
sensors

Article

Efficient Cell Segmentation from Electroluminescent Images
of Single-Crystalline Silicon Photovoltaic Modules and
Cell-Based Defect Identification Using Deep Learning with
Pseudo-Colorization

Horng-Horng Lin 1 , Harshad Kumar Dandage 2 , Keh-Moh Lin 3,∗ , You-Teh Lin 3 and Yeou-Jiunn Chen 2

����������
�������

Citation: Lin, H.-H.; Dandage, H.K.;

Lin, K.-M.; Lin, Y.-T.; Chen, Y.-J.

Efficient Cell Segmentation from

Electroluminescent Images of Single-

Crystalline Silicon Photovoltaic

Modules and Cell-Based Defect

Identification Using Deep Learning

with Pseudo-Colorization. Sensors

2021, 21, 4292. https://

doi.org/10.3390/s21134292

Academic Editor: Antonino Laudani

Received: 20 May 2021

Accepted: 17 June 2021

Published: 23 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Computer Science and Information Engineering, Southern Taiwan University of Science and
Technology, Tainan 710301, Taiwan; hhlin@stust.edu.tw

2 Department of Electrical Engineering, Southern Taiwan University of Science and Technology,
Tainan 710301, Taiwan; harshadkdandage@gmail.com (H.K.D.); chenyj@stust.edu.tw (Y.-J.C.)

3 Department of Mechanical Engineering, Southern Taiwan University of Science and Technology,
Tainan 710301, Taiwan; 4a414041@stust.edu.tw

* Correspondence: kemo@stust.edu.tw; Tel.: +886-6-253-3131 (ext. 3561)

Abstract: Solar cells may possess defects during the manufacturing process in photovoltaic (PV)
industries. To precisely evaluate the effectiveness of solar PV modules, manufacturing defects
are required to be identified. Conventional defect inspection in industries mainly depends on
manual defect inspection by highly skilled inspectors, which may still give inconsistent, subjective
identification results. In order to automatize the visual defect inspection process, an automatic cell
segmentation technique and a convolutional neural network (CNN)-based defect detection system
with pseudo-colorization of defects is designed in this paper. High-resolution Electroluminescence
(EL) images of single-crystalline silicon (sc-Si) solar PV modules are used in our study for the
detection of defects and their quality inspection. Firstly, an automatic cell segmentation methodology
is developed to extract cells from an EL image. Secondly, defect detection can be actualized by
CNN-based defect detector and can be visualized with pseudo-colors. We used contour tracing
to accurately localize the panel region and a probabilistic Hough transform to identify gridlines
and busbars on the extracted panel region for cell segmentation. A cell-based defect identification
system was developed using state-of-the-art deep learning in CNNs. The detected defects are
imposed with pseudo-colors for enhancing defect visualization using K-means clustering. Our
automatic cell segmentation methodology can segment cells from an EL image in about 2.71 s. The
average segmentation errors along the x-direction and y-direction are only 1.6 pixels and 1.4 pixels,
respectively. The defect detection approach on segmented cells achieves 99.8% accuracy. Along
with defect detection, the defect regions on a cell are furnished with pseudo-colors to enhance the
visualization.

Keywords: electroluminescence image; single-crystalline silicon photovoltaic module; cell segmenta-
tion; defect detection; pseudo-colorization

1. Introduction

With the advancements in renewable energy technologies, solar energy has been
attracting more and more public attention in recent years. With the increasing demand
for high-quality and efficient solar panels, the photovoltaic (PV) industries are facing
challenges in the quality inspection of solar panels produced. The electro-luminescence
imaging is a well-established technique in the PV industry to evaluate the quality and
to identify damages to photovoltaic solar panel modules. A PV module is an assembly
of photovoltaic cells, known as solar cells, arranged on a single frame for large-scale
applications. PV modules consist of multiple electrically connected solar cells sealed in an
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environmentally protective laminate, and cells are the fundamental building blocks of PV
solar panel systems. The EL technique provides images with very high-resolution details
assisting the defect detection of fine-level microscopic flaws such as a crack and broken
finger for automatic optical inspection using computers. An EL image is used to enhance
the detection of defects with size, position, and orientation.

During PV module production, an EL imaging device can be used to record solar
panel images at very high resolution, in which possible manufacturing defects in various
sizes, positions, and orientations can be captured. Traditionally, the visual inspection of PV
modules is carried out manually by trained experts/inspectors to identify defects and to
rank quality levels. However, the microscopic flaws, such as cracks and/or broken fingers,
cannot be easily and fully inspected by a human in a short time period in a real-time
production line. Due to the lack of efficient and automatic defect analysis of PV panels, the
time-consuming, manual inspection of selected EL images is still reluctantly conducted
by field operators and is prone to unstable defect examination results by inexperienced
inspectors.

Considering the requirement of PV industries for automatic quality inspection of PV
modules using EL images, we propose a novel "SCDD", automatic Segmentation of Cells
and Defect Detection approach. SCDD is a method to extract cells from an EL image of
single-crystalline silicon (sc-Si) PV module, detect defects on the segmented cells using
deep learning and enrich defect regions with a pseudo-colorization method. An automatic
cell segmentation method is based on the structural joint analysis of Hough lines. A defect
inspection approach for cell images based on deep learning for practical applications is
developed. Our experimental results show that the segmentation of individual cells is
important in automatic defect identification for quality inspection of a PV module.

The results of our automatic and efficient cell segmentation approach are shown in
Figure 1. A defected cell may contain abnormal regions, such as cracks (Figure 1a) , and
contamination defects (Figure 1b). Cracks on a PV module are caused by mishandling of a
PV module, and contamination defects are caused by contamination of impurities during
the manufacturing process. These defective cell images are manually labeled for training
the classifier and detector.

(a)

(b)
Figure 1. Samples of segmented solar cells containing defects: (a) cracks, (b) contamination defects.

