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Abstract

Early detection of heart failure (HF) can provide patients with the opportunity for more timely 

intervention and better disease management, as well as efficient use of healthcare resources. 

Recent machine learning (ML) methods have shown promising performance on diagnostic 

prediction using temporal sequences from electronic health records (EHRs). In practice, however, 

these models may not generalize to other populations due to dataset shift. Shifts in datasets 

can be attributed to a range of factors such as variations in demographics, data management 

methods, and healthcare delivery patterns. In this paper, we use unsupervised adversarial domain 

adaptation methods to adaptively reduce the impact of dataset shift on cross-institutional transfer 

performance. The proposed framework is validated on a next-visit HF onset prediction task using 

a BERT-style Transformer-based language model pre-trained with a masked language modeling 

(MLM) task. Our model empirically demonstrates superior prediction performance relative to 

non-adversarial baselines in both transfer directions on two different clinical event sequence data 

sources.
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1. Introduction

Recent research has demonstrated the advantages of deep learning (DL) methods for 

diagnostic prediction using clinical temporal sequences [1–4]. Despite the reported 
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improvements in predicting outcomes, these models’ actual clinical impact still lags behind 

their projected potential. A critical reason for this unfilled promise is the inability to 

generalize findings beyond the development cohort/population [5,6]. Due to data availability 

and sharing restrictions, most existing models are only internally validated using same-

source, in-distribution data similar to the development data (e.g., from the same institution). 

Such models tend to fail, if not suffer from lower performance on independent external test 

cases from other sources and in different distributions [7,8].

Existing work in transfer learning has thus explored ways to improve clinical model 

generalizability by utilizing EHRs from multiple sources [9–11]. One transfer learning 

method, domain adaptation (DA), leverages knowledge from a different but related domain 

to train models for decision making in a new target domain, given the same task in 

each domain both with varying distributions of data. This approach is particularly useful 

when the target domain lacks labeled data [10,12]. Typically, these DA approaches require 

target domain ground truth for model fine-tuning, which are often scarce in clinical 

practice. Markedly, in cross-dataset transfer learning, the representation taken directly 

from the source domain is not domain-adaptive and may still fail to generalize to new 

data. In contrast, more recent works on adversarial domain adaptation (ADA) adaptively 

learn a domain-invariant representation without requiring labels from the target domain. 

ADA combines adversarial training with discriminative feature learning to reduce the 

divergence between the source and target domain distribution, thus improving generalization 

performance [13]. Despite its successful use in myriad applications including bilingual 

sentiment classification [14], skin disease image classification [15], biological sequence 

classification [16] and clinical time series data classification [17,18], ADA has not yet 

been investigated for mitigating the domain shift problem in medical event sequence 

classification.

To handle domain shift in event sequence classification, we propose ADADIAG (Adversarial 

Domain-Adaptive Diagnostic Prediction), an unsupervised adversarial domain adaptation 

framework with a pre-trained language model (LM) for clinical event sequences, to reduce 

the effects of domain shift when adapting a diagnostic prediction model from source to 

target domain. In this study, we specifically focus on alleviating domain shift across patient 
cohorts, where “domains” stands for datasets extracted from different EHR systems. The 

two datasets used as source and target domains are (1) the Medical Information Mart for 

Intensive Care IV (MIMIC-IV) dataset [19,20]; and (2) data extracted from the UCLA 

Health Systems (hereafter referred to as UCLA data).

To demonstrate the utility of our proposed model, we adapt a heart failure (HF) onset 

prediction model trained on one patient cohort to another. Heart failure is one of the most 

frequent and serious conditions in the United States, contributing to one out of nine deaths 

[21]. For a patient with a developing set of symptoms but as of yet undiagnosed HF, it 

might take months or years before the next visit prior to HF is uncovered, during which 

time the disease progresses unchecked. For institutions with limited data availability/quality 

and/or model development resources – and hence, training a site-specific model is not a 

viable option – the ability ADADIAG offers in improving testing performance for externally 

trained models is especially meaningful. It can facilitate earlier detection and intervention by 
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providing accurate predictions of next-visit incidence even when no labeled data is available 

from the target cohort.

ADADIAG’s contributions are twofold. First, we construct a pre-trained Transformer-based 

LM [22,23], fine-tuned for next-visit HF prediction on lab event sequences from one EHR 

dataset, and externally validate it on another dataset from a different institution. Our results 

show that although pre-trained LMs perform well when fine-tuned for the target task on 

the single data source, performance drops drastically when deployed to an institution with 

a shifted data distribution. Second, to address the generalizability issue against dataset 

shifts across institutions, we present an unsupervised domain adaptation framework for 

clinical event sequences that addresses the domain shift problem by learning a domain-

invariant representation through an adversarial domain classifier. This approach can adapt 

to the unseen target domain data distribution without requiring any labels. Notably, when 

source and target domains are switched, superior performance in adversarial-based methods 

persists, showing robustness of our proposed framework across different source and domain 

data quality settings.

