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SUMMARY
The blood-brain barrier (BBB) selectively regulates the entry of molecules into the central nervous system (CNS). A crosstalk between

brain microvascular endothelial cells (BMECs) and resident CNS cells promotes the acquisition of functional tight junctions (TJs). Reti-

noic acid (RA), a key signaling molecule during embryonic development, is used to enhance in vitro BBBmodels’ functional barrier prop-

erties. However, its physiological relevance and affected pathways are not fully understood. P450 oxidoreductase (POR) regulates the

enzymatic activity of microsomal cytochromes. POR-deficient (PORD) patients display impaired steroid homeostasis and cognitive dis-

abilities. Here, we used both patient-specific POR-deficient and CRISPR-Cas9-mediated POR-depleted induced pluripotent stem cell

(iPSC)-derived BMECs (iBMECs) to study the role of POR in the acquisition of functional barrier properties. We demonstrate that POR

regulates cellular RA homeostasis and that POR deficiency leads to the accumulation of RA within iBMECs, resulting in the impaired

acquisition of TJs and, consequently, to dysfunctional development of barrier properties.
INTRODUCTION

The blood-brain barrier (BBB) is formed as a multicellular

neurovascular unit (NVU) in which pericytes and astro-

cytes come in direct contact with brain microvascular

endothelial cells (BMECs) (Pardridge, 2015). In turn,

BMECs form specialized barrier properties created by (1)

tight junctions (TJs) limiting the paracellular passage of

molecules (Sasson et al., 2021) and (2) polarized efflux

transporters, which form a transport barrier (Pardridge,

2005). Thus, the BBB controls brain homeostasis by

facilitating the passage of nutrients and metabolic neces-

sities—while restricting the penetrability of ions, neuro-

toxic agents, and most drugs (Itoh and Suzuki, 2012).

Increasing evidence suggests that BBB dysfunctions are

involved in central nervous system (CNS)-related pathol-

ogies (Abbott et al., 2010; Ballabh et al., 2004; Lim et al.,

2017; Vatine et al., 2017).

Studies using animal models have contributed toward

understanding the mechanisms underlying BBB develop-

ment (Ben-Zvi et al., 2014; Lee et al., 2003). However, dif-

ferences across species limit their relevance for the human

BBB (Warren et al., 2009). Animalmodels are also limited in

their ability to resolve the spatial and temporal dynamics of
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the NVU. To resolve these limitations, in vitromodels of the

human BBB were generated (Hajal et al., 2021; Herland

et al., 2016; Lippmann et al., 2012, 2014; Maoz et al.,

2018; Park et al., 2019). These models are based on com-

partmentalized platforms such as transwells ormicrofluidic

chips, seededwith various NVU cell types, originating from

primary (Maoz et al., 2018; Stone et al., 2019), immortal-

ized (Förster et al., 2005; Hatherell et al., 2011), or pluripo-

tent cells (Lim et al., 2017; Park et al., 2019; Vatine et al.,

2017, 2019). These models allow coupling and uncoupling

of the different cell types. Both in vivo and in vitro studies

focus primarily on the barrier and transporter properties

of the BBB, largely overlooking its possible metabolic roles

(Lee et al., 2022; Potente and Carmeliet, 2017).

Cytochromes P450 (CYPs) are enzymes involved in the

metabolism of steroids, sex hormones, and xenobiotics.

The catalytic reactions of microsomal CYPs are dependent

on P450 oxidoreductase (POR)-mediated electron transfer

from nicotinamide adenine dinucleotide phosphate

(NADPH; Pandey and Flück, 2013). Homozygous inactivat-

ing mutations in POR cause a spectrum of deficiencies that

include defects of aromatase, 17a-hydroxylase, and

21-hydroxylase of the CYP family. POR-deficient (PORD)

patients present imbalanced steroid homeostasis leading
The Authors.
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to delayed sexual development and cognitive disabilities

(Hershkovitz et al., 2008; Idkowiak et al., 1993; Pandey

and Flück, 2013), suggesting a possible POR-mediated

metabolic role in the development of the CNS.

Por knockoutmice are embryonically lethal, possibly due

to toxic all-trans retinoic acid (RA) accumulation (Otto

et al., 2003; Ribes et al., 2007). RA is a signaling molecule

involved in the development of tissues and organs, where

it affects patterning along the anterior-posterior axis (Ghy-

selinck and Duester, 2019; Katsuyama and Saiga, 1998;

Theodosiou et al., 2010). Interestingly, RA promotes

vascular growth by regulating endothelial cell proliferation

(Lai et al., 2003). Moreover, RA was shown to promote BBB

properties in rodent (El Hafny et al., 1997; Lechardeur et al.,

1995) and human immortalized BMEC lines (Mizee et al.,

2013, 2014) and in iPSC-derived BMECs (iBMECs) (Lipp-

mann et al., 2014). Interestingly, RA is catabolized by the

CYP26 enzymes (Isoherranen and Zhong, 2019; Lutz

et al., 2009).

