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Effective visualisation of quantitative microscopy data is crucial for interpreting and
discovering new patterns from complex bioimage data. Existing visualisation
approaches, such as bar charts, scatter plots and heat maps, do not accommodate
the complexity of visual information present in microscopy data. Here we develop
ShapoGraphy, a first of its kind method accompanied by an interactive web-based
application for creating customisable quantitative pictorial representations to facilitate
the understanding and analysis of image datasets (www.shapography.com).
ShapoGraphy enables the user to create a structure of interest as a set of shapes.
Each shape can encode different variables that are mapped to the shape dimensions,
colours, symbols, or outline. We illustrate the utility of ShapoGraphy using various image
data, including high dimensional multiplexed data. Our results show that ShapoGraphy
allows a better understanding of cellular phenotypes and relationships between variables.
In conclusion, ShapoGraphy supports scientific discovery and communication by
providing a rich vocabulary to create engaging and intuitive representations of diverse
data types.
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1 INTRODUCTION

Biomedical imaging generates large amounts of data capturing biological systems at different scales
ranging from single molecules to organs and organisms (Walter et al., 2010). Inspection of individual
images is not feasible when hundreds of images are acquired, particularly when they are composed of
multiple layers, channels, or planes. Automated image analysis allows quantifying image data
resulting in large multiparametric datasets (Sero et al., 2015; Natrajan et al., 2016). Effective data
visualisation is essential for interpreting analysis results and unleashing the hidden patterns locked in
image data (Heer et al., 2010; Cairo, 2013).

Intuitive representations can improve the effectiveness of visualisation tools as they support
identifying and understanding the complex relationships in image data. By intuitive wemean that the
depicted representations are semantically relevant where the used visual channel resembles the
concept or the represented phenotypic feature. For example, it is easier to associate measurements of
cell size to the size of the object and the protein levels to the colour of the object. This has many
advantages especially when multiple variables are plotted simultaneously. First, the pictorial
representation facilitates remembering and interpreting the data. Second, the natural mapping
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between the measured objects and the representation makes it
easier to investigate the relationship between the measured
variables.

Visualising complex imaging data has been mostly limited to
general-purpose tools that do not take into account the structural
nature of image data. Due to their scalability to a large number of
data points, heat maps and dimensionality reduction, such as
UMAPs and t-SNE, are the most used approaches for visualising
high dimensional data, including image-based measurements
(McInnes et al., 2018). Several methods have been developed
for visualising bioimage data with an emphasis on interactive
linkage of raw image data, cell features, and identified quantitative
phenotypes using linked scatter plots combined with supervised
and unsupervised learning approaches including t-SNE plots.
These include Facetto, histoCAT, and mineotaur (Antal et al.,
2015; Schapiro et al., 2017; Krueger et al., 2020). ImaCytE
(Somarakis et al., 2019) is another tool for visualising
multiplexed image cytometry data that takes the interactive
aspect a step further by developing custom two-layered pie
charts to represent the proportion of different phenotypes.
While these tools are useful in interactive and data exploration
tasks, they heavily rely on the user interpretation of identified
phenotypes based on the appearance of a handful of cells which
can be a subjective and daunting task. Therefore, new
visualisation techniques for representing multiparametric
image data are desperately needed to aid data analysis and
result interpretation.

Glyph-based visualisation is another approach to visual design
where quantitative information is mapped to illustrative graphics
referred to as glyphs. They provide a flexible way of representing
multidimensional data (Ropinski et al., 2011; Borgo et al., 2013;
Fuchs et al., 2017). For example, we have previously developed
PhenoPlot, a glyph-based visualisation approach that plots cell
shape data as cell-like glyphs (Sailem et al., 2015). PhenoPlot was
built as is a MatLab toolbox and incorporates two ellipsoid glyphs
to represent the cell and nucleus. It uses a variety of visual
elements such as stroke, colour and symbols to encode up to
21 variables. The key focus of PhenoPlot is to allow for natural
data mapping by selecting graphic features that resemble data
attributes. For instance, the extent that a jagged border around the
cell ellipse can be used to represent the irregularity of cell shape,
and the proportion of “x” symbols filling the cell ellipse can be
mapped to endosome abundance. However, the shape
configuration in PhenoPlot is limited to two ellipse-shaped
objects and the feature mapping is hard-coded which does not
accommodate the diversity of biomedical images data.

