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Abstract

Although classically known as an endocrine signal produced by the ovary, 17β-estradiol (E2) 

is also a neurosteroid produced in neurons and astrocytes in the brain of many different 

species. In this review, we provide a comprehensive overview of the localization, regulation, 

sex differences, and physiological/pathological roles of brain-derived E2 (BDE2). Much of 

what we know regarding the functional roles of BDE2 has come from studies using specific 

inhibitors of the E2 synthesis enzyme, aromatase, as well as the recent development of conditional 

forebrain neuron-specific and astrocyte-specific aromatase knockout mouse models. The evidence 

from these studies support a critical role for neuron-derived E2 (NDE2) in the regulation of 

synaptic plasticity, memory, socio-sexual behavior, sexual differentiation, reproduction, injury-

induced reactive gliosis, and neuroprotection. Furthermore, we review evidence that astrocyte-

derived E2 (ADE2) is induced following brain injury/ischemia, and plays a key role in reactive 

gliosis, neuroprotection, and cognitive preservation. Finally, we conclude by discussing the key 

controversies and challenges in this area, as well as potential future directions for the field.
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1. Introduction

Aromatase is a cytochrome P450 enzyme that drives conversion of androgen precursors 

into estrogens (Fig. 1) (Blakemore and Naftolin, 2016; Simpson et al., 2002). The 

aromatase-driven catalysis process involves hydroxylation of androgen precursors using 

three molecules each of NADPH and oxygen to produce one molecule of estrogen (Ryan, 

1959). Aromatase is encoded by a single gene, CYP19, which is located on the 21.2 region 

of chromosome 15 in humans (Simpson et al., 2002). This gene is 123 kb in length, 

and is expressed in many tissues, including the gonads, bone, breast, adipose, vascular 

tissue, skin, placenta and brain (Stocco, 2012). Tissue-specific transcripts of aromatase are 

produced from the alternative use of several first exons that are promoter-specific (Fig. 2) 

(Bulun et al., 2004; Simpson et al., 1993). Splicing of the untranslated first exons into the 

coding exons 2 through 10 produces multiple different aromatase transcripts; however, all 

of the transcripts code for the same protein. Exon 1.f has classically been considered to 

be the brain-specific variant. However, ovarian-specific exon PII and adipose-specific exons 

1.3 and 1.4 are also expressed in the brain of rodents and humans (Prange-Kiel et al., 

2016; Yague et al., 2006). It should be mentioned that teleost fish are unique in that they 

have two aromatase isoforms, CYP19a which encodes aromatase A, and CYP19b, which 

encodes aromatase B (Tchoudakova and Callard, 1998). CYP19a is expressed in the gonads, 

while CYP19b is expressed in both the brain and gonads. Although these two genes are 

structurally different, they have similar catalytic activities and over 20 different regulatory 

sites in the promoter, including response elements for sex steroid receptors, and several 

transcription factors that regulate neurogenesis (Piferrer and Blazquez, 2005).

Estrogens, the product of aromatase activation, are steroid hormones that can act upon 

estrogen receptors in tissues throughout the body and brain. The most potent and 

most studied estrogen is 17β-estradiol (E2), while the other estrogens, estrone (E1) and 

estriol (E3), are considered weak estrogens. E2 has been implicated in the regulation 

of many diverse physiological and pathological processes, including reproduction, sexual 

differentiation and behavior, cancer biology, bone physiology, synaptic plasticity, cognitive 

function, anti-inflammatory actions and neuroprotection (Azcoitia et al., 2018; Boon et al., 

2010; Brann et al., 2007; Brocca and Garcia-Segura, 2019; Cortez et al., 2010; Dhandapani 

and Brann, 2003; Emmanuelle et al., 2021; Khan et al., 2013; Kramar et al., 2013; 

Saldanha, 2020; Vegeto et al., 2008). While the role of gonadal-derived E2 has been studied 

extensively, the roles and functions of brain-derived E2 (BDE2) has received less attention 

and has only recently begun to be fully appreciated. Hence, this review will focus on the 

localization, regulation and functions of BDE2 in the brain. Much of the work in this area 

has been conducted in rodents and the songbird. However, where available, we will present 

and discuss findings in other species including humans and non-human primates. Much of 

what we know about the roles and functions of BDE2 in the brain has come from studies 
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using pharmacological aromatase inhibitors (see Fig. 3). However, since both neurons and 

astrocytes can produce E2, using such a cell non-specific pharmacological approach provides 

challenges in determining the specific role of neuron-derived E2 (NDE2) versus astrocyte-

derived E2 (ADE2) in the brain. Whole body global aromatase knockout mice support a 

role for E2 in anti-inflammation, synaptic plasticity and cognition, and neuroprotection from 

neurodegenerative disorders (Simpson et al., 2002). However, these studies are poorly suited 

to distinguish the role and specific contributions of brain-derived versus gonadal-derived 

aromatase/E2 to these effects. Recent work by our group (Lu et al., 2019, 2020; Wang et 

al., 2020) using brain cell-specific aromatase knockout animal models has helped address 

this issue and given important insights on the respective roles and functions of NDE2 

versus ADE2 in the brain in both physiological and pathological states. We will review this 

emerging work, as well as discuss existing controversies, and potential future directions for 

advancement of knowledge in this important area.

2. Aromatase localization in the brain

2.1. Human

Table 1 shows a summary of brain localization of aromatase in various species. A full 

description of the localization of aromatase for each species is provided below. The first 

report of aromatase activity in the brain was made by Naftolin and coworkers when they 

measured conversion of radiolabeled androgen precursors to estrogens using human fetal 

brain homogenates and demonstrated the human fetal diencephalon and limbic system 

possess significant aromatase activity (Naftolin et al., 1971). Subsequent studies using 

RT-PCR of adult human brain samples revealed highest aromatase mRNA expression in 

the hypothalamus, amygdala, pons, thalamus, hippocampus, temporal cortex, and frontal 

cortex (Sasano et al., 1998; Steckelbroeck et al., 1999; Stoffel-Wagner et al., 1999, 

1998). Additional work confirmed high expression of aromatase mRNA in the human 

hippocampus, temporal cortex, and frontal cortex, and found no sex differences in aromatase 

expression in these brain regions (Stoffel-Wagner et al., 1999). Furthermore, positron 

emission tomography (PET) imaging using radiolabeled aromatase inhibitors also confirmed 

widespread aromatase localization in the human brain, with highest concentrations in the 

thalamus and amygdala, followed by preoptic area (POA), hippocampus, cortex, putamen, 

cerebellum and white matter (Biegon, 2016). PET imaging further confirmed that there 

are no significant sex differences in aromatase levels in the human brain except for 

greater levels in the male left hypothalamus (Takahashi et al., 2018). PET imaging also 

revealed that regional brain uptake of the radiolabeled aromatase inhibitor, 11C-vorozole 

did not vary across the menstrual cycle in premenopausal women (Biegon et al., 2015). 