Here, we interrogated the role of POR in the functional

development of barrier properties using iBMECs derived

from both PORD patients and CRISPR-Cas9-mediated

POR-depleted iPSCs. PORD and depleted iBMECs displayed

impaired RA-dependent acquisition of functional barrier

properties. We suggest a mechanism through which POR

regulates intrinsic RA metabolism and in whose absence

RA accumulates, resulting in dysregulated molecular path-

ways and, consequently, in the impaired functional matu-

ration of the BBB.
RESULTS

POR is expressed at the BBB and in iBMECs

To test a possible role of POR in the BBB, we first examined

its expression in vivo. A transcriptome database of purified

human brain cells (Zhang et al., 2016) shows that POR is ex-

pressed in astrocytes and at a lower level in brain endothe-

lial cells (Figure 1A). In adult mouse brains (He et al., 2018;

Vanlandewijck et al., 2018), por is expressed in various

brain endothelial cells (Figure S1). To verify POR protein

expression, we performed an immunohistochemical

(IHC) analysis of adult mouse cortical sections. Por was

observed in perivascular cortical vasculature and partly

co-localized with the endothelial specific marker CD31

(Figure 1B), demonstrating that POR is expressed in endo-

thelial cells at the NVU in vivo. Higher magnification

imaging indicated a perinuclear pattern (Figure 1C), in

agreementwith the role of POR as an endoplasmic resident,

interacting with endoplasmic reticulum (ER) membrane-

bound CYPs (Pandey and Flück, 2013).

To test POR expression in iBMECs, we differentiated

iPSCs from a healthy control (CTR) donor (Falik et al.,
2020) as previously described (Jagadeesan et al., 2020;

Lippmann et al., 2014; Vatine et al., 2017; Figure 1D).

Immunocytochemistry (ICC) analysis showed that the iB-

MECs formed a monolayer expressing the TJ protein

Zona occludens-1 (ZO-1), the BBB glucose transporter

(GLUT-1), and the TJ protein Claudin-5 (CLDN-5; Fig-

ure 1E), indicating successful differentiation. Similarly to

the expression observed in vivo (Figure 1C), POR expression

in iBMECs was perinuclear (Figure 1F). Western blot (WB)

analysis resulted in a specific 75 kDa band in both iBMECs

and undifferentiated iPSCs (Figure 1G), suggesting that iB-

MECs can provide a platform to study the role of POR in

barrier formation.

Generation and characterization of PORD iPSCs

To functionally study the role of POR in iBMECs, we used a

previously described set of iPSCs derived from PORD

patients carrying a homozygous inactivating G539R muta-

tion in POR (Zlotnik et al., 2020) and their healthy hetero-

zygous family relative (Figure S2). Additionally, we used the

CRISPR-Cas9 system to introduce insertion or deletion (in-

del) mutations in a CTR background (Figure S3). Together,

these cells provide a comprehensive set of iPSCs suitable for

studying POR functions.

POR is enzymatically active in CTR iBMECs and

severely attenuated in PORD iBMECs

WB analysis of iPSCs and iBMECs showed the production

of POR as a 75 kDa band in the CTR line, the heterozygous

G539R line (POR01het), and the homozygous G539R PORD

lines (POR02G539R and POR03G539R). The CTRmut1 line did

not produce POR protein, and the CTRmut2 line expressed

a shorter 55 kDa band (Figure 2A). ICC analysis showed

POR expression in iBMECs from the POR01het and

POR02G539R lines but not in the CTRmut1 line (Figure 2B).

To functionally test POR activity, iBMEC lysates were

subjected to a colorimetric enzymatic activity assay. CTR

and POR01het iBMECs exhibited similar enzymatic activ-

ities (Figure 2C), indicating that a single copy of functional

POR is sufficient to drive POR activity, in agreement with

the lack of clinical symptoms in heterozygous individuals

(Hershkovitz et al., 2008). Decreased POR activity was

observed in the homozygous PORD lines (POR02G539R

and POR03G539R) and was further reduced in POR mutated

(PORM) lines (Figure 2C), confirming that POR is active

in iBMECs. The differences between PORD and PORM iB-

MECs suggest knockdown and full depletion of POR,

respectively.