To support knowledge discovery tasks from microscopy data,
we propose a new framework for creating glyph-based
representations by combining geometrical shapes that can
systematically encode several predefined visual elements. We
implemented this framework as a user-friendly web interface
that can automatically and swiftly map data to the created glyph
representations. To our knowledge, ShapoGraphy is the first
method that allows creating new glyph-based visualisation by
combining different shaped objects and custom mapping of their
properties, such as colour, symbols, stroke, and dimensions, to
data attributes. The user can choose from a basic set of shapes or

draw their own. The effectiveness and utility of ShapoGraphy are
illustrated by using various image datasets where we show that it
facilitates the understanding of cellular phenotypes and
interactive exploration of the data. This includes multiplexed
image data where single cell activities of tens of proteins are
measured simultaneously. In summary, ShapoGraphy allows the
users to construct an infinite number of glyph-based
representations in order to generate a quantitative and
intuitive visualisation to aid pattern recognition from
multiparametric data.

2 METHODS

2.1 Design and Concept of ShapoGraphy
To generate a quantitative pictorial representation of phenotypic
data we created ShapoGraphy; a user-friendly web application
(Figures 1A–D, 2A). ShapoGraphy maps data to visual
properties of shapes where multiple shapes can be combined
to define a biological structure. For example, a squared-shaped
object can be used to represent cell context, epithelial cell shape
can be represented using a square for the cell body and a circle for
the nucleus. We call such a configuration a template and provide
multiple templates to represent a variety of microscopy data. A
new template can be created by combining different shapes. The
users have the option of selecting from a collection of predefined
geometrical shapes or drawing their own. For example, the user
can draw a cell or organ shape. The objects can be positioned
relative to each other to create the desired structure (Figure 1D).
ShapoGraphy is highly customisable where the property of any
object in the template, such as colour, size or opacity, can be
changed.

We developed various encodings that allow mapping
continuous quantitative data to shapes by using different
visual elements (Figure 1C). These include dimensions, size,
and colour that are commonly used for visualising data. For
the fill gradient element, we employed well-established colour
maps from ColorBrewer (Brewer, 2022). We have previously
proposed novel visual elements, such as partial overlaying the
object outline or filling the object with symbols proportional to
the variable value (Sailem et al., 2015). We introduce new features
in ShapoGraphy, such as the mesh density (horizontal, vertical or
grid), opacity, and rotation angle (Figure 1C). The use of various
glyph shapes, positions and visual elements allows designing
abstract and intuitive representations of a broad range of
structures investigated in biomedical imaging to assist in
understanding, summarising, and communicating results
(Figure 1D). This type of design gives the user high flexibility
when it comes to constructing new visual encodings that are more
intuitive and engaging.

2.2 ShapoGraphy User Interface
We adopted a modular design that resembles other graphic
design software such as Adobe Illustrator. Data import, saving
results, figure export and other auxiliary functionalities such as
viewing the data in a heat map or t-SNE plots are available from
the top menu (Figure 2). Once a dataset is uploaded, the user can
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add various shapes from the left menu. This includes drawing a
custom shape using the “draw shape” icon which opens a small
canvas that the user can draw on. For this option, the user needs
to draw the shape in one stroke as many elements, such as border
symbols or overlay, will be mapped to the object outline. A list of
the added shapes will appear on the right menu. The user can
modify the name of each object using the pencil icon at the
bottom of the objects list so that they can be easily identified. The
user can also duplicate an object which can be useful to generate a
new object with exact feature mapping or when a custom shape
is used. The objects are laid on top of each other as layers.
The object layer order can be modified using the upward and
downward arrows on the left of the object name. For example,
the nucleus should be positioned after the cell object, as it will be
concealed otherwise. The object location can be changed from the
Global Features sub-menu or by dragging and dropping the
object in the canvas.

For each object, we recommend selecting visual channels in
such a way that they metaphorically resemble the measured
concepts. Different symbols can also be used to distinguish
different variables. The user can customise the visual
appearance of these channels and the variables that are bound

to them from the Data Mapping sub-menu. For example, for
“Symbol filling” or “Border symbol” elements, the user can
choose from the following symbols: {✕, *, -, •, □, ▟} and
specify their colour and size (Table 1). For the Mesh element,
the user can choose vertical, horizontal, radial, grid-like or
randomly oriented mesh (Figure 1C). The user can also
specify the stroke size of the mesh and the colour of the mesh
lines.