Immunohistochemical studies to examine the cellular and subcellular localization of 

aromatase showed widespread aromatase expression in pyramidal neurons in the human 

temporal cortex and CA1-CA3 regions of the hippocampus, granule cells of dentate gyrus, 

in a small number of astrocytes, and in some interneurons in the normal and epileptic 

human brain (Azcoitia et al., 2011; Yague et al., 2010, 2006). Light and electron microscopy 

ultrastructural studies in the human brain further demonstrated aromatase immunoreactivity 

throughout the neuronal cell body, including dendrites and axonal processes, and in 

numerous boutons with synaptic vesicles (Naftolin, 1994; Naftolin et al., 1996). In addition, 
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axon terminals were found to form synapses with immuno-negative and immuno-positive 

dendrites and neuronal cell bodies (Naftolin, 1994). The synaptic localization of aromatase 

suggests a possible neuromodulator or neurotransmitter role for neuron-derived estrogen, 

which will be discussed in a subsequent section.

2.2. Non-human primate

Similar to the human, early studies revealed high aromatase activity in the monkey 

hypothalamus, amygdala, hippocampus and cortex (Flores et al., 1973; MacLusky et al., 

1986). Later studies using in situ hybridization confirmed high aromatase mRNA-containing 

neurons in hypothalamic areas, with highest expression observed in the medial preoptic 

nucleus, bed nucleus of the stria terminalis and anterior hypothalamus, as well as cortical 

and medial amygdaloid nucleus, and basal amygdala nucleus – areas important in expression 

of emotional behaviors and memory processing (Roselli et al., 2001). Studies using RT-

PCR also demonstrated significant aromatase expression in the amygdala, mediobasal 

hypothalamus, hippocampus and prefrontal cortex of the ovariectomized female monkey 

(Sorwell et al., 2012). At the protein level, immunohistochemical studies confirmed 

significant aromatase immunoreactive protein localization in the monkey temporal cortex, 

hippocampal CA1–3 pyramidal neurons, granule neurons of the dentate gyrus, and 

some interneurons (Yague et al., 2008). Additional studies demonstrated that aromatase 

localization occurred throughout the neuronal cell body, including dendrites and axons, and 

in boutons that contained synaptic vesicles (Naftolin et al., 1996).

2.3. Rat

The first studies to localize aromatase in the rat brain used activity assays and focused 

on the hypothalamus. These studies demonstrated high activity in the male and female 

hypothalamus (Naftolin et al., 1972), POA and mediobasal hypothalamus (Selmanoff et 

al., 1977). Subsequent studies using a microsomal based aromatase activity assay and 

high-performance liquid chromatography (HPLC) measurement of E2 performed a more 

widespread analysis of the brain and showed the highest aromatase activity and E2 levels 

in the amygdala, POA and hippocampus of the female rat brain (Li et al., 2016). RT-PCR 

studies similarly found high expression of aromatase mRNA in the amygdala, bed nucleus of 

the stria terminalis and POA, followed by the hippocampus and cingulate cortex, with low 

levels in the brainstem and cerebellum of the adult male and female rat brain (Tabatadze 

et al., 2014). In keeping with the hippocampus being a site of E2 production, significant 

mRNA expression for the steroidogenic enzymes necessary for E2 synthesis including 

aromatase, P450 side chain cleavage (P450scc), P450 17α− hydroxylase (P45017α), 17β-

hydroxy steroid dehydrogenase (17β-HSD), 3β-hydroxysteroid dehydrogenase (3β-HSD) 

was demonstrated in the rat hippocampus (Hojo et al., 2004; Mukai et al., 2006). The basal 

concentration of E2 was reported to range from 1–8 nM in the male rat hippocampus, 

and from 0.5 to 2 nM in the rat female hippocampus (Hojo et al., 2004; Mukai et 

al., 2010, 2006), which is significantly greater than the concentration in the blood. E2 

in the hippocampus was reported to be very stable and not significantly converted to 

other metabolites (Hojo et al., 2004). Further studies of the rat hippocampus revealed 

that aromatase is localized in neurons basally. For instance, immunohistochemical studies 

demonstrated significant aromatase localization in pyramidal neurons of the adult male 
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and female rat hippocampal CA1-CA3 regions, and in granule neurons in the dentate 

gyrus (Hojo et al., 2004; Mukai et al., 2006; Zhang et al., 2014). in vitro studies further 

confirmed aromatase enzymatic activity in neurons, with no activity observed in astrocytes 

or oligodendrocytes (Negri Cesi et al., 1992, 1993). Additional studies revealed aromatase 

was localized in pre- and post-synaptic compartments and the endoplasmic reticulum in the 

rat hippocampus (Hojo et al., 2004; Mukai et al., 2006; Zhang et al., 2014), and was located 

at the synapse and in presynaptic terminals in cultured rat cortical neurons (Srivastava et al., 

2010). This neuronal and synaptic localization of aromatase is similar to the results observed 

in the human and non-human primate, as well as in the mouse and bird, as will be discussed 

below.

