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Abstract

Background: There is an urgent need for objective markers of Alzheimer’s disease (AD)-related cognitive
impairment in people with Down syndrome (DS) to improve diagnosis, monitor disease progression, and assess
response to disease-modifying therapies. Previously, GluA4 and neuronal pentraxin 2 (NPTX2) showed limited
potential as cerebrospinal fluid (CSF) markers of cognitive impairment in adults with DS. Here, we compare the CSF
profile of a panel of synaptic proteins (Calsyntenin-1, Neuroligin-2, Neurexin-2A, Neurexin-3A, Syntaxin-1B, Thy-1,
VAMP-2) to that of NPTX2 and GluA4 in a large cohort of subjects with DS across the preclinical and clinical AD
continuum and explore their correlation with cognitive impairment.

Methods: We quantified the synaptic panel proteins by selected reaction monitoring in CSF from 20 non-trisomic
cognitively normal controls (mean age 44) and 80 adults with DS grouped according to clinical AD diagnosis
(asymptomatic, prodromal AD or AD dementia). We used regression analyses to determine CSF changes across the
AD continuum and explored correlations with age, global cognitive performance (CAMCOG), episodic memory
(modified cued-recall test; mCRT) and CSF biomarkers, CSF Aβ42:40 ratio, CSF Aβ1-42, CSF p-tau, and CSF NFL. P
values were adjusted for multiple testing.

Results: In adults with DS, VAMP-2 was the only synaptic protein to correlate with episodic memory (delayed recall
adj.p = .04) and age (adj.p = .0008) and was the best correlate of CSF Aβ42:40 (adj.p = .0001), p-tau (adj.p < .0001),
and NFL (adj.p < .0001). Compared to controls, mean VAMP-2 levels were lower in asymptomatic adults with DS
only (adj.p = .02). CSF levels of Neurexin-3A, Thy-1, Neurexin-2A, Calysntenin-1, Neuroligin-2, GluA4, and Syntaxin-1B
all strongly correlated with NPTX2 (p < .0001), which was the only synaptic protein to show reduced CSF levels in
DS at all AD stages compared to controls (adj.p < .002).
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Conclusion: These data show proof-of-concept for CSF VAMP-2 as a potential marker of synapse degeneration that
correlates with CSF AD and axonal degeneration markers and cognitive performance.
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Introduction
Alzheimer’s disease (AD) is the leading cause of death in
adults with Down syndrome (DS), with a cumulative in-
cidence that exceeds 90% in the seventh decade [1–4].
Current standard cerebrospinal fluid (CSF) markers for
AD in the DS population are restricted to surrogate
markers of amyloidosis (Aβ42:40 ratio, Aβ1-42) and tau-
mediated neurodegeneration (p-tau) and neurofilament
light chain combined with neuropsychological assess-
ment. However, neuropsychological assessment can be
confounded by substantial inter-individual variation in
intellectual disability (ID). Therefore, there is an urgent
need for objective markers of AD-related cognitive
impairment in people with DS to improve diagnosis,
monitor disease progression, and assess response to
disease-modifying therapies.
Synapse loss is an early event in AD [5] and one of the

best pathological correlates of cognitive dysfunction
[6–9]. As such, synaptic proteins that show AD-associated
changes in biofluids are rapidly gaining attention as poten-
tial surrogate markers of AD-related synapse loss and may
be informative markers of early AD-related cognitive
dysfunction in adults with DS.
Neuronal pentraxin-2 (NPTX2), a protein involved in

inhibitory circuit dysfunction [10], is a promising bio-
fluid surrogate marker of inhibitory circuit dysfunction
and cognitive decline in sporadic AD [11–13], vascular
dementia [14], genetic frontotemporal dementia [15],
and Lewy body dementia [16]. We recently reported low
CSF NPTX2 concentrations in adults with DS across the
AD continuum, which correlated with cortical atrophy
and reduced glucose metabolism. However, CSF NPTX2
levels did not correlate with measures of cognitive de-
cline in our DS cohort [17]. In the same study, we also
evaluated the glutamatergic receptor, GluA4, and found
no association with cognitive measures.
The aim of this study was to evaluate a comprehensive