To facilitate the exploration of design space in ShapoGraphy,
we offer a hide/show functionality of each of the objects or data-
symbol mappings through the eye icon on the left of each object
or element. We found this functionality very useful when
assessing interactions between objects, decluttering the
representation or determining relevant features.

On the right menu, there are also options for data
normalisation which is discussed in Section 2.4 and positional
mapping of Shape Glyphs in 2D dimensional space.

We employ pagination to deal with a large number of data
points. The user has the option to display more objects on the
same page or browse them in multiple pages. This can be useful if
combined with sorting functionality in the Positional Mapping
sub-menu.

FIGURE 1 | ShapoGraphy provides a highly flexible framework for creating glyph-based visualisations. (A) Example of object shapes that can be created using
Shapography. (B) Shapes can be combined to create structures that resemble the measured phenomena. (C) Various visual elements are defined for each object and
can be selected by the user to encode several variables. (D) An example of how objects can be combined to represent a wide range of phenotypic information.

Frontiers in Bioinformatics | www.frontiersin.org July 2022 | Volume 2 | Article 7886073

Khawatmi et al. ShapoGraphy

https://www.frontiersin.org/journals/bioinformatics
www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles


2.3 Legend
The legend can be viewed from the topmenu. Creating a legend for
the resulting composite glyph can be challenging as we do not
know in advance which objects or elements will be used and how
they will overlap. We therefore employed a simple object-oriented
strategy where we plot each object separately and automatically
determine non-overlapping locations to label the used visual
elements (Figure 2B). Long variable names are truncated and
are displayed as a tooltip if the user hovers over them. An
alternative option for generating a legend is manual labelling of
one of the generated Glyph Shapes as we did for Figures 3, 4.

2.4 Data Normalisation
Like heat maps and other glyph-based approaches, our method
requires normalising the data between 0 and 1 so they are mapped
to the same scale (Sailem et al., 2015). If the uploaded data is not
normalised, then it is automatically scaled. We note that some
variables can be related (represent the same scale). For example, if
the width and length of an object were scaled independently, their
relative ratio will not provide a faithful representation of the

actual data. To tackle this problem, we introduce linked variable
functionality in the Data Normalisation sub-menu on the right.
Linked variables are mapped to the same scale. For instance, if the
length of the largest cell is 100 pixels and its width is 60 pixels,
then they will be scaled to 1 and 0.6 respectively when defined as
linked variables but to 1 and 1 when scaled independently
(assuming that this cell is also the widest cell).

2.5 Implementation
ShapoGraphy is developed using HTML5 and JavaScript. The
shapes and their customisation are implemented using paper.js
library. It is a client-side web application which means that all the
processing happens at the user end and minimal data is uploaded
to our server. This circumvents potential privacy issues.

We defined a portfolio of templates to accommodate different
data (Figures 3, 4 and Supplementary Figures S1, S2). The user
can choose an existing template to map their data or modify an
existing template by adding additional objects and changing
shape-data mapping. They can also delete or hide unwanted
objects for maximal flexibility.

FIGURE 2 | ShapoGraphy user interface. (A) ShapoGraphy allows users to interactively construct and customise their plots using a flexible graphical user interface.
The user 1) uploads the data from the file menu 2) creates objects 3) customises their properties 4) maps the selected object properties to the variables in the dataset.
Positional mapping can be used to position the created objects in a scatter plot based on selected data variables. (B) Legend is generated automatically by
ShapoGraphy where different objects are shown seperately and variables mapped to the different visual elements for each object are labelled. Objects names
chosen by the user are shown in bold. All other labels are the variable names that are mapped to the object properties or depicted marks.
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2.6 Import and Export
We offer multiple options for exporting visualisation created in
ShapoGraphy including Portable Graphics Format (PNG) or
Scalable Vector Graphic (SVG). The latter is particularly
useful if the user needs to tweak the design in a graphic
editors. The user can export their template which will be
saved as a JavaScript Object Notation (JSON) file. This can be
then imported using the “Load Project” function from the
File menu.

The File menu on top left allows the user to upload data, load
demo data or load a project (data file and previously saved
templates). If the variable names in the template and variable
names in the data file do not match, then the user can remap these
variables from the right menu.