2.4. Mouse

Studies in mice are less numerous, but generally consistent with aromatase localization 

observed in the rat brain. For instance, significant aromatase localization has been 

reported in the mouse hypothalamus, amygdala, hippocampus and cerebral cortex by 

immunohistochemistry and RT-PCR (Balthazart et al., 1991a, b; Bender et al., 2017; Beyer 

et al., 1994a; Ivanova and Beyer, 2000; Lu et al., 2019; Wang et al., 2020). Similar to studies 

in the rat, aromatase was demonstrated only in neurons of the mouse hippocampus, with 

no localization observed in astrocytes basally (Lu et al., 2019, 2020; Wang et al., 2020). In 
vitro studies of cultured mouse neurons and astrocytes confirmed that aromatase was only 

expressed in neurons and not astrocytes (Beyer et al., 1994a). Mice engineered to express 

enhanced green fluorescent protein (EGFP) upon aromatase activation showed widespread 

aromatase expression in the brain, with highest EGFP-positive cell bodies and fibers noted 

in the amygdala, hypothalamus and bed nucleus of the stria terminalis. In many mouse brain 

areas, EGFP-positive cells co-expressed estrogen receptor-α (ERα) and estrogen receptor-β 
(ERβ) or the androgen receptor (Stanic et al., 2014). Collectively, these studies show that 

similar to observations in monkeys and humans, aromatase is widely distributed in neurons 

at synaptic locations in both the rat and mouse brain. This suggests that aromatase and BDE2 

may regulate synaptic function in the brain. Indeed, there is growing evidence supporting a 

synaptic role for BDE2, as will be discussed in a subsequent section.

2.5. Bird

One of the earliest reports of brain localization of aromatase in birds was a study that 

demonstrated significant aromatase activity in the bird forebrain (Callard et al., 1978). 

Interestingly, this study also confirmed a similar significant aromatase activity level in the 

forebrain of the snake, sea turtle, opossum, urodele amphibian, teleost and skate (Callard et 

al., 1978). Immunohistochemical studies in the Japanese quail revealed significant aromatase 

protein localization in the medial preoptic nucleus, septal region, ventromedial and tuberal 

hypothalamus, with aromatase and estrogen receptor colocalized in many of the regions 

(Balthazart et al., 1991b). Aromatase activity was found in synaptosomes, and electron 

microscopy studies revealed aromatase was present in synaptic boutons in the Japanese quail 

brain (Balthazart et al., 1991b). Further work confirmed that aromatase is expressed in the 

POA in many bird species including canaries, house sparrows, zebra finches, ring doves, 

swifts, grey partridges, barn owls and budgerigars (Metzdorf et al., 1999).
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It is important to note that the songbird telencephalon expresses aromatase much more 

widely and with much higher activity than observed in the quail, which has high aromatase 

expression localized primarily to the hypothalamus. Thus, the songbird has been particularly 

useful in determining the role of aromatase and BDE2 in neuroplasticity, memory, and 

behavior. In situ hybridization documented widespread aromatase localization in the 

adult zebra finch brain, with highest localization observed in the POA, hypothalamus, 

hippocampus and neostriatum (Shen et al., 1994). Subsequent work demonstrated aromatase 

was localized in pre-synaptic boutons in the zebra finch hippocampus and high vocal 

centre brain areas and that males had more synaptic profiles with aromatase than females 

(Peterson et al., 2005). In addition, aromatase protein and activity were demonstrated in 

synaptosomes of the male and female zebra finch anterior and posterior telencephalon, 

with males exhibiting the highest levels (Rohmann et al., 2007). The aromatase-positive pre-

synaptic boutons in the zebra finch brain were found to always innervate aromatase-negative 

post-synaptic elements (Peterson et al., 2005). Further work demonstrated that aromatase 

activity was elevated in forebrain synaptic terminals in male zebra finches that were singing 

for 30 min (Remage-Healey et al., 2009).

2.6. Fish, amphibians and reptiles

As mentioned previously, teleost fish have two aromatase isoforms, CYP19a which encodes 

aromatase A and is expressed in the gonads, and CYP19b, which encodes aromatase 

B and is expressed in the brain and gonads (Tchoudakova and Callard, 1998). Another 

unique characteristic of teleost fish is that aromatase is expressed exclusively in radial 

glial cells in the brain, and not in neurons (Forlano et al., 2001). While radial glial cells 

generally disappear in mammals after development (Mori et al., 2005), they remain in 

the brain of adult fish. In zebrafish, aromatase expression is highest in the telencephalon, 

POA, thalamus, hypothalamus, optic tectum, and torus semicircularis (Menuet et al., 2005; 

Pellegrini et al., 2007). Further work demonstrated that aromatase B is upregulated in 

radial glial cells in the POA and mediobasal hypothalamus by E2 (Menuet et al., 2005). 

Interestingly, bromodeoxyuridine treatment coupled with IHC revealed that aromatase-

positive radial glial cells divide in the zebrafish brain, and over time move away from 

the ventricles with some differentiating into neurons (Pellegrini et al., 2007). IHC and in 
situ hybridization showed a similar aromatase localization pattern in the brain of rainbow 

trout with highest levels in the POA and hypothalamus, ventricles of telencephalon and 

ventral diencephalon (Menuet et al., 2003). In contrast to teleost fish, aromatase is encoded 

by a single gene CYP19a1 in amphibians (Iwabuchi et al., 2007). In the amphibian 

xenopus, aromatase gene expression in the brain occurred from early developmental stages 

to metamorphosis, with highest expression in the POA and caudal hypothalamus (Urbatzka 

et al., 2007). It was further found that the aromatase gene is strictly expressed in neurons and 

not in radial glial cells in the xenopus brain and was not sexually dimorphic (Coumailleau 

and Kah, 2015). In reptiles, aromatase activity was demonstrated to be high in the forebrain 

(Callard et al., 1977; Callard et al., 1978). IHC in the red-sided garter snake demonstrated 

that aromatase is localized in the POA, anterior hypothalamus, nucleus spericus and 

septum (Krohmer et al., 2002), and inhibition of aromatase activity by administration of an 

aromatase inhibitor revealed a role for brain aromatase in courtship behavior in the red-sided 

garter snake (Krohmer, 2020).
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3. Aromatase regulation in the brain

Aromatase and BDE2 levels in the brain can be regulated by both transcriptional and post-

transcriptional mechanisms, as well as a diverse array of intrinsic and extrinsic factors (Fig. 

4). In this section, we will review these key mechanisms and factors that control aromatase 

expression/activity and E2 production in the brain.