panel of alternative synaptic proteins (Calsyntenin-1,
Neuroligin-2, Neurexin-2A, Neurexin-3A, Syntaxin-1B,
Thy-1, VAMP-2) as surrogate markers of early AD-
related cognitive decline in non-trisomic cognitively
normal controls (n = 20) and a large cohort of adults
with DS (n = 80) from across the preclinical and clinical
AD continuum, exploring their relationship to cognitive
performance. The panel comprises 8 proteins that were
shown to be specifically expressed at the synapse in
human frontal cortex postmortem tissue and show CSF
alterations that precede clinical symptoms and markers

of neurodegeneration in sporadic AD [18]. We also com-
pare the CSF profile of the synaptic panel proteins in
adults with DS to that of previously published data on
NPTX2 and GluA4 in the same cohort [17].

Material and methods
Objectives
The primary objective of this study was to evaluate a
comprehensive panel of synaptic proteins as surrogate
markers of early AD-related cognitive decline in adults
with DS from across the preclinical and clinical AD con-
tinuum, specifically exploring their relationship to cognitive
performance and AD biomarkers.

Study design
This is a single-center, cross-sectional study of CSF
levels of synaptic markers in adults with DS, sporadic
AD patients and cognitively normal controls. The study
(IIBSP-BMS-2018-103) was approved by the local ethics
committee (Comité Ètic d’Investigació Clínica, Fundació
de Gestió Sanitària de l’Hospital de la Santa Creu i Sant
Pau) and was conducted in accordance with the Declar-
ation of Helsinki. All participants gave their written in-
formed consent to participate in the study. Non-trisomic
controls were selected from the Sant Pau Initiative in
Neurodegeneration (SPIN) cohort, a prospective longitu-
dinal cohort at Hospital Sant Pau, Barcelona, Spain [19].
Adults with DS were selected from the Down Alzheimer
Barcelona Neuroimaging Initiative (DABNI), a prospect-
ive longitudinal cohort, linked to a population-based
health plan in Catalonia, Spain, led by the Fundació
Catalana Síndrome de Down and Hospital de Sant Pau
[20]. Inclusion criteria for controls required the absence
of a cognitive or neurological disorders and normal CSF
core AD biomarker (Aβ1-42, Aβ42/40 ratio, t-tau, p-tau)
concentrations using our validated cut-offs for sporadic
AD [21]. For adults with DS, inclusion criteria for
participation in the study required that all participants
were over 18 years of age. Where consent was given,
participants received a comprehensive neurological and
neuropsychological evaluation [22] and underwent a
lumbar puncture to assess CSF biomarkers [20]. As in
previous studies [4, 20], participants with DS were classi-
fied by neurologists and neuropsychologists, blind to
biomarker data in a consensus meeting into asymptom-
atic AD (aDS), prodromal AD (pDS), and AD dementia
(dDS) according to previously published criteria [20].
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Neuropsychological assessment
The level of ID in adults with DS was categorized
according to the Diagnostic and Statistical Manual of
Mental Disorders (DSM), Fifth Edition, as mild, moder-
ate, severe, or profound ID, based on caregivers’ reports
of the individuals’ best-ever level of functioning and the
Kaufmann Brief Intelligence Test (KBIT) [23]. As
previously described [20, 22], neurological and neuro-
psychological examination of the full range of cognitive
impairment included a semi-structured health question-
naire (Cambridge Examination for Mental Disorders of
Older People with Down Syndrome and others with
intellectual disabilities [CAMDEX-DS]) [24] and a
neuropsychological battery including the Cambridge
Cognition Examination (CAMCOG) adapted for intellec-
tual disabilities in DS participants and was restricted to
those with mild and moderate ID. The Spanish version
of the cued recall test modified for use in people with ID
(mCRT) [25] was used to evaluate episodic memory as
previously described [26]. The total mCRT scores for
immediate recall were calculated as free recall score +
cued recall score.

