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The statistical properties of the international trade networks of all commodities as a whole have 
been extensively studied. However, the international trade networks of individual commodities 
often behave differently. Due to the importance of pesticides in agricultural production and 
food security, we investigated the evolving community structure in the international pesticide 
trade networks (iPTNs) of five categories from 2007 to 2018. We reveal that the community 
structures in the undirected and directed iPTNs exhibit regional patterns. However, the regional 
patterns are very different for undirected and directed networks and for different categories of 
pesticides. Moreover, the community structure is more stable in the directed iPTNs than in the 
undirected iPTNs. We also extract the intrinsic community blocks for the directed international 
trade networks of each pesticide category. It is found that the largest intrinsic community block is 
the most stable, appears in every pesticide category, and contains important economies (Belgium, 
Germany, Spain, France, the United Kingdom, Italy, the Netherlands, and Portugal) in Europe. 
Other important and stable intrinsic community blocks are Canada and the United States in North 
America, Argentina and Brazil in South America, and Australia and New Zealand in Oceania. 
These results suggest that, in the international trade of pesticides, geographic distance and the 
complementarity of important and adjacent economies are significant factors.

1. Introduction

Food crises have accompanied human history. According to the fifth edition of the Global Report on Food Crises released by 
the Food Security Information Network of the United Nations, there were around 155 million people in food crises or worse in 
55 countries/territories globally in 2020 [1]. Conflicts, climate disruption, and economic shocks are the main reasons causing food 
crises, which have been aggravated by the COVID-19 pandemic in recent years. Ensuring and increasing agricultural production are 
important means to relieve food shortages [1]. The use of chemical pesticides can effectively control crop diseases, insects, and grass 
damage, which can save 30%–40% of the total crop loss in the world every year. Pesticides are crucial in maintaining global crop 
yields as refraining from pesticide use would result in a loss of 78% fruit production, 54% vegetable production, and 32% cereal 
production [2]. In this sense, pesticides, as a main agricultural input, play an important role. Hence, investigating the global pesticide 
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flows from supplying economies to demanding economies from the perspective of international trade networks (ITNs) would deepen 
our understanding of pesticides reallocation all over the world.

The evolving structure and dynamics of the international trade networks or world trade webs (WTWs) with aggregated goods have 
been investigated extensively at macro-, meso- and micro-scales, be they undirected or directed, unweighted or weighted [3–12]. 
There are quite a few studies focusing on the structure and evolution of international food trade networks, including aggregate food 
[13–16], individual food commodities [17–19], cereals [20], rice [19], maize [19,21], wheat [19,22–24], soybean [19,25], seafood 
[26–28], and meat [29]. The ITNs of agricultural inputs are relatively rare [30]. Different types of models have been proposed 
to understand the formation of the international trade networks [31–36]. Studies of risk transmission and the Vulnerability of 
international food trade networks to shocks are also important to food security [16,21,27,37].

At the meso-scale, the community structure in the international trade networks is of particular interest, as it is often related to 
the important function of node groups [38,39]. Tzekina, Danthi and Rockmore investigated the ITNs of 186 economies from 1948 
to 2005 and revealed trade “islands”, which is interpreted as mixed evidence of globalization [40]. Barigozzi, Fagiolo and Mangioni 
identified the aggregate and commodity-specific community structures of the directed ITNs of 97 commodities traded among 162 
economies from 1992 to 2003 by optimizing the modularity using taboo search and found them to be much more correlated with 
geographic communities than partitions induced by regional trade agreements [41,42]. Estrada obtained three communities using the 
N-ComBa 𝐾-means method for the undirected international miscellaneous metal manufactures network [43]. Fan et al. introduced 
the weighted extremal optimization algorithm for community detection in the ITN in 2010 and also identified three communities 
[44]. Applying the modularity optimization method to the undirected ITN during the period from 1995 to 2011, Zhu et al. identified 
three main communities (the America community, the Europe community, and the Asia-Oceania community) [45]. Reyes, Wooster 
and Shirrell detected the community structure of the undirected ITN for each year between 1970 and 2000 and found that regional 
trade agreements have a strengthening effect over time with cyclical components on the formation of the community structure of the 
world trade network [46]. Bartesaghi, Clemente and Grassi used the communicability distance approach to investigate the commu-

nity structure of the undirected international trade network in 2016 and the optimal partitioning yields 19 non-trivial communities 
[47]. Dong et al. investigated the undirected international copper trade networks from 2007 to 2015 and identified three to five 
communities in different years [48]. Torreggiani et al. investigated the undirected international food trade networks of 16 com-

modities from 1992 to 2011 and found about 5-6 communities in each commodity-specific network [17]. We note that Piccardi and 
Tajoli used four approaches (modularity optimization, cluster analysis, stability functions, and persistence probabilities) to analyze 
communities in the ITNs from 1962 to 2008 and found no agreed evidence of significant partitions but a few weak communities 
suggesting a truly globalizing trading system [49].

The community structure of a complex network reflects underlying higher-order interactions among different nodes [50,51], 
which shape the dynamics of complex networks. In this work, we aim at identifying the evolving community structure of five 
categories of iPTNs. There are numerous community detection methods [38,39], which often provide distinct partitioning results. 
Since the iPTNs are directed and weighted, we utilize the Infomap algorithm [52]. Certainly, there are other algorithms capable 
of coping with such graphs, for example, the Order Statistics Local Optimization Method (OSLOM) [53]. However, there are stable 
clusters identified in temporal networks that we call intrinsic community blocks, which is the main contribution of this work. The 
detected communities are found to have evident regional patterns and vary over different pesticide categories. The largest and 
stablest intrinsic community block contains a few developed economies in Europe. Specifically, the largest and stablest intrinsic 
community block in every pesticide category contains important economies including Belgium, Germany, Spain, France, the United 
Kingdom, Italy, the Netherlands, and Portugal in Europe. Other important and stable intrinsic community blocks contain Canada and 
the United States in North America, Argentina and Brazil in South America, and Australia and New Zealand in Oceania.

2. Materials and methods

2.1. Data description

The data sets we analyze were extracted from the UN Comtrade Database (https://comtrade .un .org), under Heading 3808. We 
consider the international trade flows of five categories of pesticides, including insecticides (380891), fungicides (380892), herbicides 
(380893), disinfectants (380894), and rodenticides and other similar products (380899). Since the trade data earlier than 2007 are 
not available for at least one pesticide category and the data for 2019 are still incomplete [30], the sample period considered in this 
work is from 2007 to 2018.

Simple preprocessing of the data is necessary before we use them [30]. In the UN Comtrade Database, the information of an 
international trade might be reported by both exporting and importing economies 𝑖 and 𝑗, and the reported values might be different. 
We use the large value for the trade. There are also missing trade partners and non-economy partners (such as “WLD” and “EU2”), 
which are not individual economies and thus removed from further analysis.