3.1. Phosphorylation

There is considerable evidence that phosphorylation is a key mechanism to rapidly regulate 

aromatase activity and BDE2 production. For instance, early work in quail showed that 

Ca2+-dependent phosphorylation of aromatase caused a rapid decrease of brain aromatase 

activity in hypothalamic homogenates and explants (Balthazart et al., 2005, 2001a; 

Balthazart et al., 2001b). Further work revealed that quail aromatase has 15 predicted 

consensus phosphorylation sites, and that protein kinase C and protein kinase A are involved 

in phosphorylation control of aromatase activity (Balthazart et al., 2005). Hayasi and Harada 

(Hayashi and Harada, 2014) reported that in human JEG-3 cells aromatase is phosphorylated 

by calcium/calmodulin-dependent protein kinase II (CaMKII) and dephosphorylated by 

calcineurin, with catalytic activity being reversibly regulated. Additional work revealed 

that acid phosphatase blocks the inhibiting effects of Ca2+-dependent phosphorylation on 

aromatase activity in quail (Balthazart et al., 2005). It was also shown that sexual interaction 

decreases aromatase activity within minutes in male quail medial preoptic nucleus (Cornil, 

2018; de Bournonville et al., 2017a, b). The authors proposed that the rapidity of the 

effect suggests a nongenomic mechanism is involved that may involve glutamate signaling 

and Ca2+-dependent phosphorylation of aromatase (de Bournonville et al., 2017a). Indeed, 

glutamate is increased in the medial POA of the male quail during sexual interaction 

and injection of the glutamate agonist, kainate into the medial preoptic nucleus led to a 

significant decrease of aromatase activity in male quail (de Bournonville et al., 2017b). 

Similar to the observation in quail, a rapid decrease of aromatase activity was also 

observed in the male and female zebra finch hypothalamus, hippocampus and caudomedial 

nidopallium (NCM) by Ca2+-dependent phosphorylation (Comito et al., 2016). In further 

support of a role for Ca2+ in regulating brain aromatase, depletion of Ca2+ stores in zebra 

finch forebrain and rat hippocampal neurons in culture resulted in increased release of 

E2 (Fester et al., 2016; Remage-Healey et al., 2011) and dephosphorylation of aromatase 

(Remage-Healey et al., 2011). Intriguingly, E2 treatment increased phosphorylation of 

aromatase and increased aromatase protein levels in rat hippocampal neurons, suggesting 

that E2 can regulate aromatase in the rat hippocampus (Remage-Healey et al., 2011).

Subsequent work used liquid chromatography with tandem mass spectrometry analysis to 

identify phosphorylation sites in human aromatase (Ghosh et al., 2019). The study revealed 

that human aromatase has as many as 19 phosphorylation sites, of which T462, T162, H475/

S478, and Y361 are major and reproducibly detectable (Ghosh et al., 2019). Phosphorylation 

sites T462, S118 and S478 are highly homologous between species, being present in human, 

monkey, rat, zebra finch, mouse and chicken. Phosphorylation site Y361 is present in 

human, monkey, zebra finch, chicken and quail, but not in rat or mouse. Interestingly, 

phosphorylation of Y361 was shown to enhance aromatase activity, and phosphorylation 
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of S478 in the active site access channel was proposed to also be significant as previous 

work implicated S478 in catalysis (Ghosh et al., 2009; Kao et al., 2001). An important 

point to consider is that phosphorylating and dephosphorylating conditions likely work 

together to regulate aromatase activity. In support of this possibility, work using zebra 

finch brain homogenates found that acid phosphatase increases aromatase activity in low 

to moderate phosphorylating conditions, while the opposite effect is observed under high 

phosphorylating conditions (Hovsepian-Ruby, 2017). In addition, low to moderate levels 

of acid phosphatase increased aromatase activity and Y361 phosphorylation, while high 

concentrations strongly inhibited aromatase activity and Y361 phosphorylation (Hovsepian-

Ruby, 2017). Another investigative group performed microsecond-long all-atom molecular 

dynamics simulations to determine how phosphorylation regulates human aromatase 

catalyzed estrogen synthesis (Ritacco et al., 2019). They proposed that phosphorylation 

of residue Y361 in aromatase leads to stabilization of its adduct with the CYP450 

reductase flavin mononucleotide domain (Ritacco et al., 2019). This may facilitate estrogen 

biosynthesis by favoring aromatase as it competes with other proteins that require CYP450 

s reductase’s electron supply. Finally, a myc-tagged mouse aromatase construct transfected 

into COS cells or HEK-293T cells was used to further study phosphorylation of mouse 

aromatase (Miller et al., 2008). The study demonstrated that mutation of S118 to Ala 

blocked phosphorylation and led to destabilization of aromatase, suggesting that S118 

may have an important structural role (Miller et al., 2008). Using a phosphomimetic S118 

D mutant, their work provided evidence that S118 phosphorylation decreases aromatase 

activity (Miller et al., 2008). Taken as a whole, the above studies demonstrate that 

phosphorylation can either increase or decrease aromatase activity depending on the site(s) 

phosphorylated. Unfortunately, there are few studies that have examined phosphorylation of 

brain aromatase in physiological or pathological processes, and thus work to address this 

deficit is very much needed.