2. Related work

2.1. Clinical data representation

Medical events cover a wide array of clinical concepts, such as lab orders, medications, 

procedures, diagnoses, and myriad other observations. The management and storage of 

clinical event data pose standardization and harmonization challenges for transferring 

models between institutions. Events such as labs and medications are recorded under varying 

established and/or internal coding systems from each institution. Although endeavors 

are made to adapt events to a unified coding scheme (e.g., International Classification 

of Diseases (ICD); Logical Observation Identifiers Names and Codes (LOINC)) and/or 

ontology, manual mapping is often still needed in systems with local terminologies for 

data standardization. Data structures adopted in different systems create additional barriers 

to data harmonization. As an effort tackling this problem, researchers developed the 

Observational Medical Outcomes Partnership (OMOP) Common Data Model (CDM) [24] 

across multiple observational databases within an organization to facilitate standardized 

analytics tools when conducting observational research. The OMOP CDM streamlines 

data extraction process across multiple observational data sources, where different logical 

organizations and physical formats coexist. It also harmonizes disparate coding systems 

to an established standard vocabulary to prepare for the integrated analysis with all 

sources. Although these efforts improve access to multi-source data, they do not resolve 

any underlying domain shift problem. As even with two event sequence datasets with 

the same format/coding system, site-specific characteristics such as patient demographics, 

disease prevalence and treatment patterns (e.g., procedure/lab/medication ordering habit, site 

policy), which cannot be explicitly standardized, still cause shifts in data distributions [25].

2.2. Diagnostic prediction over time

Modeling numerical clinical time series has been extensively investigated as a means 

to predict clinical outcomes [18,26–29]. There are fewer studies, however, that examine 
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clinical event sequence modeling, which is also a critical part of appreciating the 

diagnostic prediction problem. A number of earlier works have explored methods to 

model medical event sequences using word embedding based on the co-occurrence of 

event codes [1,30,31]. Farhan et al. [1] model clinical abnormal lab sequences to provide 

next-visit diagnostic prediction using Word2Vec (i.e., skip-gram/CBOW) embeddings [32]. 

A different representation learned using another word embedding algorithm, GloVe [33], 

is demonstrated to be effective on next-visit code/risk group prediction [30] and 30-day 

readmission prediction [31]. However, with each word (event) represented by a fixed vector, 

these static embedding approaches cannot take into account the varying meanings of a given 

medical event based on the different patient histories it occurs in.

Pre-trained LMs for EHR data.—In light of the rapid development of pre-trained 

deep LMs such as BERT [23] in natural language processing (NLP), recent research has 

tested LMs for clinical event sequence representation learning by drawing an analogy 

between word sequences (text) and event sequences [2,34–37]. Some works have applied 

gated recurrent unit (GRU)-based LMs and achieved superior performance over more naive 

baselines [36,37]. DoctorAI [36] explored representing disease/medication code sequences 

to predict medical codes appearing in future patient encounters. [37] extends [36] by 

building clinical event sequences that include labs and procedures, and by evaluating a 

range of shallow representation methods (e.g., Word2Vec) with logistic regression (LR) and 

gradient boosted trees (GBTs) for predicting mortality, long admission and other clinical 

outcomes. Following BERT’s success in natural language, more recent studies utilized 

Transformer-based LMs trained on clinical event sequences to learn better representations 

that boost downstream task performance [2,34,35]. G-BERT [35] combined the power of 

graphical neural networks (GNN) and BERT by incorporating a medical ontology on top 

of a pre-trained LM to represent diagnosis code sequences more accurately for predicting 

medications. The BEHRT [2] and Med-BERT [34] studies pre-train a Transformer-based 

model from scratch on disease code sequences combined with structural information specific 

to the EHRs, achieving good fine-tuning performance on tasks such as prolonged length of 

stay (LOS) and disease prediction. In contrast to shallow embedding methods and other DL 

(e.g., recurrent neural network, RNN) methods, these Transformer-based models are able to 

distinguish and extract different semantic meanings of words based on their context, which 

corresponds with the different indications of a given medical event and observation of a 

disease trajectory.

Most of the aforementioned methods have largely relied on their capability of learning 

better representations optimized solely on data from a single population and/or dataset. Such 

models suffer from lack of robustness under domain shift. Moreover, when using a source 

domain model on a target population encountered in clinical practice (e.g., testing), target 

domain labels may not be available for retraining for any number of reasons. Our study thus 

focuses on solving the challenging problem of unsupervised domain adaptation (UDA) on 

clinical event sequence data.

Unsupervised domain adaptation in medicine.—Work has been done on 

unsupervised domain adaptation for medical image analysis through cross-modality [38–40], 
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cross-vendor [41], and cross-site [42] adaptations. In other areas, UDA efforts have also 

been made in clinical NLP for negation detection [43], adapting detection algorithms across 

four corpora of clinical notes. In the context of EHR data modeling, where domains can be 

interpreted as patient populations, UDA can be used to improve the performance of machine 

learning on a target patient group by mitigating the domain shift between one and another, 

yet related patient population [27,29,44]. Most existing work on clinical domain adaptation 

using EHR data focus on modeling numerical time series, bridging the gap between patient 

groups with different age distributions and/or other disparities [18,27,29,45,46]. Building 

on earlier ADA works (e.g., domain adversarial neural network [47]) and advancements 

in generative adversarial networks (GAN) [48], Luo et al. [45] designed a Wasserstein 

GAN (WGAN [49])-based framework to improve cross-dataset transfer performance for 

electroencephalogram (EEG)-based emotion recognition. Purushotham et al. [18] take 

advantage of adversarial training and variational recurrent neural network (VRNN) [50] to 

learn latent temporal dependencies underlying EHR time series data adaptive across patient 

age groups. Similarly, [27] seeks to adversarially learn a domain-invariant representation 

of clinical time series for septic shock prediction with an LSTM-based framework, where 

domains are defined as patient groups divided by demographic attributes such as race, age, 

and gender. With a slightly different adversarial approach, [29] performed clinical time 

series augmentation by adding adversarial samples for improving the logistic regression 