PORD iBMECs exhibit impaired acquisition of barrier

functions

To test a possible role of POR in the formation of TJs, we

differentiated CTR, PORD, and PORM iPSCs to iBMECs
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Figure 1. POR is expressed in human and
mouse NVU and in iBMECs
(A) POR expression in acutely purified hu-
man brain cells from the Barres lab database
(Zhang et al., 2016).
(B) IHC analysis of mouse cortical brain
section shows that CD31 (red)-positive
endothelial cells express Por (green). Nuclei
were stained using DAPI (blue). White ar-
rowheads denote the co-localization of
CD31 and Por.
(C) Por (green) shows a perinuclear pattern
of expression.
(D) Schematic illustration of iBMEC differ-
entiation. EC, endothelial cells; bFGF, basic
fibroblast growth factor; RA, all-trans reti-
noic acid.
(E) ICC analysis confirms that CTR iBMECs
express GLUT-1, ZO-1, and CLDN-5.
(F) ICC analysis of iBMECs shows that POR is
localized to the perinuclear area.
(G) WB analysis showed expression of POR as
a 75 kDa band both in undifferentiated iPSCs
and iBMECs. Ponceau S staining shows total
protein levels.
See also Figure S1.
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Figure 2. POR is enzymatically active in CTR and heterozygous iBMECs and severely attenuated in PORD and PORM iBMECs
(A) WB analysis of POR in undifferentiated iPSCs and iBMECs. CTR, POR01het, and PORG539R (PORD) cells express POR as a 75 kDa band in both
undifferentiated iPSCs and iBMECs. CTRmut1 (PORM) did not express POR, and CTRmut2 produced a shorter, 55 kDa band, as predicted in
Figure S2.
(B) ICC showed POR (green) expression in POR01het and POR02G539R but not in CTRmut1 iBMECs.
(C) POR enzymatic activity is decreased in PORD and further reduced in the PORM lines compared with the CTR and POR01het lines. One-way
ANOVA; **p < 0.005, ****p < 0.0001, activity was normalized to the maximum level of each experiment. Different symbols refer to
different cell lines (n = 4–10).
See also Figures S2 and S3 and Table S1.
(Figure 1D). PORD iBMECs showed CTR-like expression of

the BBB-relevant markers ZO-1, GLUT-1, and CLDN-5.

PORM iBMECs exhibited aberrant, non-continuous

expression of ZO-1, decreased expression of GLUT-1, and

non-detectable CLDN-5 (Figure 3A), indicating abnormal

development of TJs in POR-depleted iBMECs and suggest-

ing that POR plays a role in the in vitro differentiation of iB-

MECs and in the formation of TJs.

POR is the electron donor to CYP26 enzymes, which are

known to act as the main catabolizing enzymes of RA (Iso-

herranen and Zhong, 2019). Since iBMEC differentiation

includes the supplementation of RA (Lippmann et al.,

2014), we hypothesized that POR mediates TJ formation

through the regulation of RA metabolism. We therefore

differentiated each iPSC line into iBMECs either without

RA (vehicle [Ve]) or with a gradient of RA concentrations

(0.25, 1, or 10 mM). iBMEC lines were then seeded on

transwell inserts, and the trans-endothelial electrical resis-

tance (TEER) was measured daily (Figure S4). Maximum

TEER levels did not significantly differ between CTR,

PORD, and PORM cells when iBMECs were differentiated

without RA or at the lowest 0.25 mM concentration. How-

ever, when differentiated with 1 or 10 mM, TEER values of

the CTR lines were significantly higher than both PORD

and PORM lines (Figure 3B). 48 h post seeding, we applied

a sodium fluorescein paracellular permeability assay. iB-

MECs that were differentiated with 10 mM RA had signif-

icantly increased paracellular permeability in the PORD

cells and further significantly increased permeability in

the PORM iBMECs. Together, these results demonstrate
that PORD and PORM iBMECs fail to develop functional

barrier properties under higher RA concentrations and

suggest that POR is necessary for the RA-dependent acqui-

sition of barrier functions.