3.2. Glutamate

Glutamate, the major excitatory amino acid transmitter in the brain, has been shown 

to rapidly regulate neural aromatase activity and BDE2 levels, although species and 

brain region-specific differences exist. For example, glutamate agonists rapidly decreased 

aromatase activity in quail hypothalamic explants (Balthazart et al., 2006). The rank order 

of effectiveness was kainate > AMPA > NMDA. Likewise, glutamate retrodialysis was 

shown to induce a significant decrease of local E2 levels in the NCM of the zebra finch 

(Remage-Healey et al., 2008). The glutamate receptor responsible for mediating the effect 

was not studied, but aromatase and NMDA receptors have been shown to be colocalized 

in hippocampal neurons of zebra finch (Saldanha et al., 2004), which raises the possibility 

that NMDAR may mediate the effect. In contrast to the reports in quail and zebra finch, 

glutamate administration was shown to be stimulatory to BDE2 release in the rat as in vivo 
kainate administration more than doubled E2 release in the rat hippocampus within two 

hours (Sato and Woolley, 2016). Similarly, NMDA treatment nearly doubled E2 release in 

male rat hippocampal slices incubated in vitro (Hojo et al., 2004). The stimulatory effect of 

NMDA was fully suppressed by treatment with an NMDAR antagonist, MK-801 (Hojo et 

al., 2004). NMDA also induced production of pregnenolone, an upstream precursor to E2, 

and this effect was found to be dependent upon NMDAR and Ca2+ influx (Shibuya et al., 
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2003). Rune’s group found a biphasic effect of NMDA on E2 release from rat hippocampal 

neurons in culture - a decrease noted at 30 min after NMDA treatment followed by a 

significant increase at 60 min post-treatment (Fester et al., 2016). Finally, the NMDA 

receptor agonist, D-aspartate (Errico et al., 2015) increased aromatase mRNA and protein 

as well as brain E2 levels in the frog, an effect that involved CREB signaling (Burrone 

et al., 2012; Santillo et al., 2013). Since glutamatergic signaling is a major component of 

excitatory neurotransmission in the brain, its ability to rapidly regulate BDE2 release could 

suggest a role for BDE2 in neurotransmission. Indeed, numerous studies have now provided 

evidence that BDE2 regulates synaptic function, cognition and memory (Brandt et al., 2020; 

Lu et al., 2019; Mukai et al., 2010, 2006), as will be discussed in a subsequent section.

3.3. Transcriptional regulation

In addition to phosphorylation, there is also abundant evidence that aromatase is regulated 

at the transcriptional level. For instance, treatment with a hypomethylating agent, 5-

aza-2’deoxycytidine caused a 10-fold increase of brain-specific 1.f aromatase promoter 

transcription and an ~80% increase in aromatase activity in human glioblastoma cells (Tan 

et al., 2017). There was no effect on the PII aromatase promoter. This finding indicates 

that methylation can inhibit or restrain aromatase expression and activity in glioblastoma 

cells. It would be interesting to determine whether methylation can similarly regulate 

aromatase expression/activity in normal non-transformed neuronal and glia cells in the 

brain. Regarding the mechanisms underlying transcriptional control of the brain-specific 1.f 

aromatase promoter, the orphan transcription factor ARP-1 has been shown to bind to the 

brain-specific exon 1 cis-acting element aro-A1 and induce the 1.f promoter (Honda and 

Harada, 2020). A functional regulatory role for the interaction was demonstrated via ARP-1 

knockdown in mouse neurons, which significantly decreased aromatase induction. Further 

work by this group revealed that the Lim-homeodomain protein, Lhx2, also appears to be 

involved in brain-specific 1.f aromatase transcriptional control (Honda et al., 2012). Lhx2 

was identified as binding to the mouse brain-specific exon 1 aro-B cis-acting element, and a 

reporter assay demonstrated Lhx2-dependent aromatase promoter activity was suppressed by 

siRNA knockdown of Lhx2 expression (Honda et al., 2012). Finally, the human aromatase 

gene was shown to contain two binding sites for the hormone-dependent transcription 

factor, retinoic acid-related orphan receptor-alpha (RORA) (Sarachana et al., 2011). Further 

work indicated a transcriptional regulatory role for RORA as its overexpression in human 

neuroblastoma cells led to a ~10-fold increase of aromatase expression (Sarachana et al., 

2011). The authors further found that estrogen increases RORA expression in the brain, and 

that expression of RORA and aromatase were both significantly decreased in the frontal 

cortex of autistic subjects, which the authors postulate may contribute to the disorder 

(Sarachana et al., 2011).

3.4. Gonadectomy and sex differences

Castration in male rats was found to significantly decrease aromatase mRNA levels in 

the male rat POA but not in the hippocampus or cingulate cortex (Roselli et al., 1998; 

Tabatadze et al., 2014). At the enzyme activity level, castration was shown to decrease 

aromatase activity in the POA (Roselli et al., 1984; Roselli and Resko, 1984), but not in 

the amygdala or cortex (Roselli et al., 1984). These findings suggest that the testis can 
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regulate brain aromatase and E2 levels, especially in the hypothalamus. The regulatory effect 

of the testis may be mediated by the gonadal hormone, testosterone, as several studies have 

shown that testosterone can regulate brain aromatase and E2 levels (Roselli et al., 1984; 

Roselli and Resko, 1984). Interestingly, additional studies revealed aromatase activity did 

not change in the female rat POA after ovariectomy or during the estrus cycle (Roselli 

et al., 1984). Several studies have demonstrated that sex differences exist for aromatase 

expression in the amygdala and POA of the rat brain. For instance, aromatase mRNA levels 

in the amygdala were reported to be significantly higher in males as compared to females 

(Tabatadze et al., 2014). Further work found that E2 levels are significantly higher in the 

amygdala and POA of male rats as compared to levels in ovariectomized females (Li and 

Gibbs, 2019). Sex differences were demonstrated in the zebra finch brain with greater 

aromatase activity observed in the male amygdala and hypothalamus/POA as compared 

to female (Roselli et al., 1984). The reasons for the sex differences in the zebra finch 

brain are unclear but they may relate to regulation of key functions controlled by these 

brain regions, including reproductive behavior, learning and memory, song-recognition, and 

singing. Sex differences in aromatase expression in the brain could be due to regulation 

by gonadal hormones and/or sex chromosome complement. Indeed, there is significant 

evidence of gonadal hormone regulation of aromatase in the brain of various species as 

described in the next section below. Only a few studies have examined the possibility of sex 

chromosome complement regulation of aromatase expression and this work was performed 

in the developing mouse brain (Cisternas et al., 2017, 2015). The investigators used the 

four core genotypes mouse model in which the sex chromosome complement and gonadal 

sex are dissociated and found that 16 day old XY mouse had higher aromatase expression 

in the anterior amygdala and stria terminalis than XX embryos, independent of gonadal 

sex (Cisternas et al., 2015). Interestingly, E2 or dihydrotestosterone enhanced aromatase 

expression in cultured amygdaloid neurons from XX embryos but not XY embryos, and 

this effect was also independent of gonadal sex and appeared to be mediated by ERβ 
(Cisternas et al., 2017, 2015). It would be interesting to conduct additional studies to 

determine whether aromatase regulation by sex chromosome complement extends to other 

brain regions, other ages, and to other species.