(LR) model’s generalizability across patient groups. Despite a similar focus on improving 

transportability across populations, these recent UDA studies are fundamentally different 

from earlier works that aim to extend the conclusions from randomized controlled trials 

(RCTs) [51], findings from epidemiology studies and public health decisions [52] to a 

distinct population with unknown outcomes. These studies [51,52] use statistical methods 

to analyze and account for population-level (demographic) changes. In contrast, using 

EHR-based clinical prediction models with new datasets is more challenging as clinical 

environments are less controlled than those of classical clinical studies [53]. In view of this, 

recent UDA methods aim at designing an EHR data representation learning scheme that can 

not only adjust for differences in cohort demographics, but also distribution shifts inherent to 

the data generation and collection process (e.g., different lab ordering patterns, policy shifts), 

which cannot be easily described and adjusted using classical statistical approaches.

3. Methods

We present ADADIAG, an adaptive deep learning framework designed to improve the 

unsupervised transfer performance on disease prediction tasks using clinical event 

sequences, moving from a labeled source domain to an unlabeled target domain. We first 

state the problem to be addressed and define the notations in Section 3.1, followed by an 

introduction to the ADADIAG framework with its main components detailed in Section 3.2. 

Sections 3.3 and 3.4 describe the two-stage training process of ADADIAG: (1) Transformer-

based encoder pre-training, and (2) adversarial training.

3.1. Preliminary

Problem statement.—Predictive models derived from EHR data are often developed 

and validated on the same population, and yet show a great decline when deployed/tested 
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on external data due to dataset shift [25]. For instance, when a model trained on a 

national/multi-institutional dataset is used on data from a regional hospital, direct transfer 

performance may be sub-optimal due to site-specific data generation/storage processes. 

Here, we addresses the issue of transferring an event sequence diagnostic prediction model 

from a source dataset, where it was developed and trained, to another, target dataset, where it 

could be applied without requiring its disease labels, as an unsupervised domain adaptation 
problem.

The diagnostic prediction task seeks to estimate the likelihood of patients’ disease onset 

based on their visit histories. For instance, the next-visit HF prediction task is based on 

predicting the first appearance of HF-related ICD-9/10 codes during the most recent visit, 

given the combined event history from all past visits of the patient. To differentiate between 

elements from the two data domains, we use superscripts src and tgt to indicate domain 

membership. For example, Dsrc and Dtgt represent the source and target domain. For a given 

patient i with a visit history Xi of n encounters Xi = [x1 ⊕ x2 ⊕ ⋯ ⊕ xn], each visit xj 

consists of a sequence of events xj = [e1 ⊕ e2 ⊕ ⋯ ⊕ en] ∈ xj, with all events ordered 

sequentially by time. The next-visit disease label for event sequence Xi is denoted as yi ∈ {0, 

1}, which is available during training when Xi ∈ Dsrc. All sequences from Dsrc and Dtgt are 

assigned with domain labels yi′ ∈ 0, 1 .

3.2. The ADADIAG framework

As illustrated in Fig. 1, ADADIAG is a feed-forward network with two forward branches 

following the design in [14]. The network consists of three parts: (1) a joint feature extractor 

ℱ that maps an input sequence Xi to a shared feature space ℱ(Xi); (2) a diagnostic classifier 

 that predicts the label for Xi based on the feature representation ℱ(Xi); and (3) a domain 

discriminator  that also takes ℱ(Xi) but predicts a label indicating domain identity (source/

target) of X.

For improved performance, we pre-train a Transformer encoder as the feature extractor ℱ to 

capture the contextualized information in the sequence. ℱ feeds the sequence representation 

to , which is essentially a multi-layer perceptron (MLP) with a sigmoid output for 

binary diagnostic prediction. While trained with a different optimizer from ’s, the domain 

discriminator  is also an MLP, but ends with a linear layer to output a domain label 

[14]. During training, the diagnostic predictor  can only see disease labels from the 

source-domain dataset, whereas  can observe (unlabeled) event sequences from both the 

source and target domain datasets.

The feature extractor ℱ tries to learn a domain-invariant representation that aids in the 

prediction of the diagnostic predictor  as well as prevents the model from distinguishing 

features between different domains. The feature learned by ℱ can be considered domain-

invariant if a trained  fails to distinguish between sequences from different domains. In this 

regard,  is the adversarial component of the ADADIAG, as its target (distinguishing domains) 

goes against the overall goal of the ADADIAG framework on learning domain-invariant 

features. A well-trained ℱ should be able to learn features that benefit the diagnostic 

prediction task, while keeping the domain identity as ambiguous as possible. Disease 

Zhang et al. Page 6

J Biomed Inform. Author manuscript; available in PMC 2022 October 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



prediction can be performed at inference time by running unlabeled target domain sequences 

through the feature extractor ℱ and the diagnostic classifier . No disease labels from the 

target domain are required throughout the model development process. At inference time, an 

input sequence Xi is passed through sufficiently trained ℱ and  to predict for the disease 

label yi, while keeping the domain discriminator  untouched.