POR regulates RA-dependent transcriptional programs

RA exerts its canonical molecular action through binding

to nuclear receptors, which in turn regulate gene tran-

scription (Blumberg et al., 1992). Thus, RA-dependent

gene expression provides a reliable readout reflecting

intracellular RA concentrations (Armstrong et al., 2005;

Åström et al., 1990). To assess POR-dependent cellular

RA concentrations, CTR, PORD, and PORM iBMECs that

were differentiated under the various RA concentrations

were collected for bulk RNA sequencing (RNA-seq) anal-

ysis. CTR iBMECs showed a gradual dose-dependent in-

crease in the number of differentially expressed genes

(DEGs) with the increase in RA concentration (Figures

S5 and 4A). Contrarily, PORD iBMECs showed an elevated

amount of DEGs that was already apparent at the low

(0.25 and 1 mM) RA concentrations. This was further

accentuated in the PORM iBMECs. We next performed a

bidirectional hierarchical clustering of normalized expres-

sion values of all genes differentially expressed in at least

one condition (Figure 4B). All iBMECs cultured without

RA clustered together. CTR iBMECs differentiated with

lower RA concentrations (0.25 or 1 mM RA) clustered

together and separately from CTR iBMECs differentiated

with 10 mM RA. Contrarily, PORD and PORM iBMECs

that were differentiated with any RA concentration
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Figure 3. POR is necessary for the RA-dependent development of functional TJs
(A) ICC analysis of the TJ relevant markers ZO-1 (red), GLUT-1 (green), and CLDN-5 (green) for iBMECs differentiated with 10 mM RA from
the healthy (POR01het), PORD, and PORM lines. White arrowheads denote gaps between cells in which ZO-1 was expressed.
(B) Scatterplots of maximum (max) TEER values for the CTR, PORD, and PORM lines differentiated with 0 (vehicle [Ve]), 0.25, 1, or 10 mM RA
(CTR n = 28; PORD, n = 27; PORM, n = 9). Two-way ANOVA with Tukey’s multiple comparison test; **p < 0.005, ***p < 0.0001.
(C) Quantification of the paracellular permeability of the fluorescent tracer sodium fluorescein. When iBMECs were differentiated with
10 mM RA, the PORD (n = 8) and PORM (n = 5) lines showed a significant increase in paracellular permeability compared with CTR lines (n =
9). PORM iBMECs had higher permeability compared with PORD iBMECs. Two-way ANOVA with Tukey’s multiple comparison test; *p < 0.05,
**p < 0.005, ***p < 0.0001. Bars represent 95% confidence intervals; the solid red line represents the median.
See also Figure S4.
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Figure 4. POR regulates RA-dependent gene expression
(A) Venn diagrams showing significant DEG profiles for each line in response to the RA concentration gradient. The size of the circle is
proportional to the number of DEGs indicated within each line.
(B) Heatmap of hierarchical cluster analysis for genes that were defined as DEGs in at least one condition in any cell line.
(C) A PCA plot of normalized counts. Each dot represents a different sample. Technical repeats (a and b) were averaged and merged (ab). All
lines cluster along the PC2 axis when differentiated without RA (encircled in blue). POR-deficient lines differentiated with all RA con-
centrations clustered along PC2 with the CTR line differentiated with 10 mM (encircled in red). C, CTR; M, PORM; P, PORD. 0, 0.25, 1, 10: RA
concentrations in mM.
See also Figure S5.
clustered together with CTR iBMECs differentiated with

10 mM RA. These findings indicate that PORD and

PORM iBMECs display an increased response to RA at

lower concentrations. We next subjected all datasets to

principal-component analysis (PCA; Figure 4C). CTR iB-

MECs separated along principal component 2 (PC2),

which represents 24% of total variance across all genes,

in an RA-dependent manner. CTR, PORD, and PORM iB-

MECs differentiated without RA clustered together along

PC2. However, all PORD and PORM iBMECs that were

differentiated with RA clustered together with CTR iB-

MECs that were differentiated with 10 mM RA, suggesting

that cellular RA concentrations are POR-dependent.

We next asked which CYPs are RA-induced in iBMECs.

Interestingly, both CYP26A1 and CYP26B1 were signifi-

cantly upregulated in response to RA (Figures 5 and S6).
These results suggest that RA is involved in transcriptional

regulation of these genes.

RA-dependent pathways are involved in BBB

functions through upregulation of TJs

While the role of RA in promoting barrier properties in brain

endothelial cells in vitro is well established, its physiological

relevance has been questioned (Bonney and Siegenthaler,

2017) due to relatively high concentrations (5–10 mM)

used in vitro compared with lower physiological concentra-

tions estimated as below 0.6 mM (Napoli et al., 1991). Thus,

our experimental setup provides an opportunity to study

RA-induced gene expression in a range spanning both phys-

iological and pharmacological concentrations.We therefore

analyzed the transcriptome of CTR iBMECs differentiated

under the various RA concentrations. Gene set enrichment
Stem Cell Reports j Vol. 17 j 2050–2063 j September 13, 2022 2055