We formulate our algorithms for automatic cell segmentation from an EL image of a
PV module and defect detection on the segmented cells. The flowchart in Figure 2 exhibits
the overall working pipeline of our proposed system. The workflow of the SCDD method
comprises of following six steps.

Step 1: Image pre-processing to remove undesired noises from the original EL image by
using Gaussian filtering.
Step 2: Applying the contour tracing algorithm to identify contours and extract the required
panel region.
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Step 3: Using probabilistic Hough transform to identify gridlines and busbars.
Step 4: Segmentation of individual cells with the help of identified gridlines.
Step 5: Defect detection on cell images by state-of-the-art deep convolutional neural
networks.
Step 6: The detected defects are enriched with pseudo-colors for enhanced visualization of
defects.

Figure 2. Flowchart of the SCDD method.

The ultimate results of our proposed approach of cell segmentation and defect detec-
tion within bounding boxes including enhanced visualization of the defects by pseudo-
colors are shown in Figure 3.

Figure 3. Results of the SCDD model.

The features of the proposed SCDD approach include:

1. The cells in an EL image of a PV module are segmented automatically for integrat-
ing CNNs with transfer learning [1] to detect defects on solar cells. The proposed
cell-based defect detection module using YOLOv4 [2] obtains 99.8% accuracy and
outperforms both the cell-based defect classification with ResNet50 [3] and the panel-
based defect detection with YOLOv4 in the experiments.

2. The proposed cell segmentation approach works accurately to localize the panel
region from an EL image and to segment cells from the localized panel image. The
segmentation method is simple and efficient as compared to the other cell segmenta-
tion techniques [4,5].

3. We use a dataset consisting of 7140 solar cell images to perform an extensive eval-
uation of the proposed cell segmentation method. The proposed cell segmentation
technique works efficiently with an average segmentation error of only 1.5 pixels.

4. The detected defects are visualized with pseudo-colors to highlight the defect textures
for better inspection. The pseudo-colorization uses K-means clustering on detected
bounding boxes of defects. The defect localization with proposed pseudo-colorization
on defects performs efficiently compared to the conventional digital image processing-
based defect detection such as Gauss filtering [6] and Lo, gradient minimization with
Fourier image reconstruction [7].

The remainder of the research article is organized as follows. A literature survey is
mentioned in Section 2. The methodology of our proposed SCDD approach is discussed
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in Section 3. In Section 4, we present a detailed procedure of cell extraction from EL
images, which is the core part of SCDD. Experimental results, including error analysis
of cell extraction module and defect detection with pseudo-colorization, are discussed in
Section 5. Finally, we conclude our research work in Section 6.

2. Related Work

The PV modules may contain defects that cause adverse degradation of performance.
Kontges and their team [8] surveyed the various types of defects on PV modules depending
on various environmental conditions leading to failure. Many PV modules are returned
back to the manufacturers due to the failure of PV modules after they are deployed.
Existing inspection of solar module performance often relies on the measurements of the
physical properties of solar modules. For example, the evaluation of outdoor c-Si modules
performance in extreme environmental conditions is proposed by Kahoul et al. [9] based on
the I-V curve field measurements and visual inspections. Unlike [9], our defect detection
approach is designed for inspecting the manufacturing quality of solar panels in a factory
production line. As a stand-alone image-based inspection system, the measurements of I-V
curves are not included in the proposed SCDD approach, owing to the fact that it may be
generally difficult to quantitatively address the influence of small subtle defects on the I-V
curves of a solar panel.

Automatic cell segmentation is an essential procedure for automating the visual
inspection of EL images. Deitsch et al. [5] propose a robust automated segmentation
method to rectify EL images by extracting the rigid edges. Individual solar cells were
extracted from EL images of mono-crystalline and poly-crystalline PV modules by locating
the gridlines and busbars. In the solar cell extraction procedure, factors affecting the
extraction of boundaries are background noises and irregular positioning of the gridlines on
the EL module images. Sovetkin and Steland [4] proposed an automatic cell segmentation
approach to extract the cell area of single-cell mini-module. In their approach, cells can
be extracted even in a noisy background, and the correction of perspective distortion is
implemented by detecting the changes of cumulated sums (CUSUM).

Unlike [4], our cell segmentation is implemented in a structural hierarchy, where
the coarse-level panel region is extracted from an EL image by contour tracing and the
fine-level cell structures, such as gridlines and busbars, are identified by probabilistic
Hough transform for further cell segmentation.

After the cells are segmented from EL images of PV modules, the very next important
step is to find defects on cells for efficiency evaluation. Deitsch et al. [10] propose an
automatic supervised classification of defective solar cells using a support vector machine
(SVM). Using images of segmented cells, extraction of a set of descriptors is implemented
and these descriptors are used to train a classifier to classify cells into defective or functional
cells. Akram et al. [11] proposed an automatic detection of PV module defects in infrared
images using deep learning techniques. Infrared (IR) imaging is performed on normal
operating and defective PV modules to obtain a dataset of images. The authors developed
a CNN architecture from scratch to classify IR images of PV modules. Tang et al. [12]
proposed an efficient joint data augmentation approach for combining the image alternation
and developed a GAN model for EL images to improve the performance of the machine
learning models. A CNN-based model was developed for PV module defect detection
and classification. Bartler et al. [13] proposed an automated classification of defected
solar cell images with adapted VGG16 architecture by reducing the number of filters and
the size of the fully connected layers to reduce the total number of parameters due to
a smaller number of labeled training samples. Chen et al. [14] designed an optimized
multi-spectral convolutional neural network classifier by adjusting the depth of a model
and evaluating variation influenced by convolutional kernel size. A multi-spectral solar
cell CNN network model is proposed to extract the multi-spectrum features of the solar cell
surface. Parikh et al. [15] proposed a machine learning-based defect identification method
in which classifiers such as, SVM, K-NN, and Random Forest are used. They present a



Sensors 2021, 21, 4292 5 of 22

method to extract statistical parameters from the histogram of cell images into feature
vectors and utilizes them as a feature descriptor. These descriptors are used to train a
classifier to classify the defect cells. Evaluation of PV modules using a CNN can also be
implemented with the help of thermography images of PV modules. Haque et al. [16]
proposed a fault diagnosis system by training the multi-layer perceptron on a dataset of
thermal images of PV module containing defects and VI curves.