3.3. Pre-training transformer encoder

Following the recent success in Transformer-based pre-trained language models [23,54,55] 

and their adaptations modeling EHR data [2,34], we construct a BERT-like architecture 

with six Transformer encoder layers, six attention heads, and an embedding dimension 

of 768 as the shared feature extractor ℱ for a contextual representation that accounts for 

the entire disease progression process. Similar to [23], our modeling process also involved 

three special tokens: [CLS],[SEP], and [MASK]. [CLS] is a special symbol added in front of 

every input example, whose representation will be used as the final sequence representation 

in fine-tuning tasks; [SEP] is a special separator token, indicating the end of the input 

sequence. The MLM task is adopted as the pre-training task of the Transformer-based 

encoder, which seeks to recover randomly masked clinical events (represented by [MASK]) 

in given sequences. All unlabeled event sequences from both source and target domains 

are used for this process. Unlike language models (e.g. BERT) that processes subword 

or byte-pair sequences, our encoder treats individual LOINC codes as the minimal units, 

since a lab event code cannot be further divided into semantically meaningful sub-units. 

Fig. 2 illustrates the BERT-like input representation of our pre-trained Transformer-based 

model. As defined in the BERT paper [23], the input embeddings are the sum of the token 

embeddings, the segmentation embeddings and the position embeddings. As we do not 

differentiate segments within each input sequence, all segment embeddings are identical.

The MLM pre-training in our study follows a setting similar to the original BERT paper 

[23]. First, 15% of tokens in the sequences are randomly selected, and these chosen tokens 

will: (1) be replaced with the [MASK] token 80% of the time, (2) be replaced by another 

random tokens 10% of the time, and (3) stay unchanged the remaining 10% of the time. 

This mixed masking strategy was chosen to soften the discrepancy between pre-training and 

fine-tuning, as the [MASK] symbol will not appear during the fine-tuning stage [23]. For an 

input that contains one or more masked tokens, the model will generate the most likely 

substitution for each. We sampled 25% of all sequences for MLM evaluation, and trained 

the model for 100 epochs using the remaining sequences for predicting the masked token 

with cross-entropy loss. The best model was selected based on the lowest validation loss. In 

this process, the model captures the bidirectional context of each event in the sequence and 

accordingly learns a contextualized event representation.

3.4. Adversarial training

ADADIAG aims at learning features from event sequences that are simultaneously beneficial 

to disease risk discrimination and cross-domain generalization. This goal can be achieved 

by adversarially optimizing on two discriminative tasks: disease prediction and domain 

discrimination. Like two-player game training from GANs, the adversarial training scheme 

of ADADIAG is formed as a minimax problem. Specifically, we need to find a set of 
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parameters that minimize the disease prediction loss and at the same time maximize the 

domain discriminator loss.

As a result, adversarial training reduces the disparity between the marginal distributions of 

the source and target features, Pℱ
src and Pℱ

tgt, over the shared feature space ℱ(x):

Pℱ
src ≜ P ℱ(x) ∣ x ∈ Dsrc

Pℱ
tgt ≜ P ℱ(x) ∣ x ∈ Dtgt

To learn domain-invariant features, ADADIAG trains ℱ to make distributions of Pℱ
src and 

Pℱ
tgt to be as close as possible to improve cross-domain generalization. Intuitively, if a 

well-trained  cannot determine the domain membership of the extracted features by ℱ 
between the source and target domains, the features are domain-invariant.

In earlier works on adversarial domain adaptation (e.g., DANN [47], ADDA [56]), features 

are learned to confuse a classifier through different adversarial losses. Some [56] use 

the traditional GAN loss that can be deemed as minimizing the Jensen–Shannon (J–S) 

divergence between the source and target feature distributions, Pℱ
src and Pℱ

tgt. When the 

learned features fail to mix distributions from both domains, gradient vanishing can occur if 

traditional probability-based loss measures such as cross-entropy or J–S divergence are used 

[57]. This situation might be better served by instead minimizing the Wasserstein distance 

[58], which appears to maintain gradient stability even when two distributions are far apart 

[49]. Specifically, we minimize the Wasserstein distance W between Pℱ
src and Pℱ

tgt over other 

alternatives [57] due to its stability on parameter selection as argued in [14,49], which is 

defined as follows:

W Pℱ
src, Pℱ

tgt = inf
γ Π Pℱ

src, Pℱ
tgt

E
xsrc, xtgt γ

xsrc − xtgt
(1)

where Π Pℱ
src, Pℱ

tgt  denotes all possible joint distributions of source and target distributions, 

Pℱ
src and Pℱ

tgt. As Eq. (1)’s minimum is computationally intractable, its Kantorovich–

Rubinstein duality form is usually used in practice [59]:

W Pℱ
src, Pℱ

tgt = sup
g L ≤ 1

E
f(x) Pℱ

src
[g(f(x))] − E

f x′ Pℱ
tgt

g f x′
(2)

The supremum is over functions g where g is 1-Lipschitz continuous. For simplicity, we 

denote this as ∥g∥L ≤ 1. Note that the function g is 1-Lipschitz continuous if and only if |g(x) 

− g(y)| ≤ |x − y|, for all x and y. In our case,  serves as the function g in Eq. (2). Following 
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[14], to make  a 1-Lipschitz continuous function, all parameters in  are clipped to a fixed 

range, [−c, c], at the end of each  optimization step. The minimax optimization process of 

adversarial training involves two learning objectives: the domain discriminator objective Jq, 

and the disease classification objective Jp. The model is trained for these two objectives in an 

alternating fashion.