2.2. Network construction

Denoting the category of pesticide by 𝑐𝑚𝑑 ∈ {380891, 380892, 380893, 380894, 380899} and the trade value (in units of US$) 
of pesticide 𝑐𝑚𝑑 exported from economy 𝑖 to economy 𝑗 in year 𝑡 by 𝑤𝑐𝑚𝑑

𝑖𝑗
(𝑡), we express the temporary international pesticide trade 
2

network as follows,
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Fig. 1. Yearly evolution of the per level codelengths for modules (a) and leaf nodes (b) for the undirected international trade networks of insecticides (380891), 
fungicides (380892), herbicides (380893), disinfectants (380894), and rodenticides and other similar products (380899) from 2007 to 2018. (c)Evolution of the 
number of communities for the undirected international trade networks of insecticides (380891), fungicides (380892), herbicides (380893), disinfectants (380894), 
and rodenticides and other similar products (380899) from 2007 to 2018. (d) Evolution of the modularity for the undirected international trade networks of insecticides 
(380891), fungicides (380892), herbicides (380893), disinfectants (380894), and rodenticides and other similar products (380899) from 2007 to 2018.

𝐖𝑐𝑚𝑑 (𝑡) =
[
𝑤𝑐𝑚𝑑

𝑖𝑗
(𝑡)
]
,

which contains all the information about the set of nodes and links between them of the temporal network. Since national pesticide 
trade is not considered, we have 𝑤𝑐𝑚𝑑

𝑖𝑖
(𝑡) = 0 for all pesticide categories in all years and there are no self-loops in the iPTNs. The main 

statistical properties have been investigated in Ref. [30], including number of nodes, number of links, numbers of importing and 
exporting economies, trade value, node metrics, link metrics, and so on.

3. Results

3.1. Community structure of the undirected iPTNs

For the five undirected and weighted iPTNs, we adopt the two-level Infomap algorithm to identify the community partitioning 
[52]. The Infomap algorithm obtains the community partitioning 𝐂 when the expected description length of a random walk reaches 
its minimum and the per step average description length is given by a map equation:

𝐿(𝐂) =𝐿(𝐂) +𝐿 (𝐂),

where 𝐿(𝐂) is the per level codelength for communities, describing the inter-community movements of random walkers, and 𝐿 (𝐂)
is the per level codelength for leaf nodes, describing the intra-community movements of random walkers.

For each undirected and weighted international pesticide trade network, we obtain the community partitioning 𝐂𝑐𝑚𝑑 (𝑡). We 
illustrate the evolution of the per level codelength for communities (𝐿) in Fig. 1(a) and the per level codelength for leaf nodes 
(𝐿 ) in Fig. 1(b). Most of the per level codelength curves fluctuate remarkably. It is interesting to see that, for a given category of 
pesticides, when 𝐿 increases, 𝐿 decreases, and vice versa. Actually, the 𝐿(𝑡) curves fluctuate much less and do not show evident 
trends.

In Fig. 1(c), we show the evolution of the number 𝑁𝐂 of communities for the five categories of iPTNs. It is found that the number 
of identified communities changes over different years. There are three networks with only one community, that is, insecticides 
in 2008, fungicides in 2012, and fungicides in 2016. There are also two networks (insecticides in 2009 and 2012) having two 
communities. All other networks have at least three communities. The international trade networks of disinfectants have relatively 
more communities than other pesticides, with the largest number 10 of communities. We also find that the curves of the networks of 
herbicides and disinfectants are relatively stable compared to other pesticides. We note that the fluctuations and different behavior 
of the per level codelengths for some pesticides in Fig. 1(a) and Fig. 1(b) are caused by the different partitioning of communities for 
different networks shown in Fig. 1(c).

The most popular measure for the goodness of community partitioning of a network is the modularity [38,54]. The modularity of 
3

an undirected but weighted network is
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Fig. 2. Community evolution of the undirected iPTNs of insecticides (380891) from 2007 (Panel (a)) to 2018 (Panel (l)).

𝑄 = 1
2𝑤

∑
𝑖

∑
𝑗

(
𝑤𝑖𝑗 −

𝑤𝑖𝑤𝑗

2𝑤

)
𝛿(𝐶𝑖,𝐶𝑗 )

where 𝛿(𝐶𝑖, 𝐶𝑗 ) is the Kronecker delta function such that

𝛿(𝐶𝑖,𝐶𝑗 ) =

{
1, if 𝐶𝑖 = 𝐶𝑗

0, otherwise
,

𝑤𝑖 is the strength of node 𝑖

𝑤𝑖 =
∑
𝑗

𝑤𝑖𝑗 ,

and 2𝑤 is the total strength

2𝑤 =
∑
𝑖

𝑤𝑖 =
∑
𝑖

∑
𝑗

𝑤𝑖𝑗 .

Fig. 1(d) illustrates the evolution of modularity for the undirected iPTNs from 2007 to 2018. We find that the modularity curve 
of herbicides (380893) has the least fluctuations and largest values and shows a stably increasing trend. The modularity curve of 
disinfectants (380894) has also relatively large values and mild fluctuations and shows roughly an increasing trend. Correspondingly, 
their curves of community number are relatively stable. The modularity curve of rodenticides and other similar products (380899) 
has been stable before 2015 and increases sharply since 2016. The modularities of the three networks with only one community are 
all very low.

Fig. 2 illustrates the evolution of communities of the undirected iPTNs of insecticides (380891) from 2007 to 2018. It is striking 
to observe that there are 6 years when one community dominates, that are 2008, 2009, 2010, 2011, 2012, and 2014. In 2008, all 
the economies formed a community. In 2009, we obtain two communities. The smaller community 𝐶2 contains 18 economies, 16 
in southern Africa (Botswana, The Democratic Republic of the Congo, Equatorial Guinea, Madagascar, Malawi, Mauritius, Namibia, 
4

Rwanda, Saint Helena, Seychelles, Solomon Islands, South Africa, Swaziland, Tanzania, Zambia, and Zimbabwe, where 11 economies 
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belong to the Southern African Development Community) and two in the Middle East (Palestine and Kuwait). In 2010, we have 
three communities. The second community 𝐶2 contains 12 economies, including Barbados, Dominica, Grenada, Guyana, Jamaica, 
Montserrat, Saint Kitts and Nevis, Anguilla, Saint Lucia, Saint Vincent and the Grenadines, and Trinidad and Tobago, which are 
located around the Eastern Caribbean Sea. The third community 𝐶3 contains two economies, Mali and Senegal in northwest Africa. 
In 2011, we identify four communities. The second community 𝐶2 contains 15 economies (Australia, Solomon Islands, Cook Islands, 
Fiji, Kiribati, Nauru, Vanuatu, New Zealand, Niue, Norfolk Island, Papua New Guinea, Tonga, Tuvalu, Wallis and Futuna, and 
Samoa), located in the Oceania and around. The third community 𝐶3 contains 14 economies (Botswana, Comoros, Lesotho, Malawi, 
Mauritius, Mozambique, Namibia, Timor-Leste, Rwanda, Saint Helena, South Africa, Zimbabwe, Swaziland, and Zambia) in southern 
Africa. The fourth community 𝐶4 contains 11 economies (Barbados, Dominica, Grenada, Guyana, Jamaica, Montserrat, Saint Kitts 
and Nevis, Saint Lucia, Saint Vincent and the Grenadines, Suriname, and Trinidad and Tobago) in Latin-America. In 2012, we 
find two communities. The second community 𝐶2 contains 12 economies (Antigua and Barbuda, Barbados, Dominica, Grenada, 
Guyana, Jamaica, Montserrat, Saint Kitts and Nevis, Saint Lucia, Saint Vincent and the Grenadines, Suriname, and Trinidad and 
Tobago), which are located around the eastern Caribbean Sea. In 2014, there were three communities. The second community 
𝐶2 contains seven economies (Belize, Costa Rica, El Salvador, Guatemala, Honduras, Nicaragua, and Panama) located along the 
western Caribbean Sea, while the third community 𝐶3 contains 13 economies (Antigua and Barbuda, Barbados, Dominica, French 
Southern and Antarctic Territories, Grenada, Guyana, Jamaica, Montserrat, Saint Kitts and Nevis, Saint Lucia, Saint Vincent and the 
Grenadines, Suriname, and Trinidad and Tobago), located along the eastern Caribbean Sea.