In contrast to the sex differences observed in the amygdala, POA and stria terminalis, 

examination of aromatase mRNA levels and immunoreactive aromatase expression in the 

hippocampus of the rat did not reveal any sex differences (Fester et al., 2012; Tabatadze et 

al., 2014), and E2 levels were not significantly different in the intact male hippocampus 

versus the ovariectomized female rat hippocampus (Li and Gibbs, 2019). In addition, 

measurement of E2 in the supernatant of cultured female and male hippocampal neurons 

also revealed no significant sex differences (Fester et al., 2012). However, a sex difference 

in E2 levels in the hippocampus of the intact male rat versus the intact female proestrus rat 

has been reported, with hippocampal E2 levels as high as 8 nM reported in the intact male 

rat versus 1.7 nM in the intact proestrus female rat (Mukai et al., 2010). These contradictory 

reports on sex differences in hippocampal E2 levels may be due to differences in the study 

design, including 1) differences due to measuring mRNA and protein as compared to the 

actual product E2, 2) differences in comparing intact males to ovariectomized females versus 
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comparing intact males to intact females, and 3) differences due to in vitro versus in vivo 
approaches.

3.5. Hormones

There is growing evidence that brain aromatase is regulated by both steroid and peptide 

hormones. Testosterone, a substrate for estrogen production, was shown to increase 

aromatase activity in the POA of castrate male Japanese quail (Balthazart et al., 1990) 

as well as castrate male and female rat POA, periventricular magnocellular nucleus and 

posterior medial hypothalamic nucleus (Abdelgadir et al., 1994; Roselli et al., 1984), and 

in the nuclei of the song system in the castrate male zebra finch (Vockel et al., 1990), 

and suprachiasmatic nucleus, paraventricular nucleus, ventromedial nucleus and lateral 

hypothalamus of the castrate male monkey (Roselli and Resko, 1989). The regulation of 

aromatase activity in the brain by testosterone appears to be exerted at the transcriptional 

level as testosterone was found to cause an associated increase of aromatase mRNA levels in 

the brain of several species (Abdelgadir et al., 1994; Harada et al., 1992).

In addition to testosterone, E2 has also been demonstrated to regulate expression of brain 

aromatase. Using a mouse hypothalamic neuronal cell line, it was shown that ERα interacts 

with the 1.f promoter and that E2 treatment increased aromatase mRNA, an effect reversed 

by an ER antagonist or ERα knockdown (Yilmaz et al., 2009). Likewise, E2 increased 

aromatase mRNA levels in the ovariectomized female rat amygdala (Tabatadze et al., 2014). 

Similarly, tonic E2 treatment was found to increase aromatase expression in the female 

mouse hippocampus; however, phasic E2 treatment was shown to actually be inhibitory 

(Iivonen et al., 2006). Finally, short-term E2 replacement decreased aromatase expression 

in the monkey hippocampus (Sorwell et al., 2012). Unfortunately, none of these studies 

examined aromatase activity or E2 levels, so it is unclear whether the aromatase expression 

results actually contributed to changes in BDE2 levels. Furthermore, it is unclear why 

some studies found stimulatory effects of E2 while others reported inhibitory effects. 

It is possible the divergent results could be due to study differences, including species 

differences, examining different brain locations, utilizing in vitro versus in vivo studies, 

and/or employing different E2 treatment regimens.

In addition to testosterone and E2, progestins and glucocorticoids have also been implicated 

to transcriptionally regulate the expression of brain aromatase. For instance, R5020, a 

synthetic progestin, was shown to increase aromatase promoter 1.f transcription in mouse 

hypothalamic neuronal cell lines, an effect that was reversed by the progesterone receptor 

antagonist RU486 and siRNA knockdown of the progesterone receptor (Yilmaz et al., 

2011). The physiological importance of this regulatory effect remains unclear. However, 

progesterone has been reported to act in the hypothalamus to help amplify induction of the 

gonadotropin releasing hormone (GnRH) surge and luteinizing hormone (LH) surge (Lee 

et al., 1990; Mahesh and Brann, 1998; Stephens et al., 2015). Interestingly, Terasawa and 

coworkers (Kenealy et al., 2017; Terasawa, 2018) recently demonstrated a role for BDE2 in 

GnRH and LH surge induction in ovariectomized monkeys. It would therefore be interesting 

to perform studies to examine whether progesterone enhances hypothalamic BDE2 in vivo 
and whether this effect contributes to progesterone’s ability to amplify the GnRH and LH 
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surge. One of the most profound regulations of 1.f promoter transcription reported to date 

was the finding that the glucocorticoid, dexamethasone can induce up to a 98-fold increase 

of aromatase mRNA and protein in mouse hypothalamic neuronal cell lines (Brooks et al., 

2012). This effect required mediation by the glucocorticoid receptor as it was blocked by a 

glucocorticoid receptor antagonist and by siRNA knockdown of the glucocorticoid receptor 

(Brooks et al., 2012). Furthermore, acute stress, which increases the release of corticosterone 

from the adrenal, was shown to significantly enhance aromatase activity in the POA of 

quail (Dickens et al., 2013), and to rapidly increase aromatase expression and E2 levels in 

the paraventricular nucleus of proestrus and ovariectomized female rats (Liu et al., 2011). 

All of these studies focused on regulatory effects in the hypothalamus. It would also be 

interesting to examine the hippocampus and amygdala, as well as other brain regions for 

stress and glucocorticoid regulation of aromatase and BDE2 levels. The POA is known to 

control gonadotropin secretion, reproduction and sexual behavior, while the paraventricular 

nucleus is involved in osmoregulation, appetite control, and the body’s response to stress. 

Thus, the regulation of hypothalamic BDE2 by acute stress and glucocorticoids could be 

related to one or more of these functions.