First, the discriminator  is trained by maximizing the discriminator loss with ℱ and 

 parameters fixed. The domain discriminator objective Jq is an approximation of 

the Wasserstein distance between the data distributions of the two domains. At the 

optimization step, it seeks to maximize Jq by updating its parameters in θq:

Jq θq = W Pℱ
src, Pℱ

tgt = max
θq

E
ℱ(x) Pℱ

src
Q(ℱ(x)) − E

ℱ x′ Pℱ
tgt

Q ℱ x′ (3)

Next, the disease classifier is optimized by minimizing the disease classification loss with 

the discriminator  fixed. The disease classification objective Jp, parameterized by θp, aims 

to minimize the binary cross-entropy loss Lp(y, y):

Jp θp = min
θp

E
(x, y)

Lp(P(ℱ(x)), y)
(4)

Lp(y, y) is defined as the negative log-likelihood of correctly predicting the binary disease 

label:

Lp(y, y) = − 1
n ∑

i = 1

n
yi ⋅ logyi + 1 − yi ⋅ log 1 − yi

where yi is the next-visit disease onset prediction for the ith patient in the  output, yi is the 

corresponding disease label, and output size is the number of predicted values/patients in the 

 output.

Lastly, serving for both discriminative tasks, the joint feature extractor ℱ seeks to minimize 

the disease classification loss Jp as well as the Wasserstein distance Jq:

Jf = min
θf

Jp θf + λJq θf (5)

where λ is a hyperparameter that balances the losses of  and 

4. Experiments

Here, we describe the datasets as well as their pre-processing procedures (Section 4.1), 

introduce implementation details of ADADIAG (Section 4.2), define baseline models and 

ADADIAG variants (Section 4.3), and present domain adaptation results on the next-visit HF 

onset prediction task (Section 4.4).
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4.1. Experimental setup

Abnormal lab sequences1 from two data sources, UCLA and MIMIC-IV, are used to predict 

next-visit HF onset. Compared to disease codes, which are usually unordered within visits, 

time-stamped lab events capture more fine-grained temporal dynamics within and between 

visits. The distribution of lab sequences across institutions could differ for a number of 

reasons, including demographics, mismatched ordering patterns, and policy changes—all 

of which contribute to domain shift that may limit cross-data model generalization. In this 

section, experiments are setup to address this challenging case. We briefly introduce the two 

EHR datasets and describe methods used to extract abnormal lab events with corresponding 

disease labels. In addition, differences in the two datasets are discussed, which indicate 

possible domain shifts as a result of disparities in the data generation and curation processes.

UCLA dataset.—We selected adult (≥ 18 years old at initial admission time) patients 

who had at least one intensive care unit (ICU) stay at the UCLA Health System between 

2013-03-01 and 2021-03-01, extracting all abnormal lab events from all in-patient visits 

within this time window along with their associated disease codes.

MIMIC-IV dataset.—MIMIC-IV data (version 1.0) [19] includes de-identified records 

from Beth Israel Deaconess Medical Center (BIDMC) for over 60,000 patients admitted to 

an ICU or the emergency department between 2008 and 2019.

Similar pre-processing steps are performed on lab events and diagnosis codes extracted from 

the two initial cohorts. To maximize clinical utility of our developed models, we focus on 

predicting unseen HF occurrences. Specifically, we excluded all encounters after the initial 

HF onset (if any), and use only encounters before (not including) the onset encounter as 

the sequence used for disease prediction. Patients with only one encounter remaining are 

removed as next-visit diagnosis prediction requires at least two visits. For a given patient i, 
abnormal lab events from all visits before the most recent visit (post-filtering) xn are ordered 

by time and concatenated as the prediction input Xi = [x1 ⊕ x2 ⊕ ⋯ ⊕ xn−1], with its HF 

label defined as yi, a binary indicator for having at least one HF diagnose (i.e., 3-digit ICD-9 

code of 428 or ICD-10 code of I50) associated with {xj}, j ∈ {1, 2, 3,…, n − 1}.

To facilitate a successful transfer, standardization of lab codes is needed so that the 

sequences from two local systems speak the same “language”. We convert the local lab 

codes to a unified vocabulary, LOINC. UCLA Health has mappings from its local codes 

to LOINC for almost all available labs. In contrast, MIMIC-IV has no LOINC mappings 

for lab items in its microbiology events table, so we extracted raw lab sequences only 

from the labevents table using the dictionary file provided to map from local labs to 

LOINC codes. After removing all labs that are not mapped to LOINC codes, 96.7%2 of 

the labevents occurrences in the extracted MIMIC-IV sequences remain. The pre-processed 

UCLA data has sequences for 18,736 patients with 1218 unique LOINC codes, while the 

1Abnormal lab sequences include only lab tests with flagged/abnormal results.
2In MIMIC-IV (v1.0), less than 17% (269/1630) of codes in the d_labitems mapping file are mapped to LOINC, covering 90.3% of 
all occurrences. We combined the local to LOINC lab mappings provided in MIMIC-III (v1.4) to map a larger percentage of labs to 
LOINC.
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MIMIC-IV LOINC sequences have 27,782 patients with 272 unique codes. There are 139 

shared LOINC codes in both vocabularies. The difference in vocabulary coverage is a result 

of multiple reasons from data generation (e.g., lab availability, ordering patterns, policy 

changes) to curation processes (e.g., incomplete mapping process), and is one cause of 

domain shift. There are other differences in the two datasets that may indicate potential 

shifts in data distribution. As shown in Table 1, MIMIC-IV patients have on average fewer 

visits, shorter sequence lengths, a higher proportion of females, and a higher HF onset rate 

compared to the UCLA patients.

We conduct domain adaptation experiments in two directions: from UCLA to MIMIC-IV, 

and from MIMIC-IV to UCLA, both assuming no labels available in the target domain. 