CSF collection, biomarker assessment
CSF samples were collected following international con-
sensus recommendations [27] as previously described
[28]. Samples had been previously stored at − 80 °C and
had not been thawed prior to analysis. Commercially
available fully automated immunoassays were used to
determine levels of CSF Aβ1-42, Aβ1-40, NFL, total tau,
and p-tau at threonine residue 181 (Lumipulse Aβ1-42 ,

Aβ1-40, total tau G, p-tau 181, Fujirebio-Europe, NFL
Simoa Quanterix, MA, USA) [21].

Targeted liquid chromatography mass spectrometry (LC-SRM)
We monitored a set of 22 proteotypic peptides corre-
sponding to 10 proteins (Calsyntenin-1, GluA2, GluA4,
Neurexin-2A, Neurexin-3A, Neuroligin-2, Syntaxin-1B,
Tenascin-R, Thy-1 and VAMP-2) using the previously
described selected reaction monitoring (SRM) method
[18]. Briefly, we digested individual CSF samples over-
night and spiked isotopically labeled peptides (Pepotech
SRM custom peptides, grade 2, Thermo Fisher
Scientific) into each sample. We analyzed an equivalent
of 5 μl of each sample in a randomized order over a 120-
min gradient (0–35% ACN + 0.1% FA) in SRM mode
using a triple quadrupole-Qtrap mass spectrometer
(5500 QTrap, Sciex, Masachussetts) coupled to a nano-
LC chromatography column (300 μl/min, 25-cm C18
column, 75 μm I.d., 2 μm particle size). We ran BSA
technical controls between each sample. We used
isotopically labeled peptides as internal standards. We
visualized and analyzed transitions using Skyline 3.5 as
previously described [18]. To evaluate the stability of the

peptides over the course of the experiment, we injected
a pool of all the samples over the duration of the mass
spectrometric measurements and monitored the peak
area of the standard peptides. The GluA2 peptide was
unstable and removed, thus resulting in the exclusion of
GluA2 from the study. We processed the SRM transi-
tions using the dataProcess function of MSstats v3.5
package in R [29] and removed transitions with
between-run interference (betweenRunInterference-
Score< 0.8). One censored transition (VAMP-2 peptide)
where endogenous log2 intensity was below the detec-
tion cut-off designated by the MSstats package (8.49)
was removed. We used the EqualizeMedians function to
normalize the transitions and Tukey’s Median Polish to
generate a summarized value of transitions for each pro-
tein. Two peptides (Calsyntenin-1 and Neurexin-3A)
were excluded from the summarization as the endogen-
ous peptide was not detected in all samples. The results
for the two Tenascin-R peptides are not reported here
due to the lack of synapse specificity of Tenascin-R [18].
Data for the 3 GluA4 peptides from the same SRM
experiment have been reported previously [17].

Statistical analysis
All statistical analyses were performed in R version 3.4.3
[30]. We excluded 1 data-point each for Neurologin-2,
Neurexin-3A, Syntaxin-1B, Thy-1, VAMP-2, NPTX2 p-
tau, and t-tau as outliers due to violation of the 3 ×
interquartile range rule. The outlier values were from 3
different samples from the DS group. Group compari-
sons were performed using χ2 test, t test, or linear
regression. Where regression residuals deviated from a
Gaussian distribution (Shapiro-Wilk p < 0.05), tests were
performed on square root or log2 transformed values,
which did not deviate from a Gaussian distribution
(Shapiro-Wilk p > 0.05). Raw values were used for those
sub-analyses. We used Pearson coefficients to assess
correlations. However, to account for the ceiling effect
of cognitive tests we used Spearman coefficients on raw
values to assess correlations with cognitive measures.
Linear regressions of cognitive data were performed on
raw data as transformations did not improve the distri-
bution. When comparing the association of multiple
synaptic proteins, p values were adjusted for multiple
testing using the Benjamini-Hochberg method.