The other six networks in 2007, 2013, 2015, 2016, 2017, and 2018 have more communities than networks in other years and the 
communities occupy relatively comparable areas. Comparing these community maps in different years, we see four main regions: 
American continent, European continent, Asia, and Oceania. In contrast, economies in Africa and Middle East are clustered into 
smaller communities or belong to other big communities. It shows the importance of geographical distance in international pesticide 
trade.

Fig. A.1 illustrates the evolution of communities of the undirected iPTNs of fungicides (380892) from 2007 to 2018. There are 
two networks, respectively in 2012 and 2016, which have only one community. The two networks in 2007 and 2009 had three 
communities. However, the first community 𝐶1 contains most economies. In 2007, the second community 𝐶2 contains 13 economies 
(Belize, Colombia, Costa Rica, The Dominican Republic, Ecuador, El Salvador, Guatemala, Haiti, Honduras, Jamaica, Panama, Peru, 
and Venezuela), while the third community 𝐶3 contains 10 economies (Antigua and Barbuda, Barbados, Grenada, Guyana, Montser-

rat, Aruba, Saint Kitts and Nevis, Saint Lucia, Saint Vincent and the Grenadines, and Trinidad and Tobago). The economies in these 
two communities are located around the Caribbean Sea. In 2009, the second community 𝐶2 contains two economies (Palestine in 
the Middle East and Swaziland in southern Africa), while the third community 𝐶3 also contains two economies (Niger and Burkina 
Faso), both in northern Africa.

The other eight networks in 2008, 2010, 2011, 2013, 2014, 2015, 2017, and 2018 have at least four communities. We observe 
several clustered regions, including the three economies of the North American Free Trade Area (NAFTA) together with a few small 
economies in the east Caribbean, Guyana and smaller economies in the east Caribbean, economies around the Caribbean, Asia, 
Oceania, Europe, and fragmented regions in Africa. These regions are identified communities in some years, or a few regions form a 
community in other years. For the economies in the Economic Commission for Latin America and the Caribbean, we mainly observe 
one, two, or three communities in different years, and some small economies may belong to the NAFTA-based community. Economies 
in the Oceania may be clustered with Europe (2008, 2010, 2011), the NAFTA (2013, 2014, 2018), or Asia (2010, 2011, 2017). This 
suggests that geographic distance and trade organizations play important roles in the formation of international fungicide trade 
communities.

Fig. A.2 illustrates the evolution of communities of the undirected iPTNs of herbicides (380893) from 2007 to 2018. It is found 
that there are at least five communities in each year. The three economies of NAFTA always belong to the same community, which 
often contains a few small economies in the Caribbean. In contrast, other economies in Latin America and the Caribbean usually 
form or belong to other communities, showing a similar regional pattern as in the international fungicide trade networks. In 2018, 
most of the economies on the American continent formed a unique community. In all the years, most economies in Europe have 
belonged to a community, and most economies in Asia also belong to a community. Japan and South Korea sometimes belong to the 
North American community or the European community. Economies in the Middle East are more likely to belong to the European 
community before 2012 and form their own community afterwards. Economies in Oceania belong to the Asia community in most 
years, except that they form a separate community in 2007 and belong to the South America community in 2009.

There are about 60 economies in Africa that belong to three or more communities. The economies in each of these communities 
are not randomly distributed in Africa; rather, they are clustered in a localized way, suggesting that geographical closeness is the 
dominant determining force in the formation of trade communities. Some economies are more likely to belong to the Asia community, 
while some other economies tend to join the Europe community. This pattern reflects their stable economic relationship. In most 
years, the Southern African Development Community and other geographically close economies often belong to the same, separate 
community. 

Fig. A.3 illustrates the evolution of communities of the undirected iPTNs of disinfectants (380894) from 2007 to 2018. These 
networks contain 6 to 10 communities and the division of communities in different years is quite similar except for the network 
in 2010. The first community 𝐶1 has 166 economies and contains most economies in North America, Europe, Asia and Oceania. 
The only exception is Papua New Guinea, the second largest country in Oceania, which belongs to the fifth community 𝐶5. The 
second community 𝐶2 has 9 economies (Argentina, Bolivia, Brazil, Chile, Haiti, Paraguay, Uruguay, and Venezuela in South Amer-
5

ica, and Mauritania in Northwest Africa). The third community 𝐶3 has 13 economies (Ethiopia, Kenya, Rwanda, Somalia, Sudan, 
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Fig. 3. Yearly evolution of the per level codelengths for modules (a) and leaf nodes (b) in the directed international trade networks of insecticides (380891), 
fungicides (380892), herbicides (380893), disinfectants (380894), and rodenticides and other similar products (380899) from 2007 to 2018. Evolution of the number 
of communities (a) and non-trivial top communities (b) for the directed international trade networks of insecticides (380891), fungicides (380892), herbicides 
(380893), disinfectants (380894), and rodenticides and other similar products (380899) from 2007 to 2018.

Uganda, and Tanzania in Eastern Africa, Bahrain, Kuwait, Lebanon, Syria, and the United Arab Emirates within the Middle East 
region, and Anguilla in the Eastern Caribbean). The fourth community 𝐶4 has 8 economies (Costa Rica, El Salvador, Guatemala, 
Honduras, Nicaragua, and Panama in the Western Caribbean, The Dominican Republic in the Eastern Caribbean, and Suriname in 
South America). The fifth community has 13 economies (Botswana, Lesotho, Malawi, Mali, Mauritius, Mozambique, Namibia, Saint 
Helena, South Africa, Zimbabwe, Swaziland, Zambia in Africa and Papua New Guinea in Oceania). The sixth community 𝐶6 has three 
economies (Antigua and Barbuda in the Eastern Caribbean and Liberia and Nigeria in the Western Africa). The African economies are 
distributed in five communities (except the fourth community 𝐶4), showing that they are less integrated in economic development.