The two datasets can each serve as Dsrc or Dtgt. 80% of the sequences from Dsrc are 

randomly selected and used for training, while the rest are used for model selection based 

on the validation area under the receiver operator characteristic (AUROC) curve metric. We 

maintain the same splits when UCLA and MIMIC-IV each serves as Dsrc for comparability. 

The best model is reported with AUROC and precision–recall area under the curve (pr-AUC) 

on all Dtgt sequences. We note here that this is deemed as zero-shot HF prediction, as no Dtgt 

labels are involved during the model development phase.

4.2. Implementation details

We first pre-train ADADIAG with the MLM objective to learn the network parameters in 

the joint feature encoder ℱ that can predict the masked lab event tokens, on all unlabeled 

sequences from Dsrc and Dtgt. Similar to the setup reported in Med-BERT [34], we find that 

Transformers with six layers and six attention heads in the pre-trained model is the best 

architecture. Different from Med-BERT, we choose to use a hidden size of 768 (same for all 

Transformer-based encoders in this paper). The pre-trained model is then fine-tuned on the 

HF onset prediction and domain discrimination tasks with an adversarial objective. ℱ and 

 are optimized jointly using AdamW [60] with a learning rate of 1E-5 and a weight decay 

of 0.01. A linear learning rate scheduler is used in all experiments. To balance the learning 

speed of the two alternatingly optimized adversarial objectives, Q is trained using a separate 
AdamW optimizer with a learning rate of 5E-4 and a weight decay of 0.01. To ensure 

that the discriminator  satisfies the 1-Lipchitz constraint of the Wasserstein objective [49], 

the weights of  are clipped within [−0.01,0.01] at the end of each training step of , 

following the values used in [14]; the adversarial objective weight parameter λ from Eq. 

(5) is adjusted to 0.2 for all adversarial experiments. A fixed sequence length is chosen 

to be 1024 with sequences truncated/padded from the left, considering the fact that recent 

event history is more relevant to the upcoming disease onset. We train ADADIAG variants and 

the baselines and select the best model based on the validation AUROC metric from Dsrc. 

When transferring from UCLA data to MIMIC-IV data, the selected ADADIAG architecture 

has six layers in the shared feature extractor ℱ (taken from the pre-trained Transformer 

model), zero layers in the disease classifier  (  is simply an output layer in this case) and 

two layers in the domain discriminator . When the transfer is conducted reversely (from 

MIMIC-IV to UCLA), the best architecture has zero layers in the domain discriminator, 

with other settings remaining the same. The domain adaptation performance of ADADIAG 
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is reported through AUROC and pr-AUC metrics on the entire Dtgt dataset. ADADIAG was 

implemented using Huggingface [61] based on PyTorch [62].

4.3. Baseline models

GRU/bi-GRU encoder with skip-gram embedding.—A pre-trained Transformer 

encoder is used in ADADIAG. While in non-Transformer-based clinical event sequence 

models [36,63–65], the immediate sequence representation is provided using shallow word 

embedding methods (e.g., skip-gram/CBOW models in Word2Vec), before being fed into 

encoders like long short-term memory (LSTM) networks/GRUs or convolutional neural 

networks (CNN) to learn a final representation. More advanced models apply bidirectional 

RNNs (i.e., bi-LSTM or bi-GRU) to better capture the temporal dependencies of clinical 

visits and improve model interpretability. We implemented the first two baseline models as 

a one-layer GRU encoder and a one-layer bi-GRU encoder. Their initial sequence encoding 

is provided by a skip-gram algorithm pre-trained on all sequences from Dsrc and Dtgt, with a 

window size of 20 and a embedding dimension of 768, which is the same as the dimension 

of the pre-trained Transformer encoder. The encoded features are directly passed to a linear 

output layer with Sigmoid activation to provide HF prediction, for which an Adam optimizer 

with a learning rate of 1E-3 is used.

Pre-trained transformer.—Recent studies have shown the effectiveness of pre-trained 

Transformer-based encoders on learning better event sequence representation compared to 

RNN-based methods, achieving improved performance when fine-tuned on downstream 

tasks [2,34]. An intuitive baseline is applying the non-adversarial version of ADADIAG with 

pre-trained Transformer encoder fine-tuned on Dsrc directly to Dtgt. For fair comparison, the 

pre-trained encoder prior to fine-tuning is the same as the one used in ADADIAG, which is 

pre-trained with the parameters of six layers, six attention heads, and a hidden dimension of 

768.

Untrained transformer model.—To understand the added value of pre-training to model 

generalizability, we compare the performance of the fine-tuned Transformer against the 

fine-tuned Transformer with no pre-training, where the latter is defined with the same 

architecture as the former but has randomly initialized layers. All the above baseline models 

discussed thus far are non-adversarial. We also report the results of the adversarial version 

of the fine-tuned, untrained Transformer model to demonstrate how adversarial training can 

be beneficial in another model setting, and to further illustrate the utility of pre-training in 

adversarially trained models.