Results
Demographics
Table 1 shows the demographic and clinical data for the
participants included in the study, which included 20
controls and 80 adults with DS from across the AD
continuum (40 aDS, 19 pDS, and 21 dDS). The mean
age-at-analysis across the whole study was 44.5 years
(standard deviation; SD = 11.2). Compared to controls,
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the mean age was comparable in pDS (+ 5 years, p = .20)
and dDS (+ 5 years, p = .13) but lower in aDS (− 12
years, p < .0001). The male to female proportion was
comparable across clinical groups (p = .45). The level of
ID in the adults with DS was classified as either mild/
moderate (78% of cases) or severe/profound (22% of
cases), a proportion that was comparable across clinical
groups (p = .37). Cognitive tests were restricted to indi-
viduals with mild or moderate intellectual disability. As
would be expected, cognitive scores were sequentially
lower in pDS (CAMCOG; − 11, p = .02, mCRT immedi-
ate; − 15, p < .0001, mCRT delayed; − 5, p < .0001) and
dDS (CAMCOG − 21 p < .0001, mCRT immediate; −
20. p < .0001, mCRT delayed; − 7, p < .0001) compared
to aDS. As previously reported [20], the mean Aβ42:40
ratio (all p < .0001) was lower in all DS groups com-
pared to controls, while mean CSF p-tau and t-tau
levels were higher in pDS and dDS compared to

controls (all p < .0001). CSF NFL levels were available
for DS only and were elevated in pDS and dDS com-
pared to aDS (p < .00001).

CSF VAMP-2 levels show a distinct profile to other
synaptic proteins in adults with DS
The synaptic panel analyzed here includes 7 synaptic
proteins previously unpublished in this cohort (Calsyntenin-
1, Neurexin-2A, Neurexin-3A, Neuroligin-2, Syntaxin-1B,
Thy-1, and VAMP-2) and their comparison to 2 synaptic
proteins, NPTX2 and GluA4, previously reported in the
same cohort [17]. We first sought to determine the degree of
correlation between CSF levels of the 9 synaptic proteins.
Figure 1 shows that in adults with DS, synaptic proteins, in-
cluding Neurexin-3A, Thy-1, Neurexin-2A, Calysntenin-1,
Neuroligin-2, GluA4, and Syntaxin-1B, were all correlated
(pair-wise r = .70 to .96, n = 78-80, p < .0001). They also all
correlated with NPTX2 (pair-wise r = .56 to .84, n = 78-79, p

Table 1 Demographics and clinical data for study participants

Controls aDS pDS dDS

N 20 40 19 21

Age-at-analysis, years 47 (11, 24–64) 35 (9, 22–57)b 52 (4, 45–60) 52 (5, 42–62)

% Female 60% 40% 42% 38%

% Mild or moderate ID 0% 83% 79% 67%

CAMCOG scorea NA 80/107 (11, 55–96, n = 31) 70/107 (13.8, 41–92, n = 11)c 59/107 (13.9, 39–87, n = 10)c

mCRT score (immediate)a NA 35/36 (1.5, 30–36, n = 30) 20/36 (11.2, 0–36, n = 12)c 15/36 (7.9, 0–32, n = 11)c

mCRT score (delayed)a NA 12/12 (0.9, 8–12, n = 31) 6/12 (3.8, 0–12, n = 13)c 4/12 (3.3, 0–12, n = 11)c

CSF Aβ42:40 ratio 0.11 (0.01, 0.08–0.12) 0.09 (0.02, 0.04–0.12)b 0.05 (0.01, 0.03–0.08)b 0.05 (0.01, 0.04–0.08)b

CSF p-tau pg/ml 36 (8, 22–54) 35 (24, 10–122) 145 (86, 22–304)b 158 (82, 31–323)b

CSF t-tau pg/ml 243 (57, 167–366) 295 (166, 86–671) 936 (658, 118–2565) b 959 (500, 212–1988) b

CSF NFL pg/ml NA 355 (234, 65–1036) 1071 (767, 313–3123) 1387 (832, 627–3957)

Mean values (standard deviation, range) are given for each variable across clinical groups. NA, not available. aIn individuals with mild/moderate intellectual
disability (ID) only. bp < 0.05 compared to controls. cp < 0.05 compared to aDS