Figure 5. Expression of the CYP26 gene family in response to RA
Log2(fold change) of each CYP26 gene in response to RA for CTR, PORD, and PORM iBMECs. Significance threshold, market with asterisks was
taken as adjusted p < 0.1.
See Figure S6 and supplemental experimental procedures for details.
analysis (GSEA) was performed on a list of RA-related genes,

revealing upregulation of well-established RA-induced

genes such as RARs, RXRs, and several HOX genes (Fig-

ure 6A). Moreover, cellular RA-binding protein 2 (CRABP2)

was also upregulated, indicating increased transport of RA

into to the nucleus. Interestingly, while some genes are ex-

pressed in a dose-dependent manner, other genes were

only induced at the higher RA concentration. In addition,

GSEA revealed that barrier structural genes, including

various CLDNs, other TJs and integrins were significantly

enriched by RA treatment (Figure 6B). GSEA analysis also re-

vealed downregulated gene sets that are related to cell cycle

(Figure 6C), consistent with previous studies suggesting a

role of RA in cell proliferation and differentiation (Chen

and Ross, 2004; Liu et al., 2014). Together, this analysis re-

veals RA-dependent pathways that affect the acquisition

of TJ-related genes and functional barrier formation.
PORDandPORMcells display increased inflammatory

response to RA

To identify POR-affected pathways, we next ranGSEA com-

parisons of the different RA concentrations in each cell line

using theMsigDBhallmark collection. Interestingly, the tu-

mor necrosis factor alpha (TNF-a) signaling via nuclear fac-

tor kappa B (NF-kB) gene set was upregulated in response to

all three concentrations of RA in both PORD and PORM

(Figures 6D and 6E) but not in CTR iBMECs. These results

suggest that POR dysfunction may promote an inflamma-

tory response that may disturb barrier integrity.
DISCUSSION

The BBB is formed as a multicellular NVU in which endo-

thelial cells communicate with other CNS cells. As a result,

brain endothelial cells acquire TJs, which limit the paracel-
2056 Stem Cell Reports j Vol. 17 j 2050–2063 j September 13, 2022
lular passage of solutes from the blood into the CNS. BBB

impairments were reported in various disorders including

defective transporter systems (Ceballos et al., 2009; Mayerl

et al., 2014; Vatine et al., 2017), dysfunctional barriers (Lim

et al., 2017; Raut et al., 2022; Williams et al., 2022; Wu

et al., 2021), or ischemia (Page et al., 2016). Here, we took

advantage of our PORD cells to study a possible metabolic

role of POR within barrier-forming cells. Since iPSCs are

prone to variability across different lines (Vitale et al.,

2012), we also used the CRISPR-Cas9 system to generate

POR-depleted isogenic lines.

iBMECs are increasingly used to model various aspects of

the BBB (Motallebnejad et al., 2022; Ohshima et al., 2019;

Park et al., 2019; Piantino et al., 2022; Rapier et al., 2022;

Vatine et al., 2019). Their strength lies in their scalability

and functional properties and the opportunity to model

disorders in a personalizedmanner (Lim et al., 2017; Vatine

et al., 2017; Wu et al., 2021). However, we (Vatine et al.,

2019) and others (Lu et al., 2021) have also shown that iB-

MECs display amixed identity of endothelial and epithelial

cells. Thus, these cells do not provide a bona fide source of

BMECs and should be used with caution. Our results sug-

gest that POR is expressed in BMECs in vivo (He et al.,

2018; Vanlandewijck et al., 2018; Zhang et al., 2016) and

in iBMECs with a similar perinuclear pattern of expression,

in agreement with the role of POR as the unique electron

donor to microsomal CYPs (Pandey and Flück, 2013). In

addition, we confirmed that POR is enzymatically active

in iBMECs.

POR deficiency is an autosomal recessive disorder of ste-

roidogenesis with multiple clinical manifestations,

including impaired development of genitals, bone malfor-

mation, and cognitive disability. The diversity in symp-

toms reflects POR regulation of the various CYPs (Scott

and Miller, 2008). por�/� mice are embryonically lethal

(Otto et al., 2003), which was associated with an increased



Figure 6. RA dose response in CTR iBMECs
To detect gene sets that are altered in response to RA in a dose-response manner, gene set enrichment analysis (GSEA) was performed on all
CTR samples with all RA concentrations (continuous GSEA).
(A) Upregulated RA-related genes (literature curated gene set).
(B) Upregulated blood-brain-barrier-related genes (gene set taken from PathCards database).
(C) Downregulated genes of cell-cycle checkpoints (gene set taken from REACTOME database). Fifteen top altered genes are presented in
each heatmap.
(D and E) GSEA analysis using the MsigDB hallmark collection was used to compare gene expression within each cell line in response to the
various RA concentrations. The gene set of TNFa signaling via NF-kB is upregulated in (D) PORD and (E) PORM iBMECs. NES, normalized
enrichment signal; FDR, false discovery rate.
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RA/retinol ratio and could be partially rescued by a vitamin

A-depleted diet (Ribes et al., 2007), linking POR activity to

RA homeostasis. Interestingly, when POR was specifically

depleted from the liver, mice were viable and fertile

(Wang et al., 2005), suggesting that the lethality is the

result of a POR role in non-liver tissue.