Many alternate methods can be used to train a neural network classifier such as
image feature vectors extracted by wavelet coefficients using similarity distance algorithm
proposed by Vetova et al. [17] and feature extractor as kernel extreme learning machine
proposed by Sawssen et al. [18]. Our proposed approach utilizes a dataset of cell images,
manually annotated to train a detector, and defect detection is implemented by generating
feature maps in a hierarchical structure.

In our previous work of pseudo-colorization [19], we propose a unsupervised method
of k-means clustering for marking potential defect pixels in pseudo-colors in an entire
EL image for human visual inspection. Specifically, given a template of an EL image
with pseudo-color labels on its defect regions, we impose the pseudo-colors to other
greyscale EL images for highlighting defect regions. With respect to different defect types
and image structures, the template feature clustering and pseudo-colors are transferred
to a defected EL image, whereas, in the current research work, the pseudo-colorization
scheme is updated to create two feature groups for foreground and background by k-means
clustering based on their pixel intensity distributions. The cluster of pixels belonging to
the foreground is imposed with pseudo-colors for better defect inspection.

Wang et al. [20] proposed an improved k-means clustering algorithm in which a
weight calculation method for abnormal behavior was used to minimize the degree of
abnormal behavior risk by extracting eigenvalues from a set of abnormal behavior. With
the proposed pseudo-colorization method in the SCDD approach, we implement simple k-
means to cluster foreground and background pixels of the defect area within the bounding
boxes detected by a detector and providing pseudo-colors to the foreground pixels.

3. Methodology

In this section, we describe a novel methodology to extract individual cells from an
original EL image. The segmented cells are fed into a CNN for defect detection. These
defect-detected cells are further propagated to the pseudo-colorization model to apply
pseudo-colors to defect textures for enhancing visual inspection of defects.

3.1. Cell Segmentation

In the proposed SCDD method, the cell segmentation procedure includes 5 steps
for extracting cells from an EL image. Based on the main idea of finding the gridlines to
segment all individual cells, first, from an original EL image (Figure 4a) of a PV module,
the panel region (Figure 4b) is localized and extracted using contour tracing. Identification
of the gridlines and busbars is implemented by plotting horizontal and vertical lines on the
extracted panel region by using the Probabilistic Hough Line transform.

The Figure 4c shows gridlines (–o–) and busbars (–o–) plotted in red and blue colors,
respectively, on the panel image. The rectangular grids generated from the red gridlines
represent cell boundaries. Using the identified grids with red rectangular boundaries,
horizontal strips are extracted (Figure 4d). Dividing each horizontal strip into cell im-
ages (Figure 4e) is an efficient treatment for accurate defect detection. The details of cell
segmentation will be presented in Section 4.
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(a) (b) (c)

(d) (e)
Figure 4. Pipeline for automatic cells segmentation in SCDD approach. (a) Original EL image of the
PV module. (b) Panel region localization. (c) Gridlines and busbars identification. (d) Segmenting
horizontal strip regions. (e) Segmenting individual cells.

3.2. Dataset Generation

After the segmentation procedure, all extracted cells have a unified resoluttion of
346 × 346 and are further enlarged to 416 × 416 in dataset generation for both defect
classifier and detector learning. A dataset of cell images is generated to train deep learning
models by manually labeling the segmented images into the Defect and NonDefect classes.
For panel-based defect detection, we have prepared a dataset of 96 panel images for training
and 23 images for testing. Since each panel image contains 60 sc-Si cells, the numbers of
cell images are 5760 and 1380 for training and testing, respectively, as mentioned in Table 1.
All the cell images in the dataset are manually labeled as Defect and NonDefect classes.

Table 1. The EL image dataset.

Panel Images Cell Images

Training 96 5760
Testing 23 1380

Due to the limited number of EL panel images given by the manufacturer, we artifi-
cially augment the dataset by horizontal and vertical flips to generate more data samples
and to increase the data variability for training deep neural networks. The augmented cell
image dataset used for the cell-based defect classification is shown in Table 2.

Table 2. The augmented cell image dataset for defect classification.

Defect NonDefect

Training 3537 7320
Testing 1179 2440

In contrast to the dataset preparation for cell defect classification, the data preparation
for panel-based and cell-based defect detection is slightly different.

As not all cell images in Table 1 contain defects, the selection of cell image samples that
have various defects from the dataset of Table 1 is required. As listed in Table 3, 1257 and
1380 representative cell samples containing defects are chosen for training and testing of
cell-based defect detector, respectively. The defects on the chosen cell images are manually
annotated with bounding boxes to train and test the detector.
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Table 3. The training and testing datasets for panel-based and cell-based defect detection.

Panel-Based Cell-Based

Training 96 1257
Testing 23 308

3.3. Defect Detection

Segmented cell images (Figure 5a) are sent to the defect detection system. If any defect
is detected on the cells (Figure 5b), it is further propagated to the pseudo-colorization
system. Supervised deep learning with a deep convolutional neural network is widely
adopted in defect detection applications. This research work involves a comparative study
between a classifier and a detector to identify defects on cells.

(a) (b) (c)
Figure 5. Procedure for defect detection and pseudo-colorization. (a) Selecting segmented cells for
defect detection. (b) Defects detected by detector. (c) Pseudo-Colorization of defects.

In the two-class cell classification, the economic and yet powerful ResNet50 [3] is
adopted, whose computational structure in the implementation is shown in Table 4. The
five main CNN layers from 173× 173 to 6× 6 are used to generate feature maps in a
hierarchical structure for defect identification.

Table 4. The structure of ResNet50.