Fig. 1 Pair-wise correlation coefficients of CSF levels of 9 synaptic proteins in DS and controls. r coefficients resulting from statistical tests performed in
the DS group (red) and controls (blue) for the 8 synaptic panel proteins and NPTX2 are shown. Degree of shading is relative to size of r coefficients,
which are shown in bold where p < .05 and italicized where p > .05. NPTX2 and GluA4 data for these samples are published in [17]
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< .0001). VAMP-2 showed the weakest correlation with all
other proteins (r = .47 to.69, n = 78-80, p < .0001). In con-
trols, all proteins showed weaker pair-wise correlations than
in the DS group, although NPTX2, Neurexin-3A, Thy-1,
Neurexin-2A, Calysntenin-1, Neuroligin-2, GluA4, and
Syntaxin-1B were moderately correlated in at least one pair-
wise combination (pair-wise r = .46 to .87, n = 20, p < .04).
VAMP-2 did not correlate with any other protein in controls
(pair-wise r = -.34 to .29, n = 20, p > .14). We took VAMP-2
forward for further analyses due to its relative independence
from NPTX2.

CSF VAMP2 changes over the course of AD and with age
in adults with DS
Figure 2a shows that mean CSF VAMP-2 SRM inten-
sities were lower in individuals with DS compared to
controls (.84-fold, p = .04). Mean CSF VAMP-2 inten-
sities were lower in the aDS group compared to controls

(.73-fold, p = .01) and compared to the symptomatic
group (pDS and dDS combined; .67-fold, p = .007). CSF
VAMP-2 intensities were comparable to controls in pDS
(.98-fold, p = .52) and dDS (.93-fold, p = .52). This rela-
tive increase in CSF VAMP-2 at late AD stages in adults
with DS is supported by Fig. 2b, which shows that CSF
VAMP-2 directly correlated with age in DS (r = .43, n =
79, p < .0001). This association was also observed in a
linear regression analyses adjusting for degree of ID
(adj.r2 = .16, n = 79, p < .002). Conversely, CSF VAMP-2
inversely correlated with age in controls (r = −.51, n =
20, p = .02). The control and DS regression lines for
VAMP-2 were non-overlapping at the earliest age in-
cluded in the study (22 years old) and did not intercept
until the age of 42. CSF VAMP-2 was not associated
with AD diagnosis when controlling for age p = .61).
Figure 2c shows the correlation between CSF VAMP-2

and CSF biomarkers of brain amyloid and tau pathology

Fig. 2 CSF levels of VAMP-2 in non-trisomic controls and DS. a Violin plots show the distribution of SRM intensities for VAMP-2 quantified in CSF
for non-trisomic cognitively normal subjects (controls) and adults with DS across AD stages; asymptomatic AD (aDS), prodromal AD (pDS) or AD
dementia (dDS). The horizontal dotted line represents the mean value in controls. *p < .05, **p < .01 for linear regression using square root
transformed VAMP-2 levels in 1 DS vs controls, 2 aDS vs controls and 3 pDS/dDS vs aDS. b Age-at-analysis (years) is plotted against VAMP-2 SRM
intensities in controls and adults with DS. c CSF biomarkers; Aβ42:40 ratio, p-tau and NFL are plotted against VAMP-2 SRM intensities in adults with
DS. Linear regression lines in b and c are shown for each group (see legends). Shaded areas represent standard error of the regression lines. The
vertical dotted lines in c represent the validated cut-offs for biomarker positivity in sporadic AD
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and axonal degeneration in adults with DS. VAMP-2 in-
versely correlated with the Aβ42:40 ratio (r = − .47, n =
79, p < .0001) and directly correlated with p-tau, (r =
.56, n = 78, p < .0001) and NFL (r = .57, n = 78, p <
.0001). To determine whether low CSF VAMP-2 is re-
lated to AD biomarker positivity in asymptomatic DS,
we compared CSF VAMP-2 SRM intensities in the aDS
group stratified by positivity for CSF Aβ1-42 using our
validated in-house cut-offs for sporadic AD. Compared
to controls, CSF VAMP-2 SRM intensities were lower in
individuals positive for CSF Aβ1-42 (0.67-fold, n = 17, p
= .009) but not in individuals negative for CSF Aβ1-42
(0.78-fold, n = 23, p = .30). Thus, low CSF VAMP-2 is
related to AD biomarker positivity and changes over the
course of AD and with age in adults with DS.