Some of the intracellular communication in the NVU is

mediated by RA signaling (Bonney and Siegenthaler,

2017; Mizee et al., 2014; Pollock et al., 2018). RA is the

active metabolite of vitamin A, locally synthesized by the

retinaldehyde dehydrogenase (RALDH) enzyme. Thus, RA

signaling is dependent on cells that can metabolize retinol

to RA. RA-generating cells release RA, which is taken up by

neighboring cells. Within target cells, RA is transported

into the nucleus by CRABP1 and CRABP2, which facilitate

RA ligation to RA receptors (RARs) (Majumdar et al., 2011;

Napoli et al., 1991). Thus, RA controls gene transcriptional

programs through activating nuclear RARs that bind to RA

response elements (RAREs) (Maden, 1982; Petkovich et al.,

1987). Astrocytes and neural progenitors were shown to ex-

press RALDHs (Chattopadhyay and Brown, 2001; Kane

et al., 2008; McCaffery et al., 2004; Wang et al., 2011)

and locally produce RA (Wuarin et al., 1990), thus

providing a possible RA source for BMECs. In the develop-

ment of the BBB and the blood-retina barrier (BRB), RAwas

shown to promote barrier properties in mouse (Lai et al.,

2003) and human sources of BMECs (Mizee et al., 2013),

as well as in iBMECs (Lippmann et al., 2014).

By testing the effect of a range of RA concentrations,

we show a dose-dependent acquisition of TJs and the

development of a functional barrier in CTR cells. GSEA

analysis revealed that RA promotes pathways that are

associated with TJs and BBB maturation. These hits

were driven by RA-induced expression of the TJ marker

OCCLUDIN and several CLDNs. Interestingly, central TJ

components such as ZO-1 and CLDN-5 were expressed

in iBMECs; however, they were not dependent on RA.

These results suggest that other TJ proteins may be

involved in the RA-mediated role of functional barrier

development.

The main mechanism of action of RA is mediated

through regulating gene transcription. Thus, transcrip-

tome analysis provides an indirect proxy of cellular RA con-

centrations. Our RNA-seq analysis reveals that PORD and

PORM iBMECs show increased RA-induced gene expres-

sion, suggesting that POR plays a role in cellular RA homeo-

stasis. The catabolism of RA was previously shown to be

facilitated by the activity of monooxygenase CYP26 en-

zymes (Snyder et al., 2020), for which POR acts as a crucial

regulator. Interestingly, Cyp26b1 is known to be involved

in learning and memory processes (Maclean et al., 2009;

Shearer et al., 2012). We show that CYP26A1 and

CYP26B1 mRNA levels were increased in PORD and
2058 Stem Cell Reports j Vol. 17 j 2050–2063 j September 13, 2022
PORM cells, suggesting that RA may also contribute to its

transcriptional regulation. These conclusions are sup-

ported by a study showing that cyp26a1 is upregulated by

RA in zebrafish (Dobbs-McAuliffe et al., 2004). The

augmented expression of CYP26 genes may be part of a

mechanism by which cells attempt to dampen RA levels.

However, without functional POR, CYPs are unable to carry

out these functions, with a resulting detrimental cellular

RA accumulation. Interestingly, a study in zebrafish

showed that CYP26 expression maintains a constant in-

flammatory-like state in endothelial cells of the pituitary,

leading to the fenestration of blood vessels crucial for pitu-

itary functions in the sensing of hypothalamic peptides

(Anbalagan et al., 2018). It is thus possible that the

enhanced expression of CYP26 in PORD and PORM cells

attenuates functional barrier formation through similar

mechanisms.

Our study supports amechanismbywhich POR regulates

RA homeostasis within BMECs through the action of

CYP26 enzymes. In turn, RA promotes transcription of TJ

proteins and integrins, which results in the acquisition of

functional barrier properties (Figure 7). In the absence of

POR, the action of CYP26 in degrading RA is abolished,

leading to the accumulation of RA and therefore to

impaired RA homeostasis and to a dysfunctional barrier.