2.7 Datasets
The datasets used in this manuscript are available as demo files
from the file menu in ShapoGraphy.

2.7.1 Wound Scratch Data
Wound scratch data was obtained from an image-based siRNA
screen measuring human dermal lymphatic endothelial cells
migration into a scratch wound created in a cell monolayer20.
Cells were imaged at 0 and 24 h following wounding at 4x
objective. Cells were detected and the wound area was
segmented using DeepScratch15. Measurements of wound size
and cell numbers at 24 h were normalised to timepoint 0 h and
represented using ShapoGraphy.

2.7.2 Multiplexed Imaging Data
Multiplexed imaging data of 2000 HeLa cells was obtained from
Gut et al. (2018) where immunofluorescence of different markers
was performed in cycles to image the subcellular localisation of 40
proteins16. Ten variables were selected to showcase ShapoGraphy.
Data was scaled and transformed using UMAP. K-means was

used to group phenotypically similar cells into six clusters. The
average of UMAP dimension 1 and 2 was calculated for each
cluster.

Three cell-shaped objects were created to represent PI3K/
AKT/mTOR pathway (pAKT, p4EBp1 and pS6, where “p” denote
protein phosphorylation) on the cell periphery as the proportion
of symbols overlayed on the object outline (Figure 4C). The grid
density in the square surrounding the cell object represents the
local cell density. The abundance of late endosomes (CAV1) was
represented as “x” symbols filling the cytosol. Golgi and
centrosome organelles were abstracted as circles with a colour
gradient reflecting their abundance. Three variables were mapped
to the circle-shaped nucleus object: the value of nuclear pore
protein (NUPS) was mapped to the border of the nucleus object,
the level of YAP transcription factor was mapped to the colour of
the nucleus object, and the abundance of cell proliferation protein
PCNA was represented as dots filling the nucleus object. The
position of each Shape Glyph is mapped to the cluster centre
using the Positional Mapping sub-menu.

3 RESULTS

3.1 Case Studies
We created various templates to represent diverse image datasets.
These include phenotypic data of breast tumours based on
METABRIC study (Curtis et al., 2012) and cell shape data
from our PhenoPlot study (Supplementary Figures S1, S2).
Here, we discuss in detail the application of ShapoGraphy to
multiplexed and wound healing data. Notably all these templates
can also be used with any numerical data.

3.1.1 Visualising Scratch Assays Data
As a first use case, we used ShapoGraphy to visualise the effect
of gene perturbations on cell migration into a wound scratch

TABLE 1 | Customisable properties of ShapoGraphy elements.

Visual element Static properties

Length No additional properties
Width No additional properties
Fill gradient Colour map
Fill symbols Symbol: { ✕, *, -, •, □, ◷}

Fill direction: left- > right, right- > left, top- > bottom, bottom- > top
Symbol colour
Symbol size

Spikes Stroke size
Spike density
Colour

Border overlay Stroke size
Stroke colour

Border symbol Symbol: { ✕, *, -, •, □, ◷}
Symbol colour
Symbol Size

Mesh Orientation {vertical, horizontal, radial, grid, random}
Colour
Stroke size

Rotation No additional properties
Opacity No additional properties
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(Javer et al., 2020). In this dataset, the closure of an artificially
made wound by human lymphatic endothelial cells is
measured over a period of 24 h to determine how different
gene knockdowns, using siRNA, affect cell migration
(Figure 3A). In addition to the change in wound area, we
measured the number and area of cells as they can affect the
final wound area.

To represent this data using ShapoGraphy, the well and the
wound were depicted as rectangles mimicking the shape of the

actual measured data. We chose to represent the cell area using
the colour of the well object because it applies to most of the cells.
We mapped the density of the cells to a mesh density element
because they represent a similar concept, i.e., density, and
therefore are easier to link. The height of the wound object
represents the change in wound area which naturally
corresponds to the healing process where cells migrate
vertically to close the created wound (Figure 3B). Compared
to a bar chart (Figure 3C), such representation reveals more

