynin, and the mitochondrial membrane potential
were used to determine the source of ROS (Bedard and Krause,
2007). Our results indicated that 1a,25(OH)2D3 promoted ROS
levels via activating NADPH oxidase complexes, NOX4, p22phox,
and P47phox, but not in VDR knockdown cells. The
overproduction of ROS was then delivered to mitochondria and
caused damage tomitochondria, because of that the mitochondrial
damage generated by 1a,25(OH)2D3 disappeared after inhibiting
ROS. Altogether, our results demonstrate that 1a,25(OH)2D3

promotes the production of ROS by activating NADPH oxidase.
Therefore, 1a,25(OH)2D3 exhibits a potential radiosensitizer by
the overproduction of ROS, which is an important target of
radiosensitivity in multiple cancers (Storch et al., 2016; Pajic
et al., 2018).

In conclusion, 1a,25(OH)2D3 radiosensitizes cancer cells that
depend on VDR, by activating the NADPH oxidase complex,
which further increases the ROS level and induces apoptosis. Our
findings evidence that 1a,25(OH)2D3 may be a potential
radiosensitizer for a tumor combination therapeutic strategy.
DATA AVAILABILITY STATEMENT

The datasets generated for this study are available on request to
the corresponding authors.
ETHICS STATEMENT

The animal study was reviewed and approved by Institutional
Animal Care and Use Committee of Soochow University.
August 2020 | Volume 11 | Article 945

https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


Ji et al. 1a,25(OH)2D3 Promotes Radiosensitivity by NADPH/ROS
AUTHOR CONTRIBUTIONS

Conceptualization: M-TJ, X-FN, and B-YL. Methodology: M-TJ,
JN, W-TH, H-LP, A-QW, and J-MW. Software: M-TJ, X-FN,
and JN. Validation: JN, W-TH, and H-LP. Formal analysis: M-TJ
and JN. Investigation: W-TH and H-LP. Resources: LC and B-
YL. Data curation: M-TJ, X-FN, JN, LC, and B-YL. Writing—
original draft preparation: M-TJ and X-FN. Writing—review and
editing: M-TJ, LC, and B-YL. Visualization: JN, LC, and B-YL.
Supervision: LC and B-YL. Project administration: LC and B-YL.
Funding acquisition: B-Y.L, Z-LZ, and G-MZ.
FUNDING

This work was supported by the National Natural Science
Foundation of China (No. U1832140, 81673151, 81372979)
and the National Key R&D Program of China (No.
2018YFC0115704, 2018YFC0115705).
SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fphar.2020.00945/
full#supplementary-material
Frontiers in Pharmacology | www.frontiersin.org 10
FIGURE S1 | 1a,25(OH)2D3 enhanced the radiosensitivity of human ovarian
cancer and lung cancer cells by ROS-induced apoptosis. (A) Results of limited
dilution assay in SKOV3 cancer cells. (B) Effects of 1a,25(OH)2D3 and radiation on
ROS of A549 cancer cells. (C) Effects of NAC to decrease the ROS generated by
1a,25(OH)2D3 in A549 cancer cells. (D) Combined effects of 1a,25(OH)2D3 and
radiation on apoptosis of A549 cancer cells. Data represents the Mean ± SD, *p <
0.05, **p < 0.01, ***p < 0.001, n = 3.
FIGURE S2 | The enhancing radiosensitivity of 1a,25(OH)2D3 depends on VDR.
(A, B) The mRNA and protein levels of VDR were examined when treated with shNC
and shVDR in A549 cancer cells. (C-E) Colony formation assay was examined in
A549 cancer cells when treated with shNC and shVDR. The data represents the
Mean ± SD, * p < 0.05, ** p < 0.01, *** p < 0.001, n=3.

FIGURE S3 | The enhancing radiosensitivity of 1a,25(OH)2D3 does not depend on
autophagy. (A, B) The protein levels of P62 were examined when treated with 1a,25
(OH)2D3 and 4Gy in A549 cancer cells. (C) mRFP-GFP-LC3B are used in A549
cancer cells when treated with 1a,25(OH)2D3 and 4Gy. (D) Representative images
of xenograft tumors sections stained for LC3. The data represents the Mean ± SD,
*p < 0.05, ****p < 0.0001, n=3.

FIGURE S4 | The enhancing radiosensitivity of 1a,25(OH)2D3 in cancer cells by
promoting senescence. The data represents the Mean ± SD, **p < 0.01, n=2.

FIGURE S5 | Effects of 1a,25(OH)2D3 on different cancer cells by CCK-8 assay,
such as (A) Mouse primary ovarian cancer cells, (B) OVCAR8 cells, (C) A549 cells
and (D) SKOV3 cells. The data represents the Mean ± SD, *p<0.05, **p < 0.01,
***p < 0.001, n=3.
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