CSF VAMP2 is associated with cognitive performance in
adults with DS
We next explored the relationship between CSF
VAMP-2 and measures of intellectual and cognitive
impairment in adults with DS. Mean CSF VAMP-2
SRM intensities were comparable across individuals
with, mild, moderate, and severe intellectual disability
(Fig. 3a) in aDS p = .31), pDS (p = .71), and dDS (p =
.73). To determine whether neurodevelopmental
factors may influence CSF VAMP-2 concentrations, we
compared VAMP-2 across ID groups stratified by < 35
or 35+ (Fig. 3b). CSF VAMP-2 intensities were
comparable across individuals with mild, moderate, or
severe/profound ID in the younger (p = .15) and older
(p = .87) age groups. Furthermore, CSF VAMP-2 SRM
intensities were not associated with K-bit score (Fig.
3c) when analyzed independently (r2 = .02, p = .11) or
when controlling for age (r2 = .19, p = .77). While Fig.
3d shows a similar regression line for VAMP-2 with
CAMCOG and mCRT scores, correlation analyses
showed that VAMP-2 SRM intensities were associated
with immediate (r = − .32, p = .02) and delayed (r = −
.36, p = .007) recall in the mCRT test but not with
CAMCOG scores (r = − .19, p = .17). However, since
ID had a greater impact on CAMCOG score than on
mCRT in our previous study [22], we performed re-
gression analysis of VAMP-2 and cognitive perform-
ance including level of ID as a covariate. We found
that both ID (t = − 4.04, p = .0002) and VAMP-2 (t =
− 2.05, p = .04) were associated with CAMCOG score
(model r2 = .27, p = .00002), while VAMP-2 (t = −
2.61, p = .01) but not ID (t = − 0.69, p = .49) was asso-
ciated with immediate recall in the mCRT test (model
r2 = .10, p = .03). We observed a similar association
with delayed recall (VAMP-2; t = − 2.94, p = .005, ID t
= − 0.76, p = .45). Therefore, VAMP-2 was associated
with both CAMCOG and mCRT score in adults with
DS even when controlling for ID. VAMP-2 was not

associated with any of the cognitive measures when
age was included as a covariate (all p > .43).

Compared to other synaptic proteins, VAMP-2 is the best
correlate of cognitive performance, age, and CSF amyloid
and neurodegeneration markers in adults with DS
Finally, we compared these findings for VAMP-2 to the
other synaptic panel proteins and to NPTX2 and applied
a strict adjustment of p values to account for multiple
testing. Calsyntenin-1 (p = .03), Neuroligin-2 (p = .02),
Neurexin-2A (p = .02), Neurexin-3A (p = .02), and Thy-
1 (p = .03) were associated with ID in individuals aged <
35, suggesting some influence of neurodevelopmental
factors on CSF concentrations of these proteins, albeit
that the associations did not survive adjustment for mul-
tiple testing (all adj.p < .14). The correlation of VAMP-2
with immediate recall (adj.p = .17) and association with
CAMCOG (adj.p = .41) did not survive adjustment for
multiple testing. Variables associated with at least one
synaptic protein (adj.p < .05) in DS are shown in Fig. 4.
The associations of CSF NFL and p-tau with each vari-
able are also shown for comparison. VAMP-2 was the
only synaptic protein to correlate with mCRT delayed
recall (adj.p = .04) and age (adj.p = .0008) and was the
best correlate of CSF Aβ42:40 (adj.p = .0001), CSF p-tau
(adj.p < .0001), and CSF NFL (adj.p < .0001). On the
other hand, NPTX2 was the best correlate of CSF Aβ1-42
(r = .58, adj.p < .0001), showed the greatest fold-change
across all AD stages (0.34 to 0.55-fold, adj.p < .002), and
was the only synaptic protein to show changes in pDS
(0.47-fold, adj.p = .002). NFL and p-tau remain the best
correlates of cognitive performance in this population
and were not altered in the aDS group compared to
controls (1.03 fold-change, p = .56 and 0.96 fold-
change, p = .93).