FIGURE 3 | Using ShapoGraphy to represent wound healing data. (A) Image data capturing the effect of various gene depletions on human lymphatic endothelial
cells ability to migrate into scratch wounds [time-point 0h (t0) and 24h (t24)]. (B) Intuitive representation of wound area and cell number measurements using
ShapoGraphy based on data in (A). The outer square represents the well where lighter red hues indicate lower cell area while higher red hues indicate higher cell area. Cell
number is mapped to grid density. The height of the inner square represents the normalised change in wound area. (C)Representation of the same data in (B) using
a bar chart where numerical data are mapped to the bars’ length
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readily that depletion of AKT2 and PLCG1 genes results in a
similar wound area and that AKT2 knockdown results in lower
cell density and higher cell area than PLCG1. Therefore, their
effects on cell motility are not equal. Similarly, depleting CDH5
and CDC42 significantly affects wound area, but CDH5
knockdown results in significantly lower cell number and very
large cells suggesting that these two genes affect cell motility
through different mechanisms (Figure 3B). This pattern is
difficult to discern from raw images as wound measurements
need to be normalised to the initial timepoint (0 h) (Figure 3A).
A bar chart of these three variables, on the other hand, does not
allow for metaphoric association between these variables making
it difficult to identify the relationships between them. These
results show that ShapoGraphy allows identifying interactions
between variables as it provides a more intuitive representation
which supports making scientific conclusions from complex
phenotypic data.

3.1.2 Visualisation of Multiplexed Imaging Data
Next, ShapoGraphy was used to obtain high data density of single
cell phenotypes in multivariate multiplexed imaging data
measuring 40 markers (Gut et al., 2018). Multiplexed imaging
allows simultaneous imaging of spatial protein activities,
subcellular organisation as well as various cell identities
(Zhang et al., 2013). Since tens of markers can be imaged,
colour coding of the different proteins is no longer useful to
visualise this information (Walter et al., 2010). To study the
phenotypic heterogeneity of cancer HeLa cells, we analysed data
from 2000 cells that were stained with markers highlighting
various cellular organelles and signalling components
including the AKT pathway (Methods). Using k-means and
UMAP cells could be clustered to characterise different
subpopulations but the specifics of the underlying phenotypic
differences between the clusters could not be obtained (Figure 4A
and Methods). Heat maps allow studying all the measured

FIGURE 4 | ShapoGraphy allows interpreting multiplexed single-cell data. (A) UMAP projection of 2000 single HeLa cells. (B) Representation of average values of
40 markers as well as local cell density for each identified cluster using a heat map. (C)Representation of selected features fromC using ShapoGraphy where the shapes
graphs are placed at centre of the cluster.
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markers individually but require many cognitive calculations
such as searching for the different variables and remembering
their values to compare them (Figure 4B). This makes them
challenging to interpret.

In order to facilitate the understanding of single cell
phenotypes that are derived from multiplexed data,
ShapoGraphy was used to design a template where the visual
elements resemble the represented data attributes. We

TABLE 2 | List of design decisions (objects and visual elements) used in Figure 3.

Design Description

For intuitive mapping of multiplexed image data, we used different objects to create a hierarchy and represent features
associated with different cellular compartments
Golgi (GM130) Centrosomes (Pericentrin)

Signalling of AKT is represented as symbols overlayed on the cell object outline. Three cell-shaped objects are layered to
represent additional information at the cell periphery. This configuration allows representing the signalling cascade pAKT ->
p4EBP1 and pS6. Different colours are used for these different proteins so they can be distinguished easily

Endosome abundance, based on CAV1, is represented as symbols filling the inner cell-shaped object. This visual channel is
well-suited to represent the punctate distribution of endosomes in the cell
Caveolin (CAV1)

Multiple variables are mapped to the nucleus object. The border symbol (red dots overlying nucleus glyph) provides a faithful
representation of nuclear pore protein (NUPS) that localises to the nucleus membrane. The nucleus colour is used to
represent the level of YAP transcription factor. While the cell proliferation protein PCNA is represented using symbol filling
due to its punctate appearance (blue dots)
NUPS PCNA YAP

We used colour gradient in a manner similar to a heat map to represent the value of proteins that localise to different
organelles. For example, YAP transcription factor is mapped to the colour of the nucleus glyph and Pericentrin is mapped to
the colour of the centrosome glyph where they localise. The same colour map is used to enable comparison. The colour
provides a good choice when the objects are overlapping, and part of the object is concealed as it is uniform throughout the
object
YAP (nuclear) Golgi (GM130) Centrosomes
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combined several objects to create a structure that mimics the
measured data and depicts the hierarchical nature of bioimage
data (Table 2). For example, as cells are composed of multiple
organelles, we used different circled objects inside the cell object
to represent data of proteins localised to different organelles:
nucleus, Golgi and centrosomes. On the cell object, we
represented the AKT signalling cascade as consecutive layers
on the cell periphery. We created a square around the cell object
to represent its context based on local cell density. As in the first
use case, we mapped the cell density to the mesh density as they
can be easily associated. Symbol filling is well suited for
representing endosomal abundance because of its punctate
distribution in the cytosol. The rationale for the different
design choices is explained in Table 2. This abstract
representation of different components in the cell and their
spatial arrangement provides a more intuitive representation
where the various elements in the Shape Glyph can be easily
linked to the measured variables.