The patterns of community maps of the Other 12 networks look quite similar. It is found that the economies in North America 
and South America never unite to form a big community in all years including 2010. Economies in the Caribbean and around may 
belong to different communities rather than the main part of South America. Most economies in Oceania, East Asia, South Asia and 
Southeast Asia fall in the same community in most years, except that in 2008 most economies in Southeast Asia form a separate 
community 𝐶5. The relatively large numbers of identified communities in the international disinfectant trade networks are mainly 
attributed to African economies, which belong to several communities in all years.

Fig. A.4 illustrates the evolution of communities of the undirected iPTNs of rodenticides and other similar products (380899) 
from 2007 to 2018. In the nine networks from 2007 to 2015, we obtain three to five communities, and each map is dominated by 
the biggest community and decorated with other communities. South America belongs to the biggest community in all years but 
2007. In addition, quite a few economies in the Middle East and Africa do not belong to the largest community. This observation is 
consistent with other iPTNs.

The three recent networks in 2016, 2017, and 2018 exhibit different community patterns. These networks have seven or nine 
communities. The majority of economies in Southern Africa and Europe have become two separate communities. In 2016, we observe 
three separate communities in Southeast Asia, the Caribbean, and the Middle East. In 2017 and 2018, we find a united community 
in Southeast Asia and the Middle East and a new community in Oceania.

3.2. Community structure of the directed iPTNs

We adopt the multi-level Infomap algorithm [52] to identify the community partitioning of the five categories of iPTNs that are 
directed and weighted. We show below the community maps of the iPTNs on a yearly basis.

For each directed international pesticide trade network, we obtain the community partitioning 𝐂𝑐𝑚𝑑 (𝑡). We illustrate the evolution 
of the per level codelength for communities (𝐿) in Fig. 3(a). While most of the 𝐿 values fluctuate around 1, there are 10 points 
close to 0. Since 𝐿 represents the codelength of inter-community walks, a small value shows that there are very few identified 
communities. The evolution of the per level codelength for leaf nodes (𝐿 ) is shown in Fig. 3(b). Despite the fact that most of the 
𝐿 values fluctuate around 4.2, we again observe 10 points above 𝐿 = 4.9, which correspond to the 10 outlier networks identified 
in Fig. 3(a). Since 𝐿 represents the codelength of intra-community walks, larger communities usually have greater 𝐿 values. 
6

Comparing Fig. 1 and Fig. 3, we find that



Heliyon 9 (2023) e21076J.-A. Li, L. Wang, W.-J. Xie et al.

Fig. 4. Evolution of the modularity for the directed international trade networks of insecticides (380891), fungicides (380892), herbicides (380893), disinfectants 
(380894), and rodenticides and other similar products (380899) from 2007 to 2018.

𝐿dir


>𝐿undir


and 𝐿dir


< 𝐿undir


for most of the corresponding pairs of direct iPTNs and undirected iPTNs, where the superscripts “dir” and “undir” stand respectively 
for the directed and undirected international trade networks for the same category of pesticides in the same year.

In Fig. 3(c), we show the evolution of the number 𝑁dir
𝐂 of communities for the five categories of directed iPTNs. We observe 

a mildly increasing trend in the first years. In Fig. 3(d), we show the evolution of the number 𝑁dir
𝐂>𝟏 = 𝑁dir

𝐂 −𝑁dir
𝐂𝟏 of non-trivial 

top communities for the five categories of directed iPTNs, where 𝑁dir
𝐂𝟏 is the number of trivial communities. A trivial community 

is a module with either one or all nodes within it. In the networks we analyzed, there are one-node communities, but not all-node 
communities.

As shown in Fig. 3(d), after removing trivial communities, we obtain nine networks with 𝑁dir
𝐂>𝟏 = 2 and one network with 𝑁dir

𝐂>𝟏 = 3, 
which are the same outlier networks recognized from Fig. 3 and hard to be recognized from Fig. 3(c). Excluding these 10 networks, 
other networks each has at least 14 communities. Comparing Fig. 3(c), and Fig. 1(c), we find that there are more communities 
identified in the directed networks than in the undirected networks such that

𝑁dir
𝐂 ≥𝑁dir

𝐂>𝟏 >𝑁undir
𝐂

for most cases (year and pesticide).

The modularity of a directed and weighted network is defined as follows [55]:

𝑄 = 1
2𝑊

∑
𝑖

∑
𝑗

(
𝑤𝑖𝑗 −

𝑠out
𝑖

𝑠in
𝑗

2𝑊

)
𝛿(𝐶𝑖,𝐶𝑗 ),

where 𝑠out
𝑖

is the total export of economy 𝑖

𝑠out
𝑖

=
∑
𝑗

𝑤𝑖𝑗 ,
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Fig. 4 illustrates the evolution of the modularity for the directed iPTNs from 2007 to 2018. We find that the 10 outlier networks 
have much larger modularity than the rest networks. The rest of the networks have very small modularities, which are much less 
than the modularities of the undirected networks. Hence, for most cases (year and pesticide), a directed network usually has more 
communities but lower modularity than its counterpart undirected network.

Fig. 5 illustrates the evolution of communities of the directed iPTNs of insecticides (380891) from 2007 to 2018. For better 
visibility, the non-trivial communities containing less than 5 economies and trivial communities are merged to 𝐶0 . For instance, 
in the community map of 2007, the merged cluster 𝐶0 contains 3 non-trivial communities (𝐶10 with Belarus, Estonia, Latvia, and 
Lithuania, 𝐶13 with Azerbaijan and Georgia, and 𝐶14 with Tunisia and Mayotte) and 7 trivial communities (𝐶15 Tanzania, 𝐶16 Gambia, 
𝐶17 Liberia, 𝐶18 Suriname, 𝐶19 Congo, 𝐶20 Somalia, and 𝐶21 Equatorial Guinea). In Fig. 5, only the network in 2017 does not have 
cluster 𝐶0, which contains two communities. The second community 𝐶2 contains six economies (Virgin Islands (British), Saint Kitts 
and Nevis, Saint Vincent and the Grenadines, Curaçao, Aruba, and The Turks and Caicos Islands), all located in the eastern Caribbean 
7

Sea.
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Fig. 5. Community evolution of the directed iPTNs of insecticides (380891) from 2007 (Panel (a)) to 2018 (Panel (l)). For better visibility, the non-trivial communities 
containing less than 5 economies and trivial communities are merged to 𝐶0.

We now investigate the community structure of the 11 networks (except 2017). Most of the communities exhibit regional clus-

tering or are combinations of regionally clustered areas. The community in green appears in all 11 networks, which mainly contain 
Russia and several economies geographically close to Russia. China, India, Japan, Korea, and the main economies in South Asia 
and Southeast Asia usually belong to a community. For instance, in 2007, this Asia community contained 24 economies, including 
Indonesia, Japan, the Philippines, Thailand, Togo, China, Hong Kong, Korea, India, Singapore, Bangladesh, Sri Lanka, Benin, Macao, 
Malaysia, Vietnam, Kiribati, the Maldives, Micronesia, the Marshall Islands, Guam, The Northern Mariana Islands, Lao PDR, and 
Brunei. Australia, New Zealand, and other economies in Oceania form a community. In 2007, the Oceania community contained 
17 economies, including Australia, New Zealand, Solomon Islands, Cook Islands, Fiji, French Polynesia, New Caledonia, Vanuatu, 
Palau, Papua New Guinea, Timor-Leste, Tonga, Samoa, Cambodia, Niue, Norfolk Island, and Swaziland. The Asia community and the 
Oceania community merged into one community in 2014 and 2018.