Layers Image Size

MaxPooling2D 173 × 173

conv1 87× 87 Filter size (7× 7); 64 Filters; Stride 2

conv2_x 44 × 44
Filter size (1× 1); 64 Filters

Filter size (3× 3); 64 Filters
Filter size (1× 1); 256 Filters

 × 3

conv3_x 22 × 22
Filter size (1× 1); 128 Filters

Filter size (3× 3); 128 Filters
Filter size (1× 1); 256 Filters

 × 4

conv4_x 11 × 11
Filter size (1× 1); 256 Filters

Filter size (3× 3); 256 Filters
Filter size (1× 1); 1028 Filters

 × 6

conv5_x 6 × 6
Filter size (1× 1); 512 Filters

Filter size (3× 3); 512 Filters
Filter size (1× 1); 2048 Filters

 × 3

Flatten 1 × 1

Dropout

FC Units: 2, Activation: softmax

Our proposed SCDD approach uses YOLO to detect defects on the cell images. YOLO
is a powerful single convolutional network that simultaneously predicts multiple bounding
boxes and class probabilities for those boxes. For the performance comparison of different
YOLO versions, the defect detection is implemented with YOLOv3 [21] and YOLOv4 [2].
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Due to the better performance of YOLOv4 in later experiments, the computational
architecture of YOLOv4, as a successor of YOLOv3, is in particular introduced in Figure 6.
The YOLOv4 is made of a backbone, a neck, and a head module. The backbone module of
YOLOv4 is composed of CSPDarkNet53 [22].

Figure 6. The architecture of YOLOv4.

The neck of the detector is a combination of a spatial pyramid pooling (SPP) layer
and path aggregation network (PAN). The SPP [23] allows the generation of fixed-sized
features irrespective of the size of feature maps through the pooling calculation. The
PAN [24] allows better propagation of layer information from bottom to top and top to
bottom. The YOLO head performs dense prediction, which comprises a vector containing
the coordinates of the predicted bounding box, the confidence score of the prediction, and
the label.

The images in our train and test dataset are labeled manually with bounding boxes
using a labeling tool to generate XML files of annotations. Later on, these XML files are
converted to YOLO format annotation files. Image annotation has a critical role in computer
vision. The goal of image annotation is to assign relevant, task-specific labels to images.
Data annotation requires a high level of domain knowledge, and we labeled defects on
solar cells with the profound observation of defect regions of cracks and contamination
defects as shown in Figure 1.

3.4. Pseudo-Colorization

The defects within detected bounding boxes are further marked with pseudo-colors
for better visual inspection. The procedure of furnishing defect regions or textures with
colors is regarded as pseudo-colorization (Figure 5c). Although pseudo-colorization has
been explored in computer graphics applications, it is rarely applied to defect inspection
of solar cells. In particular, we develop a low-complexity algorithm of defect colorization
based on k-means clustering for distinguishing foreground (Defect) pixels from background
(NonDefect) ones. The defects in detected bounding boxes are imposed with pseudo-colors
for further human justification of bounding box detections and for easier observation of
specific defect textures.

In Algorithm 1 of the proposed pseudo-colorization, we set k = 2 for k-means clus-
tering to extract foreground and background clusters from each bounding box of defect
identified by a detector in a gray-scale cell image. The k-means clustering is embodied
based on the pixel intensities in the detected bounding box. The pixels of the foreground
cluster with a lower mean intensity value are imposed with pseudo-colors. Specifically,
the pseudo-colorization on detected defects is enforced by (a) obtaining the dimensions
of a bounding box drawn on a cell image (x_left and y_top coordinates and width and
height) detected by YOLOv4 in the testing phase, and (b) cropping the area of cells within
a bounding box as a region of interest (RoI) Ri for further colorization with Algorithm 1.
As a result, the pixels of foreground cluster of defect are colored red.
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Algorithm 1 Pseudo-colorization.

1. I = {I1, I2} = k-means(Ri, k = 2),
where I is a set of two intensity means I1 and I2, with I1 < I2, and I1 corresponds
to the foreground (defect) cluster.
Ri is a bounding box of detected defect RoI in a cell image.

2. Imposing a pseudo-color (red) to the pixels of the I1 cluster in the RoI bounding box.

Besides the adopted k-means clustering, other clustering algorithms, such as mean-
shift clustering [25], can also be used for pseudo-colorization. Due to the simplicity and
the stable clustering output of k-means clustering, we choose it as the default implementa-
tion of pixel intensity clustering in Algorithm 1. Experimental comparisons of different
colorization techniques of defect pixels will later be presented in the experiments.

4. Cell Segmentation

We develop five significant steps to extract cells from an EL image. Concerning the
pipeline, in Figure 4, the cell segmentation steps propagate from extraction of panel region
from an original EL image of PV module to gridlines and busbars identification, revealing
borders of a cell, henceforth assisting in individual cells extraction. A detailed step-wise
cell extraction methodology is discussed later in this section.

Step 1: Panel Region Extraction

The first and foremost step in solar cell segmentation is to extract the panel region
from an EL image that represents an original solar panel. Here in this step, the appropriate
panel region (Figure 7b) is extracted from an original EL image of a PV module (Figure 7a).
The contour tracing algorithm is employed to extract a panel region, hence serving as an
essential step for segmenting cells.

(a) (b)
Figure 7. Panel region extraction, (a) original EL image, (b) extracted panel region.

In Algorithm 2 of panel region extraction, an original EL image of resolution M× N
pixels is converted to a greyscale image (Ib). The greyscale EL image is blurred with the
Gaussian smoothing to reduce unwanted noises from an EL image.

The next step is to find contours for extracting the panel region. An adaptive threshold
is adopted using the OTSU thresholding to discriminate panel region from the background
in an EL image. Figure 8a shows the result of thresholding on an original EL image.
Contour tracing is applied to find all contours on this thresholded image, and contours
with the largest area are selected to extract the panel region. The contour area enclosed in a
red box as shown in Figure 8b is the target area of the panel to be extracted. Figure 7b is
the final extracted panel region.
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Algorithm 2 EL panel region extraction.