4.4. Results

MIMIC-IV to UCLA transfer.—We first implement ADADIAG and baseline models for 

adapting from MIMIC-IV to UCLA data, given the fact that the former has a larger 

population and is publicly available. This is a more realistic scenario considering the 

data sharing restrictions of institution-specific datasets, as training ADADIAG requires data 

access from the source domain. In this setting, we emulate the situation where a local 

hospital system (UCLA) deploys models developed on public data from external institutions 

(BIDMC) to inform decisions. As shown in Table 2, all baseline models performed 
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well on MIMIC-IV validation data. However, when tested on the UCLA sequences, they 

experienced drastic drops in both metrics. Over all other baselines, the Transformer baseline 

model performed best on MIMIC-IV and UCLA datasets, while the GRU model with 

skip-gram embedding performed the worst. Using metrics reported in Table 2, we created 

a graph visualizing relative performance loss for all models in Fig. 3. In comparison to 

their non-adversarial counterparts, the two adversarial models had less performance loss 

from the cross-data transfer. ADADIAG achieved superior predictive performance (highlighted 

in gray) on UCLA data in comparison to all non-adversarial baselines and its adversarial 

variant (i.e., ADADIAG without pre-training). Specifically, compared with the best baseline 

model, non-adversarial pre-trained Transformer, ADADIAG’s adversarial training boosted 

AUROC and pr-AUC on the UCLA data by 4.0%3 and 4.1%. When no pre-training 

was performed, adversarial training boosted Transformer model’s performance by 3.8% 

in AUROC and 8.1% in pr-AUC. These observations brought us to the conclusion that 

adversarial training benefits the Transformer-based models’ generalization performance, 

while not greatly sabotaging their performance on the source domain. The untrained 

Transformer encoder baseline (fine-tuned on MIMIC-IV data) did not outperform pre-

trained Skip-gram embedding with bi-GRU encoder when tested on MIMIC-IV data. 

Adding pre-training to it significantly improved its AUROC by 9.5% and pr-AUC by 15.0%, 

achieving superior performance relative to the bi-GRU with Skip-gram embedding baseline. 

In addition, pre-training was able to improve the AUROC and pr-AUC on target domain 

by 8.9% and 10.7% when added to the adversarial variant of the untrained Transformer 

baseline. These improvements show the importance of pre-training on increasing model’s 

generalization performance on new datasets.

UCLA to MIMIC-IV transfer.—Given that labels from both datasets are readily available, 

we can verify if conclusions from MIMIC-IV to UCLA transfer still hold true with a 

different setup: transferring from a source data (UCLA) with smaller dataset but larger 

event vocabulary than the target data (MIMIC-IV). Models trained on UCLA data were 

tested on MIMIC-IV (Table 3), showing steep declines in AUROCs and pr-AUCs. ADADIAG 

had the least performance loss while the GRU+Skip-gram embedding model exhibited 

the most (Fig. 4). When comparing the two adversarial models with their non-adversarial 

counterparts, we found that they experienced smaller relative performance loss. Thus, 

the same conclusion from our previous experiments (i.e., MIMIC-IV to UCLA transfer) 

persists: adversarial training helps model generalize when transferring across datasets. 

Table 3 also shows that with 3.4% gain in AUROC and 4.3% gain in pr-AUC, ADADIAG 

(highlighted in gray) outperformed the best non-adversarial baseline on MIMIC-IV data, 

while maintaining a comparable source domain validation performance on UCLA data. Both 

adversarial models outperformed their non-adversarial baselines, indicating that their zero-

shot adaptation was enhanced by adversarial training without significant negative impact on 

their source domain performances. In this transfer setting, pre-training also played a major 

role, as was the case in UCLA to MIMIC-IV. In baseline models, the untrained Transformer 

performed worse than the bi-GRU model with skip-gram embedding; pre-training boosted 

its performance by 6.6% in AUROC and 14.8% in pr-AUC. In adversarial models, pre-

3This percentage was calculated for relative improvement, same as below.
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training improved the model performance on MIMIC-IV by 5.7% in AUROC and 12.2% in 

pr-AUC.

In both adaptation settings, the GRU encoder with skip-gram embedding was significantly 

less effective on learning features generalizable across datasets than other bi-GRU and 

Transformer-based methods, which is consistent with results reported in previous studies 

[34] and is possibly due to its left-to-right recurrent learning scheme and inability of 

learning bidirectional/contextual representations.

T-SNE visualization of feature distributions.—To compare and contrast the impact 

of adversarial training, we use t-SNE [66] for dimensionality reduction and visualize the 

feature distributions generated by Transformer encoders from different models/training 

stages in 2D. Fig. 5 shows distributions of representations of pre-trained Transformer models 

before (Fig. 5(a)) and after fine-tuning (Figs. 5(b) and 5(d)); and adversarially trained pre-

trained Transformer models (i.e., ADADIAG) (Figs. 5(c) and 5(e)) in both transfer directions. 

In Fig. 5(a), sequence representations from the two domains are far away from each other, 

showing through MLM pre-training alone is not sufficient to bridge the gap between 

UCLA and MIMIC-IV data. Train-on-source-only models are built on top of the pre-trained 

Transformer model and fine-tuned on the disease classification task. Their encoders’ new 

mappings (Figs. 5(b) and 5(d)) brought features from the two domains slightly closer, while 

remaining fairly separate from each other.

Visualization of self-attention in transformer encoders.—The self-attention 

mechanism of the Transformer layers is able to capture complex relationships between lab 

events, adding interpretability to our model. Fig. 6 shows an analysis of self-attention in 

ADADIAG (MIMIC-IV to UCLA)’s Transformer encoder. Based on the approach presented 

by [67], we analyze attention-based patterns for two patients, referred to as A (Fig. 6(a)) 

and B (Fig. 6(b)), from the UCLA cohort. For each patient, the abnormal lab events 

are presented as two identical columns, with events ordered chronologically from top to 

bottom. By passing the sequences through the six Transformer encoder layers, each with 

six attention heads, a ‘headview’ for each head from each layer is generated depicting 

attention weights of all events in the sequence, given an event of interest. An abnormal 

lab (in gray, on the right) is linked with all lab events in the same sequence, with the 

shades of the color block/edges reflecting the attention weights/degrees of association. For 

patient A, whose history consists of a short sequence of events from the same encounter, 

a strong association is found between the B-type natriuretic peptide (BNP) test (elevated 

value observed in heart failure) and the alanine aminotransferase (ALT) test (used to check 

for liver damage). The ALT test is also weakly associated with aspartate aminotransferase 