Discussion
Here, we report a comprehensive evaluation of synaptic
proteins in CSF from adults with DS across the whole
clinical continuum of AD. We show that of the 9 synap-
tic proteins evaluated, VAMP-2 is the only correlate of
cognitive performance and age in this relatively under-
studied population. We also show that while mean CSF
VAMP-2 levels were lower in asymptomatic adults with
DS compared to cognitively normal controls, mean
VAMP-2 levels were elevated at advanced AD stages. In-
creased CSF VAMP-2 correlated with low CSF Aβ42/40,
increased CSF p-tau and NFL and worse cognitive
performance. Thus, changes in CSF VAMP-2 are closely
related to CSF AD biomarkers and cognitive measures
in adults with DS.
In controls, CSF VAMP-2 levels decreased with age

and when compared across similar ages, VAMP-2 levels
were lower in adults with DS compared to controls from

Lleó et al. Alzheimer's Research & Therapy          (2021) 13:119 Page 6 of 10



the earliest age included in the study (22 years old) and
did not converge until the age of 42. This finding sug-
gests a distinct CSF profile of VAMP-2, and potentially a
different mechanism of synaptic pruning, between
healthy aging and the presence of AD pathology and/or
triplication of chromosome 21. It is possible that the
relatively lower CSF VAMP-2 levels in younger adults
with DS compared to controls is a result of reduced
VAMP-2 expression from birth due to neurodevelop-
mental factors. However, several lines of evidence sug-
gest that CSF VAMP-2 levels change as a function of
AD as opposed to ID: (a) the association between CSF
VAMP-2 and age was independent of ID, (b) CSF
VAMP-2 was comparable to controls in adults with DS
negative for the CSF amyloid marker, (c) the findings re-
ported here for this genetically determined form of AD

replicate the nonlinear CSF profile of the 8 synaptic
panel proteins previously reported across disease stages
in sporadic AD [18], and (d) CSF VAMP-2 did not
correlate with K-bit score and was comparable between
individuals classified as having mild, moderate, severe, or
profound intellectual impairment across all AD stages
an in individuals aged < 35 (where AD pathology is less
likely to be a confounding factor), but did correlate with
age, AD biomarkers, and episodic memory performance.
Based on these findings, we propose that low VAMP-2
levels in these individuals may at least partially reflect
changes related to the preclinical phase of AD, similar to
that previously report in sporadic AD where CSF
VAMP-2 levels were nominally reduced in preclinical
AD and significantly elevated in prodromal and demen-
tia stages compared to cognitively normal controls [18].

Fig. 3 Relationship between CSF VAMP-2 and measures of intellectual impairment and cognitive performance in DS. Violin plots show the
distribution of CSF VAMP-2 SRM intensities in adults with DS grouped according to degree of intellectual disability and a AD diagnosis and b age
group. Circles represent mean intensities and error bars represent standard error of the mean. VAMP-2 SRM intensities in adults with DS are
plotted against quantitative measures of intellectual disability (c) and cognitive performance (d). Linear regression lines are shown for models in
total DS dataset and standard error of the regression lines are shown as shaded region. Regression lines for individuals aged < 35 or aged 35+ (c)
or with mild or moderate ID (d) are also shown (see legends)
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We have previously evaluated NPTX2 as a synaptic
marker in the same cohort reported here [17]. Similar to
VAMP-2, CSF NPTX2 levels were lower in DS com-
pared to controls, albeit that NPTX2 was reduced at all
AD stages. In fact, here we report that compared to the
other 8 synaptic proteins, NPTX2 was the only protein
to be reduced at all AD stages compared to controls.
However, unlike VAMP-2, CSF NPTX2 did not correlate
with cognition or age. The distinct expression and func-
tion of these two proteins could explain their distinct
CSF profiles in adults with DS. VAMP-2 is expressed at
the human cortical synapse with increased enrichment
compared not only to the other 7 synaptic panel proteins
evaluated here but also to the widely used pre-synaptic
marker, synaptophysin [18]. This high synapse specificity
supports other studies that have shown that VAMP-2 is
predominantly found at glutamatergic synapses [31] as
part of the synaptic exocytosis core vesicular complex
[32] where it is necessary for regulating the releasable
pool of glutamate at the pre-synapse [33] and is also
critical for post-synaptic trafficking of glutamate
receptor subunits, particularly in the CA1 region of the
hippocampus [34]. Reduced VAMP-2 brain expression
has been reported in AD [35]. NPTX2 is specifically
expressed by pyramidal neurons where it mediates
activity-dependent strengthening of pyramidal neuron
excitatory synapses on GABAergic parvalbumin inter-
neurons [10]. Therefore, both VAMP-2 and NPTX2 are
specifically expressed at distinct populations of synapses
where they have distinct functions that are critical for
synaptic transmission. We therefore propose that CSF
levels of these 2 synaptic proteins may reflect degener-
ation of distinct synapse populations. While NPTX2 re-
mains a promising surrogate marker of inhibitory circuit