1. Noise reduction using Gaussian blur, i.e.,
Ib = GaussianBlur(I),
where, I is a greyscale EL image.

2. OTSU thresholding, i.e.,
IB = OtsuThresholding(Ib),
where, B is a binary image from the otsu threshold Th.

3. Contour tracing, i.e.,
C = FindContour(IB)
Ci = { C1, C2, ....., Cn }
where, C is a set of n contours and

Ci is an ordered list of connected contours points.
4. Panel region identification, i.e;

i∗ = MaxArea(Ci) and
[x, y, w, h] = BoundingBox(Ci∗ )
where, x and y are top left x and y coordinates of bounding box, respectively.
w and h are width and height of bounding box, respectively.

5. Panel region segmentation with the dimensions.

(a) (b)
Figure 8. Contour tracing. (a) Thresholded EL image. (b) Target contour area for panel region extraction.

Step 2: Horizontal and Vertical Lines Plotting

To trace horizontal and vertical lines on the localized panel region, we apply the Canny
edge [26] detection approach followed by the probabilistic Hough line technique [27],
supported by an adaptive threshold value calculated with the overall intensity of an
EL image.

In Algorithm 3, for horizontal and vertical lines plotting, we used the Canny edge
detection to identify the edges of the cells on extracted panel region and probabilistic
Hough transform to identify and plot lines on the extracted boundaries. We apply adaptive
high and low thresholds based on the combination of Otsu thresholding and overall pixel
intensity of the extracted solar panel region image. Otsu thresholding is applied to the
panel image because it separates dark and light regions by iterating through all the possible
threshold values and calculating a measure of spread for the pixel that falls in either the
foreground or the background. To identify the actual edges on a panel image, we apply
threshold values, high (Th) and low (Tl). Any edges with an intensity gradient greater
than Th are considered to be edges, and those below Tl are discarded considering to be
non-edges. To automatically select a Th threshold value, we apply a combination of Otsu
thresholding on the panel image Ip and the average intensity I. As a result, the threshold
values achieved have the ability to improve the accuracy of the edge detection with minimal
noise. The Canny edge detection is used to locate edges of the panel image by employing
these two adaptive thresholds. Figure 9a shows the result of Canny edge on the panel
image required for Hough line estimation.
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Algorithm 3 Horizontal and vertical lines plotting.

1. Threshold calculation, i.e.,
Th = OtsuThresh(Ip) −(I/2)
Tl = (OtsuThresh(Ip)/2) −(I/2)
where, Th and Tl are the high and low thresholds, respectively
Ip is extracted panel region,
I is Average pixel intensity of image Ip.

2. Edge detection, i.e.,
IE = Canny(Ip, Th, Tl)

3. Lines Estimation, i.e.,
Lines = HoughLines(IE, Th)

(a) (b)
Figure 9. Horizontal and vertical lines estimation. (a) Edges of grids. (b) Horizontal and vertical
lines on the panel image.

Further, this image is used to estimate lines by using the probabilistic Hough line
transform technique, and these lines are plotted on the solar panel region image. Figure 9b
shows the horizontal and vertical lines plotted on the panel image.

Step 3: Plotting Edge Points on Panel Region

Subsequently, after obtaining the horizontal and vertical lines, all the edge points on
the solar panel are marked. These edge points ultimately represent the boundaries of cells,
thus assisting in segmenting an individual cell. To locate the edge points, the intersection
points of all the horizontal and vertical lines are traced and plotted on the panel region
image. Figure 10a shows the intersection points of the horizontal and vertical lines, and
Figure 10b shows the location of all the edge points, representing the borders of each cell.

(a) (b)
Figure 10. Plotting edge points on panel region. (a) Intersection points of horizontal and vertical
lines. (b) Plotting intersection points on the panel region of EL image.

Step 4: Gridlines and Busbars Identification

Once all the edge points are identified, the next step is to find rectangular gridlines
representing the actual boundaries of a cell. The gridlines are identified in two steps. First,
all the edge points are identified and located along the four boundaries of an EL panel
image. Second, the edge point is connected with lines along the same row and column.
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The first edge point P1 is located, and further, with the help of the first edge point, all grid
points located along all the boundaries are traced. Figure 11a shows the labeled boundary
edge points raging from P1 to P32.

(a) (b)
Figure 11. Gridlines and busbars identification. (a) Location of boundary edge points. (b) Plotting
gridlines and busbars.

The edge points on the top boundary are extracted and denoted as a set of points ET
that includes edge points P1 to P11. Similarly, edge points on the right, bottom and left
boundaries are extracted and denoted as ER (P11 to P17), EB (P17 to P27), and EL (P27 to P1),
respectively. The edge points circled in red in Figure 11a are the required edge grid points.
Edge points on the top (ET) and bottom (EB) boundaries can be traced easily, whereas
the left (EL) and right (ER) boundaries are challenging because EL and ER may contain
intersection points of busbar lines. ER and EL edge points are traced with a minimum skip
distance of β pixels between neighboring points.

To locate the gridlines, horizontal and vertical lines are drawn on the panel image
by using a line drawing function to connect the extracted grid edge points alone to the
respective row and column. In Figure 11b, the lines in red (–o–) are the gridlines repre-
senting the boundaries of individual cells and the lines in blue (–o–) represent the busbars.
The numbers of horizontal gridlines, vertical gridlines, and busbars are 7, 11, and 24,
respectively.

Step 5: Cell Segmentation

Segmentation of cells is performed in two steps. First, with the help of gridlines
extracted in step 4, the panel image is segmented into 6 horizontal strips, consisting of
10 cells in each strip. The horizontal strips are the rectangular strips extracted from a solar
panel image. As mentioned in Algorithm 4, Tl , Tr, Bl , and Br are the four coordinates of a
rectangular strip. Figure 12a shows the segmented horizontal strips. Second, to extract the
cells from the horizontal segmented strip, the location of the next grid boundary coordinate
is select as a threshold value of “α” pixels. Figure 12b shows the individual segmented
cells. The number of cells segmented from an EL image is 60.