Economies in West Europe and sometimes in North Africa and the Middle East form a community. This West European community 
is often the largest community in the sense of the number of economies it contains. In 2007, it contained 47 economies, including 
Algeria, France, Germany, Denmark, Ghana, Greece, Israel, Nigeria, Senegal, Spain, Italy, Kenya, Mali, Mauritius, the Netherlands, 
Poland, Slovakia, Switzerland, the United Kingdom, Austria, Belgium, Cameroon, Cyprus, Czech, Ireland, Côte d’Ivoire, Luxembourg, 
Norway, Portugal, Sweden, Chad, Comoros, Finland, Iceland, Malta, Morocco, Sierra Leone, Uganda, Burkina Faso, Mauritania, Faroe 
Islands, Andorra, Cabo Verde, São Tomé and Principe, Wallis and Futuna, Palestine, and Gibraltar.

In the North and South American continents, Canada, Greenland (except 2015), Mexico, and the USA always belong to a commu-

nity, most economies in South America also form a community, and other economies (especially those in the Caribbean) may belong 
to the North America community or the South America community or form separate communities. From 2008 to 2011, the North 
America community and the South America community were separate; otherwise, they formed the biggest community in the sense 
of area. In 2009 and 2011, the North American community and the Asian community united into one community. In 2014 and 2018, 
the North American community, the Asian community, and the Oceanian community united to belong to the same community. The 
community structure of the economies in Africa is quite complex and changes frequently.

Fig. B.1 illustrates the evolution of communities of the directed iPTNs of fungicides (380892) from 2007 to 2018. For better 
visibility, the non-trivial communities containing less than 5 economies and trivial communities are merged to 𝐶0. We find that 
8

the community structure of the two networks in 2017 and 2018 is dominated by a big community and very different from other 
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networks. In 2017, there are three communities, in which 𝐶2 contains 13 economies (Tanzania, Zambia, Kenya, Ethiopia, Uganda, 
Namibia, Burundi, Rwanda, Malawi, Zimbabwe, South Sudan, Comoros, and The Turks and Caicos Islands) and 𝐶3 (or 𝐶0) contains 
three economies (Angola, The Democratic Republic of the Congo, and Mozambique), mainly in Africa. In 2018, 𝐶3 contains Solomon 
Islands, Fiji, Papua New Guinea, Samoa, Kiribati, and Tuvalu in the South Pacific Ocean, while 𝐶0 contains two communities 𝐶2
(Tunisia and Congo) and 𝐶4 (Gambia, Guinea, and Senegal), all in Africa.

Fig. B.2 illustrates the evolution of communities of the directed iPTNs of herbicides (380893) from 2007 to 2018. For better 
visibility, the non-trivial communities containing less than 5 economies and trivial communities are merged into 𝐶0. We observe 
that the most evident feature of the community maps is that the four networks in 2011, 2016, 2017 and 2018 are dominated by a 
big community. In 2011, we identify three communities, in which 𝐶2 contains 16 economies (Antigua and Barbuda, Nigeria, Côte 
d’Ivoire, Senegal, Sri Lanka, Ghana, Liberia, Mali, Burkina Faso, Bouvet Island, Maldives, Benin, Guinea, Mauritania, Niger, and 
Togo) and 𝐶3 contains 7 economies (United Arab Emirates, Kenya, Burundi, Rwanda, Uganda, Tanzania, and Malawi). In 2016, we 
find two economies, in which 𝐶2 (or 𝐶0) contains Angola, São Tomé and Principe, Namibia, and Botswana. In 2017, we find two 
economies, in which 𝐶2 contains Andorra, Nigeria, Cameroon, Ghana, Côte d’Ivoire, Liberia, Mali, Senegal, Congo, Benin, Gambia, 
Mauritania, Niger, Sierra Leone, and Burkina Faso. In 2018, we also find two economies, in which 𝐶2: Azerbaijan, Georgia, Senegal, 
Tunisia, Côte d’Ivoire, Mali, Nigeria, Benin, Gambia, Guinea, Liberia, Madagascar, Togo, Burkina Faso, and Guinea-Bissau. A common 
feature is that almost all the economies of the five small communities in the four networks are located in Africa.

We now turn to investigate the rest eight networks. Firstly, the main economies in North America and South America do not form 
a united community. Secondly, most European economies belong to the same community in 2007, 2008, 2013, and 2015 and divide 
into two communities in other years. Thirdly, India does not belong to the Asia community, except in 2008 and 2012. Fourthly, the 
Oceania cluster formed a separate community from 2007 to 2010, fell into the same community as North America in 2012, 2013, 
and 2014, and joined the Asia community in 2015. Fifth, China, Dem. Rep. Korea, and most economies in South Asia and Southeast 
Asia form the Asia community. In contrast, Japan and Korea belong to the Asia community in 2009, 2010, 2012, and 2014, and to 
the Russia community in 2007, 2008, and 2013.

Fig. B.3 illustrates the evolution of communities of the directed iPTNs of disinfectants (380894) from 2007 to 2018. For better 
visibility, the non-trivial communities containing less than 5 economies and trivial communities are merged into 𝐶0. All networks 
but the one in 2010 have more than 13 non-trivial communities. The network in 2010 has two communities, with the small one 𝐶2
containing five economies in Africa (Algeria, Nigeria, Ghana, Liberia, and Morocco), one economy in the North Caribbean (Antigua 
and Barbuda), and one economy in West Asia (Qatar).

The other 11 networks share some common features in their community structures. We describe below several big, stable commu-

nities. Most economies in East Asia, South Asia, Southeast Asia, and Oceania form a community. Russia and several economies in East 
Europe and Middle Asia belong to a community, most of which were former members of the Soviet Union. Most Western European 
economies form a community, often combining several economies in Africa. Most Northern European economies belonged to the 
Western Europe community from 2007 to 2011 and formed a separate community from 2012 to 2018. On the American continent, 
we observe two main communities, respectively, in North America and South America. Except for these communities, the economies 
in the Caribbean, Middle East, and Africa often form different communities that are less stable over time.

Fig. B.4 illustrates the evolution of communities of the directed iPTNs of rodenticides and other similar products (380899) from 
2007 to 2018. For better visibility, the non-trivial communities containing less than 5 economies and trivial communities are merged 
into cluster 𝐶0. The networks usually have more than 14 non-trivial communities, except that the two networks in 2014 and 2017 
have only two communities. The small community 𝐶2 in 2014 contains 4 African economies (Ghana, Mali, Guinea, Togo, Burkina 
Faso, and Côte d’Ivoire) and the Bahamas. The small community 𝐶2 in 2017 contains 19 economies in Africa (Mali, Kenya, Uganda, 
Burkina Faso, Central African Republic, Benin, Ethiopia, Gabon, Ghana, Côte d’Ivoire, Madagascar, Nigeria, South Sudan, Togo, 
Niger, Rwanda, Liberia, Burundi, and Somalia) and 2 in South Asia (Maldives and Sri Lanka).