dysfunction in AD, DS, and other neurodegenerative
diseases, VAMP-2 may be a better surrogate marker of
cognitive performance in adults with DS.
A previous study reported that CSF NPTX2 correlates

well CSF levels of two other synaptic proteins, SNAP-25
and neurogranin in sporadic AD CSF [12]. In this study,
we report that, with the exception of VAMP-2, CSF
levels of synaptic proteins were highly inter-correlated in
adults with DS and that VAMP-2 was the only synaptic
protein not to correlate with at least one other synaptic
protein in controls.
The novelty of VAMP-2 is that it was the only synap-

tic protein evaluated here to correlate with age (a surro-
gate measure of disease progression in DS) and mCRT
in the DS population. Similar to our previous study, we
found that ID had a greater impact on CAMCOG score
than on mCRT [22] such that the association of VAMP-
2 with mCRT score was evident without the need to
control for level of ID. The mCRT test is a version of
the CRT modified for use in DS and discriminates well
between DS adults with and without dementia [26]. The
CRT test is considered a clinical marker of episodic
memory disorders due to medial temporal damage,
especially in the CA1 field of the hippocampus [36],
which is consistent with the functional role of VAMP-2
at CA1 synapses [34].

Study limitations
While DS and autosomal dominant cohorts with avail-
able CSF are scarce, further replication of the findings
reported here in independent genetic AD and DS co-
horts would be valuable. A limitation of this study is the
cross-sectional design, particularly in the analysis of

Fig. 4 Comparison of CSF profile of 9 synaptic proteins in adults with DS. Assessment of the 9 synaptic proteins and their association (adj. r2 or r
coefficients) with immediate and delayed recall in the mCRT test (mCRTi and mCRTd), CAMCOG, age, CSF NFL, Aβ42:40, p-tau and Aβ1-42 and the
fold-change (FC) compared to controls in adults with DS across clinical groups. Associations of NFL and p-tau with the same variables are shown
for comparison (red for synaptic proteins, blue for NFL and p-tau). Degree of shading is relative to r coefficients or FC. Values are shown in bold
where p < .05 and italicized where adjusted p > .05 (in the case of synaptic proteins this is Benjamini-Hochberg adjusted p). Quantification of
NPTX2 and GluA4 and FC for NPTX2 have been published previously in [17]
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cognitive decline. Longitudinal studies are needed to
fully establish the prognostic value of VAMP-2 in DS
cohorts.

Conclusion
NFL remains the best CSF correlate of cognition in this
population and this work opens the door to future stud-
ies exploring the prognostic capacity of CSF VAMP-2 in
adults with DS and sporadic AD. The data reported in
this manuscript show proof-of-concept for CSF VAMP-
2 as a potential marker of synapse degeneration that cor-
relates with CSF AD and axonal degeneration markers
and cognitive performance. Whether VAMP-2 could be
a useful addition to NFL to specifically monitor synapse
engagement and therapeutic response, particularly in
AD clinical trials would be an interesting avenue worth
pursuing; as anti-tau and anti-Aβ are common therapies,
there is a need for an alternative surrogate measure of
cognitive performance not directly affected by the drug.
An ELISA-based immunoassay to facilitate the quantifi-
cation of VAMP-2 in patient CSF is in development.
Moreover, as VAMP-2 is also detectable in blood [37],
whether plasma VAMP-2 can be used as a surrogate
marker of brain VAMP-2 is also worth pursuing.
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