The dysfunctional barriermay bemediated by TNF-a-medi-

ated inflammatory response, previously shown to promote

BBB leakage in iBMECs (Vatine et al., 2019). The affected

pathwaysmay in part explain some of the cognitive disabil-

ities observed in PORD patients; however, since POR regu-

lates the activity of a variety of CYPs, other contributions

cannot be excluded.

In this study, we focused on RA for its pivotal role in em-

bryonic development. Yet, since various CYPs are respon-

sible for numerous metabolic processes, PORD and PORM

cells provide the opportunity to study various endogenous

and exogenous molecules in the CNS and other tissues. For

example, CYP3A4 is an important oxidizing enzyme that

eliminates xenobiotics. Underactivity of such an enzyme

may lead to undesired consequences, especially when local

metabolic homeostasis is disturbed, as shown in this study

(Pandey and Flück, 2013).
EXPERIMENTAL PROCEDURES

Differentiation into iBMECs
iPSCs were differentiated into iBMECs as previously described

(Lippmann et al., 2014). Briefly, cells were cultured in Nutristem

(BI) for 3 days after passaging. When cells reached a density of

2 3 105 cells per well, medium was replaced with 3 mL uncondi-

tioned medium without bFGF (1:1 DMEM:F12) supplemented

with 20% knockout serum-free replacement (KOSR; Gibco), 1%

NEAA, 0.5% Glutamax (Gibco), 220 nM b-mercaptoethanol, and



A
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Figure 7. Schematic description of the
suggested mechanism
(A) POR mediates the activity of CYP26s,
which regulate cellular RA levels by catab-
olizing RA. In turn, RA regulates the
expression of CYP26s, TJs, and integrin
(ITGB) genes, which leads to the formation
of a functional barrier.
(B) When POR is malfunctioning, CYP26s are
inactive, causing accumulation of cellular
RA. In turn, this leads to transcriptional
alterations and an inflammatory response.
As a result, TJ formation is impaired, leading
to a malfunctioning barrier.
1%PSA.Onday 6, themediumwas replacedwith human endothe-

lial serum-free medium (ESFM; Gibco) supplemented with 20 ng/

mL bFGF and 0, 0.25, 1, or 10 mM RA in DMSO. On day 8, trans-

wells, plastic dishes, or coverslips were pre-coated with

100 mg/mL fibronectin (BI) and 400 mg/mL collagen IV (Sigma).

On the day of seeding, the ECM solution was aspirated and left

to dry for 30 min. iBMECs were harvested in Accutase (Gibco) for

30 min, then washed with ESFM, counted, and centrifuged. iB-

MECs were resuspended in ESFM at 1 3 106 cells/mL and plated

on 12 mm with 0.4 mm pore polycarbonate membrane transwell

inserts (Corning, cat# 3401); 1 mL fresh ESFM was supplemented

to the bottom chamber, and 1 mL ESFM with cells was applied

per transwell. 100 mL was added to 96-well plates and 500 mL was

added to 24-well plates with coverslips.

POR enzymatic activity assay
iBMECs were harvested using Accutase for 30min at 37�C, washed

with DPBS, and centrifuged. The pellet was subjected to the Color-

imetric Cytochrome P450 Reductase Activity Assay Kit (ab204704,

Abcam) according to manufacturer’s instructions.

Statistical analysis
All statistical analyses were performed on data from at least three

independent experiments each with at least duplicates, except

for the POR enzymatic activity assay for the CRISPR-Cas9 cell lines,

in which data are taken from two experiments with technical
duplicates. Each experiment included at least one healthy

donor-derived sample and one G539R-derived sample. One- and

two-way ANOVA followed by Dunnett’s and Tukey’s (respectively)

multiple comparison tests were performed using GraphPad Prism

v.8.0.2 for Windows (GraphPad). Error bars represent SEM unless

indicated otherwise.
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The accession number for the RNA-seq data reported in this paper

is GEO: GSE202485.
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Åström, A., Pettersson, U., Krust, A., Chambon, P., and Voorhees,

J.J. (1990). Retinoic acid and synthetic analogs differentially acti-

vate retinoic acid receptor dependent transcription. Biochem. Bio-

phys. Res. Commun. 173, 339–345. https://doi.org/10.1016/

S0006-291X(05)81062-9.

Ballabh, P., Braun, A., and Nedergaard, M. (2004). The blood–brain

barrier: an overview: structure, regulation, and clinical implica-

tions. Neurobiol. Dis. 16, 1–13. https://doi.org/10.1016/j.nbd.