In the rest 10 networks, the main part of the Russia community is quite stable, while the Oceania economies form a separate 
community. China, Japan, Korea, and several other Asian economies form the main Asian community, while economies in Southeast 
Asia may form a separate community. The Western European economies formed a separate community in 2009, 2010, 2011, 2015, 
and 2018, and merged with the main Asia community in 2007, 2008, 2012, 2013, and 2016. On the American continent, there 
are at least two big communities (except in 2009), one in North America and the other in South America or in Latin America and 
the Caribbean, and the main economies in Central America around the Caribbean Sea may form a separate community. The North 
American community and the Asian community also merged from 2009 to 2017.

3.3. Temporal similarity of community structure

In the previous subsections, we have found that the community structure of the iPTNs is more or less stable over different years. 
In order to quantify how stable the community structure is, we calculate the similarity between the partitions in two successive years 
using the normalized mutual information (𝑁𝑀𝐼) measure, which was originally designed for comparing the performance of community 
structure detection methods when the “true value” of the community structure of the network under investigation is known [56]. The 
𝑁𝑀𝐼 measure is based on the definition of a confusion matrix 𝐍, whose rows correspond to the detected communities of network 
𝒢𝑡−1 and columns correspond to the identified communities of network 𝒢𝑡. The element 𝑁𝑖𝑗 of the confusion matrix 𝐍 is the number 
of nodes in community 𝑖 of network 𝒢𝑡−1 that appear in community 𝑗 of network 𝒢𝑡. The normalized mutual information (𝑁𝑀𝐼) 
9

measure between the community partitioning of two successive networks is calculated as follows:
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Fig. 6. Normalized mutual information 𝑁𝑀𝐼(𝑡− 1, 𝑡) between the partitions of two successive iPTNs. (a) undirected iPTNs, (b) directed iPTNs.
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where 𝑛𝑐
𝑡−1 is the number of communities in network 𝒢𝑡−1, 𝑛𝑐𝑡 is the number of communities in network 𝒢𝑡., 𝑁𝑖. =

∑
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over row 𝑖 of confusion matrix 𝐍, and 𝑁.𝑗 =
∑

𝑖 𝑁𝑖𝑗 is the sum over column 𝑗. If the two partitions are identical, then 𝑁𝑀𝐼(𝑡 − 1, 𝑡)
takes its maximum value of 1. If the two partitions are totally independent, we have 𝑁𝑀𝐼(𝑡 − 1, 𝑡) = 0.

Fig. 6 shows the normalized mutual information 𝑁𝑀𝐼(𝑡 −1, 𝑡) between the partitions of two successive iPTNs. For the undirected 
networks in Fig. 6(a), the 𝑁𝑀𝐼 curve for fungicides (380892) fluctuates largely, while the other four curves exhibit an increasing 
trend. For the directed networks in Fig. 6(b), the 𝑁𝑀𝐼 curves exhibit an increasing trend in early years and become trend-free 
afterwards. For herbicides (380893), disinfectants (380894), and rodenticides and other similar products (380899), the 𝑁𝑀𝐼 value 
for an undirected network is larger than that for the corresponding directed network:

𝑁𝑀𝐼undir (𝑡− 1, 𝑡) >𝑁𝑀𝐼dir (𝑡− 1, 𝑡).

For insecticides (380891) and fungicides (380892), we do not observe any evident relationship between undirected and directed 
networks.

We also calculate the normalized mutual information 𝑁𝑀𝐼undir (𝑡𝑖, 𝑡𝑗 ) and 𝑁𝑀𝐼dir (𝑡𝑖, 𝑡𝑗 ) between any two different years 𝑡𝑖 and 
𝑡𝑗 for the undirected and directed iPTNs. For each category of pesticides, we obtain the average and its standard deviation. For the 
undirected networks, the average normalized mutual information is 0.30 ± 0.19 for insecticides (380891), 0.33 ± 0.20 for fungicides 
(380892), 0.50 ± 0.09 for herbicides (380893), 0.55 ± 0.09 for disinfectants (380894), and 0.32 ± 0.15 for rodenticides and other 
similar products (380899), For the undirected networks, the average normalized mutual information is 0.27 ± 0.02 for insecticides 
(380891), 0.29 ±0.03 for fungicides (380892), 0.27 ±0.02 for herbicides (380893), 0.30 ±0.03 for disinfectants (380894), and 0.30 ±0.03
for rodenticides and other similar products (380899). It is found that the average normalized mutual information is comparable 
between the undirected and directed iPTNs of insecticides (380891), fungicides (380892), and rodenticides and other similar products 
(380899), while the undirected iPTNs of herbicides (380893) and disinfectants (380894) have significantly larger average normalized 
mutual information than the directed iPTNs. The most significant feature is that the directed iPTNs have much smaller standard 
deviations than the undirected iPTNs, showing that the community structure of the directed iPTNs is much stabler than the undirected 
iPTNs, which implies that the community structure of the directed iPTNs captures better the underlying economic contents of 
international pesticide trade.

3.4. Community blocks in the directed iPTNs

The results in Sec. 3.2 and Sec. 3.3 have shown that the community structure of the directed iPTNs has evolved stably, which 
suggests that there are intrinsic community blocks that are common to all communities and form the backbone of the identified 
communities. An intrinsic community block 𝐵𝑖 is a maximum set of nodes in which all the nodes belong to the same community in 
each iPTN. Hence, starting from an arbitrary node 𝑢, if node 𝑣 belongs to the same community of the iPTN in every year, then 𝑢 and 
𝑣 belong to the same intrinsic community block; otherwise, 𝑢 and 𝑣 belong to two different intrinsic community blocks. We identify 
the intrinsic community blocks of the temporal directed iPTNs for the five categories of pesticides.