In addition to steroid hormones, peptide hormones have also been shown to regulate 

aromatase activity and BDE2 levels. Of significant interest, the peptide hormone, GnRH 

was shown to have a biphasic effect upon E2 synthesis in postnatal rat hippocampal 

slices and hippocampal neurons in culture (Fester et al., 2012; Prange-Kiel et al., 2008). 

Low doses (10 nM) of GnRH stimulated E2 synthesis while higher doses (500 nM) 

were inhibitory. The effects of GnRH appeared to be specific as they were blocked by 

a GnRH receptor antagonist. Another study showed that intracerebroventricular injection 

of GnRH also increased E2 levels in the hippocampus (Marbouti et al., 2020b). The 

physiological significance of the GnRH effects on BDE2 are unclear, but they could be 

related to regulation of synaptic function and memory. In support of this possibility, 

spine synapse density was shown to be upregulated by GnRH in rat hippocampal neuron 

cultures, and this effect was blocked by the aromatase inhibitor letrozole (Prange-Kiel 

et al., 2008). Furthermore, hippocampal administration of GnRH was shown to enhance 

memory in ovariectomized rats, an effect that was also blocked by central administration of 

letrozole (Nelson et al., 2016). Finally, intriguingly, another peptide hormone, gonadotropin-

inhibitory hormone (GnIH), was recently shown to increase aromatase activity and E2 

synthesis in the POA in male quail (Ubuka et al., 2014). The investigators also demonstrated 

that aromatase cells express GnIH receptor mRNA, and that GnIH fibers form close 

appositions to aromatase immunoreactive cells in the POA, as well as the bed nucleus of the 

stria terminalis, mediobasal hypothalamus and periaqueductal grey of the male quail (Ubuka 

et al., 2014). The authors suggest that GnIH increases BDE2 above its optimal level which 

may play a role in the ability of GnIH to inhibit aggressive and sexual behavior in males 

(Ubuka et al., 2014). However, further studies are needed to explore this hypothesis.

3.6. Aging, diet, metabolism and obesity

There is growing evidence that brain aromatase and BDE2 levels are significantly 

regulated by aging and diet. In the human, PET imaging revealed that normal aging and 

postmenopausal status were associated with decreased uptake of 11C-vorozole throughout 
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the brain in both men and women, indicating that aging decreases aromatase levels in 

the human brain (Biegon et al., 2015). In the rat, two studies reported that aromatase 

expression and activity in the hypothalamus of the rat is unaffected by age (Munetomo et 

al., 2015; Roselli et al., 1986), while a third study found that the number of immunoreactive 

aromatase neurons in the POA were decreased in 36-month-old as compared to 6-month-old 

male quail (Dellovade et al., 1995). Likewise, aromatase expression and E2 levels were 

found to be decreased in the hippocampus of 19-month-old versus 10-month-old female 

rats (Chamniansawat and Sawatdiyaphanon, 2018). Aromatase protein expression was also 

demonstrated to be decreased in the hippocampus of 20-month-old versus 3-month-old 

female mice (Zhao et al., 2017). While aromatase expression in the monkey hippocampus 

was unchanged with aging, expression of 17α-hydroxylase and 3β-HSD, key steroidogenic 

enzymes necessary for E2 synthesis, were significantly decreased in the hippocampus of 

aged monkeys (Sorwell et al., 2012). As a whole, these studies suggest that aromatase and 

brain E2 levels may be decreased by aging in certain brain areas, with the hippocampus 

being most consistently reported to exhibit an age-related decrease of aromatase and E2 

levels. Since BDE2 has been implicated in the regulation of many key brain processes, 

its decrease with aging may contribute, in part, to the age-related decline in key brain 

processes/functions such as synaptic plasticity, memory and cognition, anti-inflammatory 

effects, reproductive function, and neuroprotection (Brandt et al., 2020; Duncan and 

Saldanha, 2020; Garcia-Segura et al., 2003; Lu et al., 2019, 2020; Saldanha, 2020; Terasawa, 

2018; Wang et al., 2020).

The effect of diet upon brain aromatase has been little studied, although there has been 

some work examining the effect of flavonoids and phytoestrogens, as well as hypoglycemia 

and obesity/body mass index (BMI) on brain aromatase in rodents and humans. Flavonoids 

are found in many plants and represent the most common polyphenolic compounds in 

human diet. Red wine is a well-known flavonoid, and in vivo studies revealed a significant 

stimulatory effect of chronic (8-week) treatment of red wine on aromatase expression and 

activity in the rat hippocampus (Monteiro et al., 2008). The effect in the hippocampus 

is unlikely to be due to procyanidins in red wine as a similar 8-week treatment with 

procyanidins had no effect on hippocampal aromatase expression or activity (Monteiro et 

al., 2008). Since red wine has been shown in many studies to have anti-oxidant properties 

and to be neuroprotective (Amodio et al., 2006; Basli et al., 2012), the authors suggested 

that the neuroprotective effect of red wine may involve mediation by aromatase and BDE2 

(Monteiro et al., 2008). However, this intriguing suggestion remains to be tested. In contrast 

to the effect of flavonoids, phytoestrogens, which are estrogen-like compounds derived from 

plants, were found to have no effect upon brain aromatase levels in male rats (Lephart 

et al., 2001; Weber et al., 2001). However, another study found that administration of the 

phytoestrogen, genistein to ovariectomized rats increased protein synthesis in the brain 

and this effect was blocked by the aromatase inhibitor, fadrozole (Lyou et al., 2008). The 

authors suggest that aromatase in the peripheral and in the brain helps mediate the effects 

of genistein on protein synthesis in the brain (Lyou et al., 2008). PET imaging of the 

human brain using 11C-vorozole revealed that obesity (BMI) was associated with lower 

aromatase availability in the amygdala in both male and females, although the mechanism 

underlying this effect is unclear (Biegon et al., 2020). Interestingly, the investigators found 
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that aromatase availability in the amygdala was positively correlated with personality trait 

constraint, and they suggested that the brain’s capacity to make E2 may influence the risk of 

obesity and self-control in men and women (Biegon et al., 2020).