Algorithm 4 Cell Segmentation.

1. Horizontal strips extraction, i.e.,
Strips = Segment(Ip, Tl , Tr, Bl , Br)
where, s ranges from 1 to 6,

Tl is Top-left edge, and Tr is Top-right edge,
Bl is Bottom-left edge, and Br is Bottom-right edge

2. Cell segmentation, i.e.,
Cellsc = Segment(Strips, width, height)
where, c ranges from 1 to 10,

width is the α number of pixels,
height is the height of each strip.
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(a) (b)
Figure 12. Cell segmentation. (a) Extracting horizontal strip regions. (b) Segmented cells.

The entire cell segmentation process takes 2.71∼2.81 s, depending upon the size of an
input EL image. To train a defect detector, specific defect regions need to be further marked
in bounding boxes in each cell image at its original size.

5. Experimental Results

The cell segmentation errors are evaluated to justify the effectiveness of our SCDD
system in Section 5.1. Subsequently, the experiments of defect detection and visualization
on cell images are presented in Section 5.2 and Section 5.3, respectively.

5.1. Segmentation Error Analysis

The errors of our cell segmentation results for segmenting 7140 cells along the x-
direction and y-direction are calculated using:

Errx =
1
N
[

n

∑
i
|Ex|] and Erry =

1
N
[

n

∑
i
|Ey|] (1)

where N = Total number of cells, n = Number of cells in each EL image of module, Ex = Error
along x-direction, Ey = Error along the y-direction.

The true cell boundary is labeled in green, and the extracted cell boundary is labeled
in red, as shown in Figure 13. In our experiments of cell segmentation, distortion of 1
or 2 pixels are observed in some cells. The segmentation errors of our cell segmentation
approach for the dataset of 7140 cells extracted from 96 EL images are about 1.6 pixels and
1.4 pixels in the x-direction and y-direction, respectively.

Figure 13. Errors in cell segmentation, where the green and red labels correspond to the true and the
extracted cell boundaries, respectively.

5.2. Defect Inspection

The performances of automatic defect inspection are evaluated at two levels: the
panel-based defect detection and the cell-based defect identification. The panel-based
defect detection is done with a detector, YOLOv4. The cell-based defect identification is
accomplished with a classifier and two versions of the detector for performance compar-
isons. We used ResNet50 as a classifier and YOLOv3 [21] and YOLOv4 for performance
comparison of the detectors. The organization of experiments shown in Figure 14 demon-
strates the experiments conducted in our work. Both the panel-based and the cell-based
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defect detections are implemented and compared in terms of accuracy and efficiency to
determine which processing unit, i.e., panel or cell, is more applicable to the task of quality
inspection for the manufacturing industry.

(a) (b)
Figure 14. The organization of experimental comparisons. (a) Cell-image-based experiments. (b) Panel-
image-based experiments.

Briefly, the results of experimental comparisons demonstrated in this section validate
that the proposed cell-based defect detection approach is superior to the panel-based
approach. In the comparisons of cell-based defect classification and detection, the derived
cell defect detector from YOLOv4 gives the best performance.

5.2.1. Cell-Based Experiments

In this section, we present the results of defect classification with ResNet50 and the
results of defect detection with YOLOv3 and YOLOv4 on segmented cell images.

Cell-Based Defect Classification

The ResNet50 CNN model is trained with the dataset summarized in Table 2 to
classify cell images into Defect and NonDefect classes. The specific structure of the ResNet50
implementation for this experiment is shown in Table 4. During the training process of
the classifier [28], we freeze the weights of the first three layers of the original pre-trained
ResNet50 network, and the remaining layers are trained. We added one more FC layer
for converting 2D feature maps to the desired 1D output to assis with the need for two
output nodes for our defect cell classification application to classify a cell into a defect or
non-defect class. The Adam optimizer is used to fine-tune the pre-trained model. The batch
size is set to 32, the initial learning rate is set to 1× 10−6, and the exponential decay of
learning rate is set to 1× 10−2 after every 10 epochs, and the max number of epochs is 200.

As a result, the fine-tuned deep learning model can successfully identify cells with
tiny defects that are difficult to be detected manually by human inspection. The confusion
matrix of the resulting classification model is presented in Table 5. In experimental results,
the precision and recall of the model are 99.57% and 99.15%, respectively, which proves the
reliability of our deep learning classification model. Figure 15 shows some examples of cell
image classification results.

Table 5. Confusion matrix of the test set for defect classification.

Predicted Label

Defect NonDefect
True Defect 1169 10
Label NonDefect 5 2435
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Figure 15. Results of cell image classification.

Cell-Based Defect Detection

Although the results of the classifier are promising, field operators may not be able
to know where the defect is located in each cell image and why the classifier determines
the cell image as a defect. Operators need to pay extra attention to justify classification
results. Thus, we also employ defect detection models to locate defects on cells. The defect
detection is tested on EL panel-based images and on specifically segmented cell-based
images. Table 3 shows the number of images used for training and testing for both the
panel-based and the cell-based defect detection approaches.

The proposed cell-image-based defect detection is implemented with YOLO. For
comparing the performances of two versions of the detector, defect detection is carried out
with YOLOv3 and YOLOv4. The training parameters for YOLOv3 and YOLOv4 are kept
similar, and we set an initial learning rate to 1 × 10−3 with a decay rate of 5 × 10−4 and a
maximum number of iterations of 6000. We use an IoU threshold of 0.5 for evaluating and
comparing the accuracy of the YOLO models.

In the testing phase, the mAPs for YOLOv3 and YOLOv4 are 71.6% and 98.5%,
respectively. Adding up to the defect detection accuracy, the F1-score for YOLOv3 is 77.47
and that for YOLOv4 is 97.86. Defects detected on the cell images with YOLOv3 and
YOLOv4 are shown in Figure 16. Although the defects in Figure 16a,b can be detected by
YOLOv3, some bounding boxes of YOLOv3 do not completely cover the defect areas. On
the other hand, as shown in Figure 16d,e, the corresponding detection results of YOLOv4
perfectly capture the defects. Moreover, the defects in Figure 16c are misdetected by
YOLOv3, but are correctly detected by YOLOv4 in Figure 16f.