2003.12.016.

Ben-Zvi, A., Lacoste, B., Kur, E., Andreone, B.J., Mayshar, Y., Yan,

H., andGu, C. (2014).Mfsd2a is critical for the formation and func-

tion of the blood–brain barrier. Nature 509, 507–511. https://doi.

org/10.1038/nature13324.

Blumberg, B., Mangelsdorf, D.J., Dyck, J.A., Bittner, D.A., Evans,

R.M., and De Robertis, E.M. (1992). Multiple retinoid-responsive

receptors in a single cell: families of retinoid ‘‘X’’ receptors and ret-

inoic acid receptors in the Xenopus egg. Proc. Natl. Acad. Sci. USA

89, 2321–2325. https://doi.org/10.1073/pnas.89.6.2321.

Bonney, S., and Siegenthaler, J.A. (2017). Differential effects of

retinoic acid concentrations in regulating blood–brain barrier

properties. ENeuro 4. ENEURO.0378-16.2017. https://doi.org/10.

1523/ENEURO.0378-16.2017.
2060 Stem Cell Reports j Vol. 17 j 2050–2063 j September 13, 2022
Ceballos, A., Belinchon, M.M., Sanchez-Mendoza, E., Grijota-Mar-

tinez, C., Dumitrescu, A.M., Refetoff, S., Morte, B., and Bernal, J.

(2009). Importance of monocarboxylate transporter 8 for the

blood-brain barrier-dependent availability of 3, 5, 30-Triiodo-l-Thy-
ronine. Endocrinology 150, 2491–2496. https://doi.org/10.1210/

en.2008-1616.

Chattopadhyay, N., and Brown, E.M. (2001). Retinoic acid recep-

tors are expressed in human primary astrocytes and their agonists

inhibit parathyroid hormone-related peptide expression and secre-

tion. Brain Res. Mol. Brain Res. 92, 172–176. https://doi.org/10.

1016/S0169-328X(01)00155-3.

Chen, Q., and Ross, A.C. (2004). Retinoic acid regulates cell cycle

progression and cell differentiation in human monocytic THP-1

cells. Exp. Cell Res. 297, 68–81. https://doi.org/10.1016/j.yexcr.

2004.02.017.

Dobbs-McAuliffe, B., Zhao, Q., and Linney, E. (2004). Feedback

mechanisms regulate retinoic acid production and degradation

in the zebrafish embryo. Mech. Dev. 121, 339–350. https://doi.

org/10.1016/j.mod.2004.02.008.

El Hafny, B., Chappey, O., Piciotti, M., Debray, M., Boval, B., and

Roux, F. (1997). Modulation of P-glycoprotein activity by glial fac-

tors and retinoic acid in an immortalized rat brain microvessel

endothelial cell line. Neurosci. Lett. 236, 107–111. https://doi.

org/10.1016/S0304-3940(97)00679-4.

Falik, D., Rabinski, T., Zlotnik, D., Eshel, R., Zorsky, M., Garin-

Shkolnik, T., Ofir, R., Adato, A., Ashkenazi, A., and Vatine, G.D.

(2020). Generation and characterization of iPSC lines

(BGUi004-A, BGUi005-A) from two identical twins with polyala-

nine expansion in the paired-like homeobox 2B (PHOX2B) gene.

Stem Cell Res. 48, 101955. https://doi.org/10.1016/j.scr.2020.

101955.

Förster, C., Silwedel, C., Golenhofen, N., Burek, M., Kietz, S., Man-

kertz, J., and Drenckhahn, D. (2005). Occludin as direct target for

glucocorticoid-induced improvement of blood–brain barrier prop-

erties in amurine in vitro system. J. Physiol. 565, 475–486. https://

doi.org/10.1113/jphysiol.2005.084038.

Ghyselinck, N.B., and Duester, G. (2019). Retinoic acid signaling

pathways. Development 146, dev167502. https://doi.org/10.

1242/dev.167502.

Hajal, C., Le Roi, B., Kamm, R.D., and Maoz, B.M. (2021). Biology

and models of the blood–brain barrier. Annu. Rev. Biomed. Eng.

23, 359–384. https://doi.org/10.1146/annurev-bioeng-082120-

042814.

Hatherell, K., Couraud, P.-O., Romero, I.A., Weksler, B., and Pil-

kington, G.J. (2011). Development of a three-dimensional, all-hu-

man in vitro model of the blood–brain barrier using mono-co-and

tri-cultivation Transwell models. J. Neurosci. Methods 199, 223–

229. https://doi.org/10.1016/j.jneumeth.2011.05.012.
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