A major advantage of using glyph representations is that the
quantitative information is self-contained and therefore the
position channel can be used to visualise additional
dimensions. We positioned the composite glyphs based on the
centre of identified clusters in the reduced UMAP space to help
sorting these composite glyphs and comparing cluster
phenotypes (Methods).

Figure 4C shows that Cluster 2, 4, and 6 on the right have high
cell density (grid density) and low late endosome abundance (x
symbols filling the cytosol). Cluster 6 and 4 are highly similar, but
Cluster 6 has the highest pS6 levels across all clusters, while
Cluster 2 has very high pAKT and p4EBp1, centrosomes
(Pericentrin), nuclear pore proteins (NUPS), but low YAP
values. Cluster 3 has also high pAKT and p4EBp1 like Cluster
2 but has lower cell density and the highest endosome abundance.
Discussing our results with biologists, they found that these
representations help them understand their data better as it is
easier to identify and relate the differences between clusters to
image data. In comparison, Figure 4B depicts the same
information in a heat map which can complement our Shape
Glyphs but does not help the user to build a mental picture of the
data. Therefore, ShapoGraphy provides a more expressive
representation of phenotypic classes and their biological
relevance based on high dimensional single-cell data which
allows scientists to uncover and study complex patterns and
relationships in the data.

3.2 Guidelines for Designing Glyph-Based
Representations Using ShapoGraphy
We reflect on our learning from developing various use cases
using ShapoGraphy and our discussions with potential users.
First, while the motivation of combining different objects is to
create semantically relevant representations, it is possible that
some object and/or element combinations can be perceived
differently from what is intended or can result in undesirable
properties. For instance, using a mesh element on a hierarchy of
circles can create geometric patterns (Supplementary Figure S4).
Here we propose that ShapoGraphy provides a fast approach for

assessing such interactions. Moreover, it allows experimenting
with various designs that can inspire new visual representations.

We noticed that when creating composite glyphs, users tried to
infer meaning from aspects of the element configuration which were
notmapped to data as the user was looking for patterns in the plotted
glyphs. This was the case when using themesh element with random
orientation. This problem did not arise when the user learned that
this is a static configuration. As object colour can be either statically
defined or dynamically mapped to the variable, we recommend
using it consistently for all objects. For example, the coloured objects
in Figure 4C (Golgi, centrosome, and nucleus) reflect the variable
value and the same colour is used otherwise. We also experimented
with assigning the same colour for all symbols/elements, however
some users found this representation difficult to scan and using
different colours helped the user in distinguishing and scanning
these distinct elements (Supplementary Figure S3). Continuing the
discussion of colour assignment, we found that using the same
colour map for “Fill gradient” element is important to make
comparisons across different objects easier.

Consideration should be given to the number of features when
using Shape Glyphs as our workingmental memory is limited and
can handle only 5–10 variables at a time (Cairo, 2013). Selection
of important features can be achieved through interactive
exploration in ShapoGraphy and using the hide/show
functionality to identify the most relevant information to be
communicated to the reader.

Object occlusion is another aspect that needs to be considered
when designing Shape Glyphs where objects are overlayed on top
of each other or partially overlap. Visual elements such as colour
and mesh density are less affected when part of the object is
occluded. For example, the nucleus object lies on the top and
occlude part of the Golgi and centrosome objects in Figure 4C,
but does not affect the perceived quantitative mapping as colour
is uniform throughout the object.

4 DISCUSSION

The human brain perceives information by converting visual
stimuli to symbolic representations that are then interpreted
based on our memories and previous knowledge.
Visualisation approaches help our brain create a mental
visual image of quantitative data in order to recognise
patterns and identify interesting relationships that might be
missed otherwise (Tufte, 2001). ShapoGraphy is a new
visualisation approach that allows creating bespoke glyph-
based representations by constructing composite glyphs that
combine different shapes and symbols, each of which encodes
multiple variables. To our knowledge, such an approach to
data visualisation has not been explicitly proposed before and
no tool is available to create such graphical representations
automatically.