(a) (b) (c)

(d) (e) (f)
Figure 16. The defect detection results of cell images by (a–c) YOLOv3 and (d–f) YOLOv4.

The dataset used to test the detector as mentioned in Table 3 contains 308 images.
Among these 308 cell images in the test, 302 cells are identified as the ones containing
defect bounding boxes by both the YOLOv3 and YOLOv4 detectors. Only six cells are not
detected, as shown in Figure 17, probably owing to the tiny defect sizes. The experimental
results of YOLOv3 and YOLOv4 differ in the confidence score of defect detection, as well
as the precision of bounding box localization in the defect region. As shown in Figure 18,
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the defect detection of YOLOv4 (Figure 18b) is better than that of YOLOv3 (Figure 18a),
where, in YOLOv4, the confidence scores of defected defects are higher and the resulting
bounding boxes over the defects are more accurate.

(a)

(b)
Figure 17. Misdetected cells with defects. (a) The original cell images. (b) Their ground truth annotations
of defects.

(a)

(b)
Figure 18. Detection results of (a) YOLOv3 and (b) YOLOv4.

5.2.2. Panel-Based Experiment

For the comparison of panel-based and cell-based defect detection performances, a
whole EL image is fed to a YOLOv4 detector in the panel-based approach in which all
the defect regions of training images are manually labeled. The original resolution of
panel images is 2450× 1300. For YOLOv4, panel images are re-scaled to 1730× 1048. The
YOLOv4 model is trained with an initial learning rate of 1 × 10−5 with a decay of 5 × 10−4

and maximum steps of 6000. An intersection-over-union (IoU) threshold of 0.5 is adopted
to measure the accuracy of the trained detector. In the testing phase, the mean average
precision (mAP) is only 61.3%. The defect of the EL images can be still detected by the
trained model, but the overall precision is 51% and the recall rate is also low at 69% only.
Figure 19 shows the snapshots of defects detected on the EL images.
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Figure 19. Snapshots of defect detection results of the panel-based approach.

As shown in Table 6, we implement panel-based and cell-based defect classification
and detection. The detection results of the panel-based approach are unsatisfactory due to
the difficulty in recognizing the tiny defect regions on an entire panel image. The cell-based
classification results are reliable, but defects within a cell cannot be clearly specified, thus
making further manual inspection tough. In comparison with YOLOv3 and YOLOv4, the
cell-based defect detection results of YOLOv4 are better than those of YOLOv3, because the
hyper-parameters, such as anchor sizes, for training YOLOv4 can be optimally determined
by auxiliary modules in the YOLOv4 framework.

Table 6. SCDD Experimental Results.

Images Experiments Results
Precision (%) Recall (%) F1-Score (%)

Panel-based Detector YOLOv4 51.0 69.0 58.65

Cell-based
Classifier ResNet50 99.6 99.2 99.39

Detector YOLOv3 79.0 76.0 77.47
YOLOv4 99.8 96.0 97.86

To sum up, the proposed cell-based approach using YOLOv4 for defect detection
(97.86%) outperforms the panel-based defect detection (58.65%) with YOLOv4, the cell-
based defect classification (99.39%) with ResNet50, and the cell-based defect detection
(77.47%) with YOLOv3.

Regarding the further comparison of selecting a panel or cell processing unit in defect
detection, the cell-based defect detection gives a far better detection accuracy than the
panel-based counterpart, as shown in Table 6, under acceptable takt time of cell defect
detection for the industrial application of solar panel manufacturing. Precisely, the cell-
based defect detection approach takes ∼3.12 s to inspect 60 cells in detail in a panel image,
while the panel-based counterpart takes only ∼48 ms.

However, due to our preliminary, non-optimized implementation of cell segmentation
using Python, in the proposed SCDD approach, the ∼2.22 s time consumption of cell seg-
mentation dominates the whole∼3.12 s takt time. The rest of cell defect detection for all the
60 cells takes only ∼900 ms (15 ms/each cell), which still meets the requirements for online
application of the solar panel. The panel-based and cell-based approaches reflect the two
design choices, emphasizing computational efficiency and accuracy, respectively. Further
optimization of cell segmentation using C/C++ programming is doable for enhancing the
processing speed and will be included in future work.

5.3. Pseudo-Colorization on Defect Region

Despite the promising performance of defect detection on cell images using YOLOv4,
the detection results in bounding boxes are sometimes hard to verify by human inspection,
because faint and small defects cannot be easily perceived by the naked eye. Further
marking of defect pixels automatically shall be helpful for double-checking of defects
and analysis by field inspectors to visually examine single-crystalline silicon PV modules.
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Therefore, we propose the pseudo-colorization of defects, as shown in Figures 20 and 21,
to enhance the visual observability of defects and validate the effectiveness of this post-
processing step of fine-level defect identification by experiments.

(a) Original cell images with defect bounding boxes detected.

(b) Simple Otsu binarization on each cell image.

(c) Canny edge colorization for each bounding box.

(d) Pseudo-colorization with mean-shift clustering for each bounding box.

(e) Pseudo-colorization with k-means clustering for each bounding box.

Figure 20. Comparisons of results of different pseudo-colorization techniques applied to (a) cell
images with detected bounding boxes of defects. The colorization results of conventional image
processing methods of the Otsu binarization on cells and of the Canny edge detection on bounding
boxes are shown in (b,c), respectively. The clustering and coloring results on bounding boxes using
k-means and man-shift clustering techniques are given in (d,e), respectively.