(AST) (another test for tissue damage in organs like liver/heart) and other red blood cell 

related tests such as erythrocyte distribution width (EDW) and erythrocyte count. In patient 

B’s history, which spanned across multiple visits, the AST test is closely related to several 

blood tests that are relevant to red blood cells and their ability to transmit oxygen in 

blood: hemoglobin/hematocrit concentration, mean corpuscular hemoglobin concentration 

(MCHC), and erythrocyte count. This example especially shows ADADIAG’s ability of 

extracting long term dependencies in a multi-visit sequence. The associations between 
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ALT and BNP (patient A) could help uncover new patterns when evaluating liver damage 

as early signs of heart failure due to the complex cardiohepatic interactions [68]. The 

relationships between ALT or AST and erythrocyte related tests (patient A/B) might indicate 

the underlying linkage between conditions such as anemia and organ (e.g., liver/heart) tissue 

damage. Identifying such self-attention patterns has enabled more profound understanding 

of ADADIAG’s functionality and extended its potential into discovering new knowledge that 

has clinical relevance.

5. Conclusion

Improved generalizability of clinical predictive models is essential to achieving widespread 

clinical application under the constraint of low training resources. In this paper, we address 

the dataset shift issue that has prevented successful cross-dataset applications by enforcing 

domain-invariant representations through unsupervised adversarial training. We introduce a 

novel Transformer-based adversarial domain adaptation framework that transfers an event 

sequence diagnostic prediction model from a source domain, where it was developed 

and trained, to another target domain where it could be applied without requiring the 

disease labels. Its utility was demonstrated on next-visit HF onset prediction in two transfer 

settings, using two large clinical event datasets: from MIMIC-IV to UCLA, and UCLA to 

MIMIC-IV. While the RNN or Transformer-based non-adversarial baselines suffered greatly 

when tested on unseen sequences from the target data, adversarial training was found to 

be effective in improving the Transformer-based model’s performance on unseen targets, 

maintaining similar accuracy on the source data. We also highlighted the importance of 

pre-training in the ablation studies with an untrained Transformer model, showing that 

pre-training in conjunction with adversarial training led to an increased generalization 

power for ADADIAG. A t-SNE plot illustrating the effect of adversarial training on feature 

distributions is presented for mixing two distributions with originally large differences 

from two domains. With the help of the Transformer encoder, the interpretability of the 

self-attention patterns learned within ADADIAG was visualized using the Bertviz [67] tool, 

which showed clinically meaningful associations between abnormal lab events from a 

given patient’s history. This also allows ADADIAG to explore formerly unknown patterns 

for medical knowledge discovery.

ADADIAG’s application goes beyond HF prediction; other clinical prediction tasks, such as 

length of stay (LOS) and mortality prediction, also require cross-population generalizability, 

and are part of our research plans for the future. Future directions we would like to explore 

include: (1) extending ADADIAG to other types of clinical events such as medication and 

diagnostic codes; (2) applying ADADIAG to correct temporal dataset shift; and (3) training 

ADADIAG without access to source domain data.

For reproducing findings in ADADIAG, our codes and model development details can be 

found at https://github.com/tianranzhang/AdaDiag.
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Fig. 1. 
Illustration of the proposed ADADIAG framework, consisting of three modules: the joint 

feature extractor ℱ that maps sequences from the source and target domain to a shared 

feature space, the classifier  that predicts next-visit HF onset and the discriminator  for 

distinguishing source and target domain identity given the features from ℱ.
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Fig. 2. 
BERT-style input representation of the pre-trained Transformer-based model. As defined 

in the BERT paper [23], the input embeddings are the sum of the token embeddings, the 

segmentation embeddings and the position embeddings.
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Fig. 3. 
Illustration of relative performance losses in all baseline and adversarial models, when 

adapting from MIMIC-IV to UCLA data, calculated as (source metric–target metric)/source 

metric × 100%.
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Fig. 4. 
Illustration of relative performance losses in all baseline and adversarial models, when 

adapting from UCLA to MIMIC-IV data. Relative performance loss is calculated as (source 

metric–target metric)/source metric × 100%.

Zhang et al. Page 23

J Biomed Inform. Author manuscript; available in PMC 2022 October 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
t-SNE visualizations of activations at the end of the Transformer feature encoders from 

different models/training stages. Neither pretraining nor fine-tuning were able to bridge the 

domain gap, whereas adversarial training mixed the distributions between the two datasets 

effectively.
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Fig. 6. 
Analysis of self-attention in ADADIAG’s Transformer encoder layer for MIMIC-IV to UCLA 

adaptation. Colors of the edges corresponds to individual attention heads from the first 

Transformer layer (e.g., orange: the second head; brown: the sixth head), and shades of the 

edges/highlighted region indicate attention weights.
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Table 1

Data summary of extracted cohorts from UCLA and MIMIC-IV dataset.

UCLA MIMIC-IV

Number of patients 18,736 27,782

Number of visits 283,502 145,961

Avg. number of visits per patient 15.1 5.3

Number of unique lab codes 1218 272

Avg. sequence length per patient 419.5 234.8

Female ratio 43.7% 51.4%

HF incidence rate 16.4% 27.7%
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