The main advantage of ShapoGraphy is that it enables the
creation of a metaphoric quantitative representation of the data to
aid the reader in interpreting, understanding, and
communicating scientific results. This makes it perfectly suited
for bioimages because of the structural and hierarchical nature of
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these datasets. Nonetheless, ShapoGraphy is a very versatile tool
and can be applied to any numerical data such as single cell RNA
sequencing, proteomics, or non biological data. Another
advantage of Shape Glyphs is that such pictorial
representations can attract more attention from the reader as
they stimulate more cognitive activity (Borgo et al., 2013). This
can be beneficial when communicating data with a broad
audience. Therefore, ShapoGraphy serves as a general-purpose
methodology for creating more engaging and intuitive graphic
representations.

ShapoGraphy complements existing visualisation methods
such as heat maps, t-SNE and UMAPs. While the latter
approaches provide a global picture of the major trends or
structure in the data, ShapoGraphy allows a more detailed
understanding of multiparametric phenotypes. It aims to
represent quantitative data so the user can compare different
variable values relative to each other, rather than generating an
actual picture of the image data. Such distinction is necessary as
image data are often normalised which make interpreting raw
image data more challenging and subjective. Currently, our
approach is best suited for summarising and providing higher
information density of major phenotypes in the data, rather than
individual data points. This is because the pictorial nature of the
generated representations requires high resolution and more
space. These phenotypes can be identified using clustering or
classification tasks. A potential future direction is to extend our
approach to gain multi-level summaries of the data enabling
effective visualisation of a larger number of data points.

The high flexibility offered by ShapoGraphy to combine and
position different Shape Glyphs and symbols, including hand-
drawn shapes, provides an unprecedented opportunity to easily
evaluate various designs. This is an important distinction from
glyph-based visualisation methods that have been developed for
medical images as they provide a very bespoke representation for
the problem at hand making them hard to transfer to other types
of images (Ropinski et al., 2011). Notably, it can take time to learn
new visual encodings representing specific or complex domain
knowledge (Borgo et al., 2013). Once learned, such glyph-based
visualisations can become more effective for specialised users.
Many examples can be found in the genomics domain including
representations of gene variants or ideograms of chromosome
structure (Wolfe et al., 2013; L’Yi et al., 2022). Redundant or
alternative representations, that are more familiar to the user, can
be used in parallel with ShapoGraphy when introducing new
visual designs (Cairo, 2013).

An important future direction is to perform a user study for
evaluating various aspects of glyph-based designs generated by
ShapoGraphy. Given the infinite number of designs that can be
generated using ShapoGraphy, such a study should be carefully
planned and focused on the most recurring element combinations
or designs that are most well-received in the community. Moreover,
this assessment should align well with the purpose of the visualisation
such as facilitating the discovery of complex patterns, communicating
with a broad audience, interpretability, or effectiveness. The user study
could advance our understanding of how various elements interact
with each other and might highlight potential perturbations that can

be programmatically employed to improve future versions of
ShapoGraphy. For example, multilevel glyphs can be used to
minimise occlusion (Müller et al., 2014) or sequential highlighting
of certain glyph elements selected by the user. This could also inform
practices on visual elements that are most effective when combined
and which combinations should be avoided which ultimately could
accelerate the development of glyph-based visualisations.

Another interesting extension of ShapoGraphy would be the
automation of the mapping between numerical features and
shapes. One way to achieve that is to adopt a generative approach
where multiple glyph-variable mappings are proposed for the user to
choose from. Such an approach could inspire visualisation design
(Brehmer et al., 2022). This would greatly improve the user
experience as currently, the user needs to map features one by
one. We tackle this limitation by enabling users to save their
mapping along with their created composite glyph configuration
as a JSON file for later use.We also offer a range of templates that can
be directly used or adjusted by the user.

To conclude, ShapoGraphy can be used in all steps of data
analysis to create intuitive pictorial representations of any data
type. It can be used to summarise analysis results obtained
from clustering or classification approaches, as well as an
educational tool. We believe that the unique flexibility
offered by ShapoGraphy will expand our visual
vocabularies, accelerate the evolution of glyph-based
visualisation, inspire creative design, and stimulate the
development of new visual encoding schemas. Most
importantly, ShapoGraphy is not restricted to image data
but can be applied to any numerical data.
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