A broad comparison of conventional image processing methods and two clustering
techniques, i.e., k-means and mean-shift clustering, for pseudo-colorization of defect
pixels in bounding boxes and cell images is conducted in the experiments. Note that
both the k-means and the mean-shift clustering for pseudo-colorization are implemented
by referencing the sample codes and the default parameter settings suggested in the
documents of the SciKit-Learn library in Python. The similarities among the pixels in a
bounding box are measured by the gray-scale intensities for two-group (foreground-and-
background) clustering. The results of the pseudo-colorization comparisons are shown in
Figure 20.
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Figure 21. Snapshots of detected defect bounding boxes (upper row) that contain obscure defects
and their color-marking results (lower row).

As shown in Figure 20b, the Otsu thresholding is applied to a whole cell to generate
the global binarization result as a baseline. The results of global binarization contain
additional textures of busbars and cannot locate defect regions properly. Distinguished
from the global binarization, the coloring of local edge points on each defect bounding box
is performed by Canny edge detection and is presented in Figure 20c. While some edge
pixels on defect regions can be labeled, the defect region contours cannot be completely
outlined yet. The defect colorization results derived by the Canny edge detection are
apparently not clear enough for human visual inspection.

On the other hand, the pseudo-colorization by clustering techniques enhances the
localization and the visualization of defects for manufacture operators. The defect col-
oring results by the mean-shift and the k-means clustering are depicted in Figure 20d,e,
respectively. While both the clustering methods catch similar defect regions, the results
of k-means clustering is slightly better in defect coloring accuracy and in visualization
clarity. Moreover, the k-means clustering has fewer parameters and is more efficient in
computation than the mean-shift clustering, which is advantageous to our application.

By displaying the defect bounding boxes and the defect region colorization side by
side, as shown in Figure 21, field inspectors can easily identify defects, especially for dim
and/or small ones. The time cost and human efforts on defect double-checking can be
largely reduced. The manufacturing process of solar panels can thus be sped up by the
automation of the SCDD approach.

6. Conclusions

Motivated by the requirement of automatic quality inspection of EL images of single-
crystalline silicon solar panel images, we propose an SCDD approach to automatically
segment cells, to detect the defects on segmented cells, and to apply pseudo-color to de-
tected defects for better visualization. The proposed cell segmentation approach works
accurately to extract the panel region from an EL image and to segment cells from the
localized panel image. The proposed cell segmentation technique possesses small segmen-
tation errors of only 1.6 pixels in the x-direction and 1.4 pixels in the y-direction. In the
experimental comparisons, the proposed cell-based approach using YOLOv4 obtains 98.5%
accuracy and outperforms both the cell-based defect classification with ResNet and the
panel-based defect detection with YOLOv4.

Some assumptions and observations concerning the proposed SCDD approach are
further discussed here. First, in solar cell segmentation, we assume that the size of solar cell
is in a typical range, e.g., about α pixels in cell width, given a fixed camera capturing setting.
Such typical parameters of cell size in width and height are applied to the selections of cell
corner points in Algorithm 4. Furthermore, the panel structure consisting of gridlines and
busbars is commonly seen and referenced in the cell segmentation. The cues of cell size
and prominent edges on solar panels, originating from the inherent panel structure and the
inspection camera settings, are reasonably incorporated in our algorithm design.



Sensors 2021, 21, 4292 20 of 22

Second, the (mean) intensities of solar cells in a panel image are highly uneven, as
shown in Figure 2. Therefore, the panel-based defect detection suffers from not only the
problem of small defects relative to a large panel but also the challenge of varying intensity
distribution among cells. Based on the relatively smooth intensity distribution in cell pixels,
detecting defects in a cell is indeed more effective.

Third, the irregular textures of cracks and broken fingers are perceivably distinct
from regular cell structures of busbars, which is a justifiable observation/assumption in
defect identification. While the experimental deep CNNs of classifiers and detectors are all
capable of capturing such discriminative defect features through data learning, they might
fail to detect tiny defects around cell boundaries.

Fourth, the coloring of defect pixels in a solar cell is based on the presumption that
defects are usually darker in EL imaging. Although intensity binarization can be typically
used to filter out dark regions from a whiter background, the proposed k-means clustering
still gives finer pixel coloring results than simple binarization without largely increasing
the computational complexity.

The proposed cell segmentation technique possesses small segmentation errors of
only 1.6 pixels and 1.4 pixels in the x- and y-directions, respectively. In the experimental
comparisons of defect classification and detection, the proposed cell-based defect detection
approach using YOLOv4 obtains 98.5% accuracy and outperforms both the cell-based
defect classification with ResNet and the panel-based defect detection with YOLOv4. The
experimental results validate that the proposed SCDD approach, including cell segmen-
tation and cell-based defect detection with YOLOv4, is highly accurate and reliable for
the automatic defect identification during PV module manufacturing. Furthermore, by
incorporating the post-processing of defect colorization by the simple and efficient k-means
clustering, the efficiency of defect visual inspection by operators in selective double-checks
of defects can be largely enhanced.

The proposed SCDD approach has the advantages of (1) applying firstly the cutting-
edge deep CNNs to the practical and important application of solar panel production, (2)
integrating useful computational heuristics to the pre-processing of EL images for stable
and precise cell segmentation, (3) verifying the importance and effectiveness of defect
detection on cell units, (4) achieving highly accurate defect detection rates by deep learning
from limited training samples of cell images, and (5) incorporating the pseudo-colorization
of defects as an elegant post-processing step for better defect visualization beyond the
conventional defect detection. Nevertheless, some deficiencies of the SCDD approach can
still be observed and will be included in future work, including the code optimization for
speeding up cell segmentation, further tests of defect detection on double- or quadruple-
cell unit for balancing the defect detection accuracy and efficiency, and the improvement of
tiny defect detection around cell boundaries in particular.
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Abbreviations
The following abbreviations are used in this manuscript:

SCDD automatic Segmentation of Cells and Defect Detection
EL Electroluminescence
PV Photovoltaic
sc-Si single-crystalline Silicon
CNN Convolutional Neural Network
SPP Spatial Pyramid Pooling
PAN Path Aggregation Network
IoU Intersection of Union
mAP mean Average Precision
RoI Region of Interest
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