For the temporal iPTN of insecticides (380891), we obtain 18 intrinsic community blocks containing 78 economies in total, 
including 𝐵1 (United Arab Emirates, Egypt, Jordan, Oman, Saudi Arabia), 𝐵2 (Argentina, Brazil, Chile, Colombia, Ecuador, Peru, 
Paraguay), 𝐵3 (Australia, Norfolk Island, New Zealand), 𝐵4 (Austria, Belgium, Switzerland, Czech, Germany, Denmark, Spain, France, 
the United Kingdom, Greece, Ireland, Italy, Luxembourg, the Netherlands, Poland, Portugal, Slovakia), 𝐵5 (Bulgaria, Romania), 𝐵6
(Bosnia and Herzegovina, Macedonia, Serbia), 𝐵7 (Bolivia, Uruguay), 𝐵8 (Barbados, Guyana, Trinidad and Tobago), 𝐵9 (Canada, 
United States), 𝐵10 (China, Hong Kong, Indonesia, India, Japan, Korea, Lao PDR, Malaysia, Singapore, Thailand, Vietnam), 𝐵11
(Côte d’Ivoire, Nigeria), 𝐵12 (Costa Rica, Guatemala, Honduras, Nicaragua, El Salvador), 𝐵13 (Estonia, Lithuania, Latvia), 𝐵14 (Israel, 
Palestine), 𝐵15 (Kazakhstan, Mongolia, Russia, Ukraine), 𝐵16 (Lebanon, San Marino), 𝐵17 (Mozambique, Zambia, Zimbabwe), and 
𝐵18 (Saint Helena, South Africa). The map of intrinsic community blocks is shown in the first row of Fig. 7, distinguished by different 
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colors, which also shows the networks of the intrinsic community blocks. The intrinsic community block 𝐵4 has the largest size with 
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Fig. 7. Intrinsic community blocks in the temporal directed iPTNs from 2007 to 2018 of insecticides (380891, a and b), fungicides (380892, c and d), herbicides 
(380893, e and f), disinfectants (380894, g and h), and rodenticides and other similar products (380899, i and j) in the colored map (left panel) and in colored 
networks (right panel). The node color of an intrinsic community block is the same in both panels.

17 economies in Europe, while the second largest block 𝐵10 contains 11 economies in East and South Asia. Most of the economies 
that are not included in any intrinsic community blocks are in Africa, the Caribbean, and Central and West Asia.

For the temporal iPTN of fungicides (380892), we obtain 19 intrinsic community blocks containing 67 economies in total, 
11

including 𝐵1 (Argentina, Brazil, Chile, Uruguay), 𝐵2 (Australia, Niue, New Zealand, Tonga), 𝐵3 (Austria, Belgium, Cabo Verde, 



Heliyon 9 (2023) e21076J.-A. Li, L. Wang, W.-J. Xie et al.

Germany, Spain, France, the United Kingdom, Ireland, Italy, Luxembourg, the Netherlands, Portugal), 𝐵4 (Bulgaria, Romania), 𝐵5
(Bosnia and Herzegovina, Montenegro, Serbia), 𝐵6 (Belize, Costa Rica, Guatemala, Honduras, Nicaragua, Panama, El Salvador), 
𝐵7 (Bermuda, Canada, Mexico, United States), 𝐵8 (Bolivia, Paraguay), 𝐵9 (Colombia, Ecuador, Peru), 𝐵10 (Czech, Slovakia), 𝐵11
(Denmark, Sweden), 𝐵12 (Fiji, Samoa), 𝐵13 (Hong Kong, Japan, Korea), 𝐵14 (Croatia, Slovenia), 𝐵15 (Indonesia, Malaysia, Singapore, 
Thailand, Vietnam), 𝐵16 (Jordan, Saudi Arabia), 𝐵17 (Kazakhstan, Kyrgyzstan, Mongolia, Russia), 𝐵18 (Lithuania, Poland), and 𝐵19
(Rwanda, Uganda). The second row of Fig. 7 shows the map and the networks of the intrinsic community blocks. The largest intrinsic 
community block 𝐵3 contains 12 economies mainly in Europe, while the second largest intrinsic community block 𝐵6 contains 7 
economies in the Western Caribbean. Most economies in Africa and many economies in Asia (including China and India) do not 
belong to any intrinsic community blocks.

For the temporal iPTN of herbicides (380893), we obtain 16 intrinsic community blocks containing 66 economies in total, 
including 𝐵1 (Argentina, Brazil, Uruguay), 𝐵2 (Australia, Cook Islands, Norfolk Island, New Zealand), 𝐵3 (Austria, Belgium, Switzer-

land, Cabo Verde, Czech, Germany, Spain, France, the United Kingdom, Greece, Hungary, Israel, Italy, Luxembourg, Morocco, the 
Netherlands, Poland, Portugal, Palestine, Slovakia), 𝐵4 (Bulgaria, Romania), 𝐵5 (Bosnia and Herzegovina, Macedonia, Serbia), 𝐵6
(Bermuda, Canada, United States), 𝐵7 (Bolivia, Paraguay), 𝐵8 (Chile, Colombia, Ecuador, Peru), 𝐵9 (China, Indonesia, Malaysia), 
𝐵10 (Costa Rica, Guatemala, Honduras, Nicaragua, El Salvador), 𝐵11 (Denmark, Faroe Islands, Greenland, Norway, Sweden), 𝐵12
(Estonia, Lithuania, Latvia), 𝐵13 (Hong Kong, Macao), 𝐵14 (Ireland, Malta), 𝐵15 (Cambodia, Lao PDR, Singapore, Thailand, Vietnam), 
and 𝐵16 (Mozambique, Zimbabwe). The third row of Fig. 7 shows the map and the networks of the intrinsic community blocks. The 
largest intrinsic community block 𝐵3 contains 20 economies, mainly in Europe. Most economies in Africa, many economies in Asia 
(including India, Japan, and Korea), and Russia do not belong to any intrinsic community blocks. We find that block 𝐵14 (Ireland, 
Malta) does not appear in the network plot since Ireland and Malta always belong to the same community in each year but do not 
have direct international trade of herbicides.

For the temporal iPTN of disinfectants (380894), we obtain 20 intrinsic community blocks containing 83 economies in total, in-

cluding 𝐵1 (United Arab Emirates, Bahrain, Jordan, Kuwait, Lebanon, Saudi Arabia), 𝐵2 (Argentina, Bolivia, Brazil, Chile, Uruguay), 
𝐵3 (Australia, China, Japan, Korea, Lao PDR, Malaysia, New Zealand, Singapore, Thailand, Vietnam), 𝐵4 (Austria, Belgium, Switzer-

land, Cabo Verde, Germany, Spain, France, the United Kingdom, Ireland, Italy, Luxembourg, the Netherlands, Portugal, Saint-Pierre 
and Miquelon, São Tomé and Principe), 𝐵5 (Burkina Faso, Côte d’Ivoire), 𝐵6 (Barbados, Guyana, Jamaica, Suriname, Trinidad and 
Tobago), 𝐵7 (Canada, Mexico, United States), 𝐵8 (Colombia, Ecuador), 𝐵9 (Costa Rica, Panama), 𝐵10 (Czech, Hungary, Poland, Slo-

vakia), 𝐵11 (Denmark, Finland, Greenland, Norway, Sweden), 𝐵12 (Estonia, Latvia), 𝐵13 (Fiji, Samoa), 𝐵14 (Guatemala, Honduras, 
Nicaragua, El Salvador), 𝐵15 (Hong Kong, Macao), 𝐵16 (Israel, Palestine), 𝐵17 (Kazakhstan, Kyrgyzstan, Russia, Ukraine), 𝐵18 (Kenya, 
Tanzania), 𝐵19 (Macedonia, Montenegro, Serbia), and 𝐵20 (South Africa, Zambia, Zimbabwe) The fourth row of Fig. 7 shows the 
map and the networks of the intrinsic community blocks. The largest intrinsic community block 𝐵4 contains 16 economies mainly in 
Europe, while the second largest intrinsic community block 𝐵3 contains 10 economies in Asia and Oceania.

For the temporal iPTN of rodenticides and other similar products (380899), we obtain 16 intrinsic community blocks contain-

ing 46 economies in total, including 𝐵1 (United Arab Emirates, Bahrain, Kuwait, Saudi Arabia), 𝐵2 (Argentina, Brazil, Chile), 𝐵3
(Australia, Niue, New Zealand), 𝐵4 (Belgium, Switzerland, Germany, Spain, France, the United Kingdom, Italy, the Netherlands, Nor-

way, Portugal, Sweden), 𝐵5 (Bosnia and Herzegovina, Montenegro, Serbia), 𝐵6 (Botswana, Zimbabwe), 𝐵7 (Canada, United States), 
𝐵8 (Costa Rica, Guatemala, Honduras, El Salvador), 𝐵9 (Czech, Poland, Slovakia), 𝐵10 (Estonia, Latvia), 𝐵11 (Indonesia, Thailand), 
𝐵12 (Cambodia, Lao PDR), 𝐵13 (Sri Lanka, Maldives), 𝐵14 (Mongolia, Russia, Ukraine), 𝐵15 (Papua New Guinea, Vanuatu), and 𝐵16
(Paraguay, Uruguay). The fifth row of Fig. 7 shows the map and the networks of the intrinsic community blocks. The largest intrinsic 
community block 𝐵3 contains 11 economies in Europe. There are two second largest communities 𝐵1 and 𝐵8, each containing four 
economies, respectively, in the Middle East and Western Caribbean. Most economies in Africa and Asia do not belong to any intrinsic 
community blocks. There are two intrinsic community blocks 𝐵12 (Cambodia, Lao PDR) and 𝐵15 (Papua New Guinea, Vanuatu), 
whose two members do not have direct international trade in rodenticides and other similar products and thus do not appear in the 
network plot.

Comparing the intrinsic community blocks of different pesticides, we find that the largest block is always mainly based in Europe 
and contains Belgium, Germany, Spain, France, the United Kingdom, Italy, the Netherlands, and Portugal, the intrinsic community 
block in North America always contains Canada and the United States, the intrinsic community block in South America always 
contains Argentina and Brazil, and Australia and New Zealand also appear together. In all the iPTNs, the identified intrinsic blocks 
act as the core of communities.

4. Discussion

There are limitations to the study. Firstly, due to the fact that many economies report their trade data to the UN with time 
lags, the trade data in the UN Comtrade Database is not complete, especially in recent years. We are thus not able to investigate 
the international trade networks that have been impacted by the COVID-19 pandemic and the Russia-Ukraine conflict. Secondly, 
the formation of the communities is only partially interpreted through geographical proximity and trade-agreement co-membership. 
Other factors, such as food production shocks, are not investigated. Thirdly, there is much work to do to understand the dynamics of 
the detected community structures and intrinsic community blocks. Although we observed the persistence of community structures 
over time, as indicated by the normalized mutual information, there are also slow or abrupt changes.

Furthermore, the detected community structures and intrinsic community blocks in the iPTNs form the starting point for further 
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research. Firstly, it is crucial to uncover influencing factors in the formation of bilateral trade and communities. For instance, the sem-
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inal work of Torreggiani et al. found that, besides geographical proximity, trade-agreement co-membership is another determinant 
that promotes the co-presence of economies in communities [17]. Secondly, one can use these findings to validate network growth 
models specific to international pesticide trade or, alternatively, to develop network growth models integrating the determinants of 
community formation. Thirdly, the communities and their intrinsic blocks reveal the underlying higher-order interactions among 
economies and can be used to design attack strategies in the study of network vulnerability. Most previous studies concerned attacks 
on nodes and/or links [57–59], and attacks based on higher-order interactions were much less considered. Fourthly, it is interesting 
to investigate the role of higher-order interactions embedded in the community structure in shock propagation between pesticide and 
food trade networks, linking pesticide trade patterns and food security. Finally, in contrast to the fact that most community detection 
methods use information about the links and link weights, it would be interesting to use the multi-attribute community detection 
method that takes into consideration nodes’ centrality metrics [60] or the multilayer community detection method by combining the 
individual trade networks of different pesticides into a multilayer network [61].

5. Conclusion

In summary, we have investigated the evolving community structure in five categories of iPTNs from 2007 to 2018. We reveal 
that geographic distance plays an important role, and the community structures in the undirected and directed iPTNs exhibit regional 
patterns. These regional patterns are very different for undirected and directed networks and for different categories of pesticides. 
Using the normalized mutual information between successive communities to quantify the stability of community structures in 
undirected and directed networks, we found that the community structure is stabler in the directed iPTNs.

We further extracted the intrinsic community blocks for the directed international trade networks of each pesticide category. We 
found that the largest and stablest intrinsic community block in every pesticide category contains important economies (Belgium, 
Germany, Spain, France, the United Kingdom, Italy, the Netherlands, and Portugal) in Europe. Other important and stable intrinsic 
community blocks are found to be Canada and the United States in North America, Argentina and Brazil in South America, and 
Australia and New Zealand in Oceania. These findings also indicate the important role played by geographic distance and imply 
the importance of the pesticide supply and demand complementarity of important adjacent economies in the international trade of 
pesticides.
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Appendix A. Community evolution of the undirected iPTNs

Fig. A.1. Community evolution of the undirected iPTNs of fungicides (380892) from 2007 (Panel (a)) to 2018 (Panel (l)).
14

Fig. A.2. Community evolution of the undirected iPTNs of herbicides (380893) from 2007 (Panel (a)) to 2018 (Panel (l)).
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Fig. A.3. Community evolution of the undirected iPTNs of disinfectants (380894) from 2007 (Panel (a)) to 2018 (Panel (l)).
15

Fig. A.4. Community evolution of the undirected iPTNs of rodenticides and other similar products (380899) from 2007 (Panel (a)) to 2018 (Panel (l)).
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Appendix B. Community evolution of the directed iPTNs

Fig. B.1. Community evolution of the directed iPTNs of fungicides (380892) from 2007 (Pane (a)) to 2018 (Panel (l)). For better visibility, the non-trivial communities 
containing less than 5 economies and trivial communities are merged to 𝐶0.

Fig. B.2. Community evolution of the directed iPTNs of herbicides (380893) from 2007 (Pane (a)) to 2018 (Panel (l)). For better visibility, the non-trivial communities 
16

containing less than 5 economies and trivial communities are merged to 𝐶0.
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Fig. B.3. Community evolution of the directed iPTNs of disinfectants (380894) from 2007 (Pane (a)) to 2018 (Panel (l)). For better visibility, the non-trivial 
communities containing less than 5 economies and trivial communities are merged to 𝐶0.

Fig. B.4. Community evolution of the iPTNs of rodenticides and other similar products (380899) from 2007 (Pane (a)) to 2018 (Panel (l)). For better visibility, the 
17

non-trivial communities containing less than 5 economies and trivial communities are merged to 𝐶0 .
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