Finally, recent evidence suggests that BDE2 may regulate glucose homeostasis through 

actions in the ventromedial nucleus (VMN), an important site for control of glucose 

homeostasis in the body. Quantification of E2 levels in the male rats revealed that acute and 

chronic hypoglycemia, respectively enhanced or decreased E2 levels in both the rostral and 

caudal VMN (Bheemanapally et al., 2020). In female rats, acute hypoglycemia increased 

E2 levels in the rostral VMN but not in the caudal VMN, while chronic hypoglycemia 

increased E2 in the caudal VMN with no change observed in the rostral VMN. The 

authors suggest that BDE2 in the VMN may contribute to regulation of glucose homeostasis 

(Bheemanapally et al., 2020). In possible support of this suggestion, inhibition of BDE2 

synthesis in the VMN by letrozole administration attenuated hypoglycemic upregulation 

of the energy regulator proteins, 5-AMP-activated protein kinase (AMPK) and glucagon 

in male and female rats (Uddin and Briski, 2021). Furthermore, letrozole treatment was 

shown to inhibit hypoglycemic-induced glycogen elevation in the VMN, while exerting 

a stimulatory effect in females (Ibrahim et al., 2020). The authors suggest that BDE2 

facilitates hypoglycemic induction of VMN glycogen levels in males, but acts to inhibit 

glycogen levels in hypoglycemic females (Ibrahim et al., 2020).

3.7. Environmental pollutants

Of significant note, several groups have demonstrated that environmental pollutants can 

significantly increase expression of brain aromatase and BDE2 release. For example, 

tributyltin, an environmental pollutant and retinoid X receptor binder, is an organic 

compound of tin and is a widely used pesticide in marine environments. It can penetrate 

the blood brain barrier and accumulates in the brain. Interestingly, 48-h treatment with 

tributyltin (0.1 μM) was shown to increase aromatase expression and led to a 2-fold increase 

of E2 release from rat hippocampal slices (Munetsuna et al., 2014). Further evidence of 

a role for retinoid X receptors in regulation of aromatase and BDE2 was demonstrated 

by studies showing that treatment of rat hippocampal slices with bexarotene, a retinoid X 

receptor agonist, also increased E2 levels as well as aromatase expression (Ishihara et al., 

2019). Bexarotene also attenuated oxygen-glucose deprivation-induced neuronal cell death, 

and this was suggested to be mediated by BDE2, as it was blocked by letrozole (Ishihara 

et al., 2019). Intriguingly, the human brain-specific aromatase promoter has six retinoid X 

receptor half sites, two of which were responsible for the increased aromatase expression by 

bexarotene (Ishihara et al., 2019). Furthermore, 9-cis-retinoic acid, which can also activate 

retinoid X receptors, was also shown to induce a 1.7 fold increase of aromatase protein and 

a 2-fold increase of de novo synthesis of E2 from rat hippocampal slices (Munetsuna et al., 

2009). Another well-known environmental toxin, dioxin, has also been shown at doses as 

low as 1 pM to significantly increase aromatase expression and activity in human glioma 

cells via an effect that involved extracellular signal regulated kinases (ERK) activation 

and enhanced CCATT-enhancer binding proteins (C/EBP) binding activity within exon 1.f 

promoter (Tan et al., 2013). Furthermore, bisphenol A, a plastics monomer and hormonally 

active pollutant, induced robust brain-specific expression of aromatase in the zebrafish 
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embryo, an effect that involved nuclear estrogen receptors (Chung et al., 2011). The reason 

why BDE2 is induced by environmental pollutants is unclear. However, environmental 

pollutants have been implicated to have a detrimental effect upon the brain as they induce 

oxidative stress, inflammation and apoptosis in the brain (Hassoun et al., 1998; Mitra 

et al., 2013). Thus, induction of aromatase and BDE2 by environmental pollutants could 

be a defense mechanism to protect the brain from the oxidative stress and inflammatory 

damage caused by the environmental pollutants. Further studies are needed to explore this 

possibility.

3.8. Drugs

Both recreational and medicinal drugs have been implicated to regulate brain aromatase. 

For instance, studies from multiple species, including humans, suggest that nicotine can 

inhibit brain aromatase levels. Studies in fetal and neonatal rats and mice found that 

nicotine administration significantly inhibited forebrain aromatase activity (Bertilsson et 

al., 1976; von Ziegler et al., 1991). Likewise, PET imaging in female baboons revealed that 

nicotine administration dose-dependently decreased 11C-vorozole uptake in the brain, with 

the amygdala and POA showing the largest reductions (Biegon et al., 2012, 2010), indicating 

that nicotine decreases aromatase levels in the non-human primate brain. Since the doses 

of nicotine used in the study produced plasma levels similar to those found in smokers, the 

findings raise the possibility that smoking may inhibit brain aromatase and BDE2 levels, 

although this remains to be verified. Similar to the effects of nicotine, administration of the 

barbiturate, phenobarbital (3.5 g/kg for 5 days) in adult male mice was shown to result in 

a 50 % reduction of brain aromatase activity (Weidenfeld et al., 1983). Brain aromatase 

activity had returned to control group levels when examined five days after termination of 

phenobarbital treatment. Chronic (28 day) treatment with the antipsychotic drugs, clozapine 

and haloperidol, induced an increase in aromatase mRNA levels, but not protein, in male rat 

brain (Bogus et al., 2019). In contrast, the antipsychotic drug, olanzapine had no effect on 

aromatase mRNA or protein expression in the brain (Bogus et al., 2019). Since this study 

did not measure aromatase activity or BDE2 levels, and clozapine and haloperidol regulation 

did not extend to aromatase protein levels, the significance of these findings are unclear 

and will require further investigation. Finally, morphine treatment was shown to increase 

aromatase expression in rat hippocampal neurons and in the brain of male mice and rats 

(Aloisi et al., 2010; Cui et al., 2011; Khazali and Mahmoudi, 2019), as well as E2 release 

in rat hippocampal neurons in vitro (Cui et al., 2011). Interestingly, morphine regulation of 

BDE2 appears to serve a neuroprotective effect as the protective effects of morphine against 

amyloid toxicity in rat and human neuronal cell cultures was blocked by siRNA knockdown 

of aromatase (Beyer et al., 1994a).

3.9. Brain injury and inflammation

As mentioned previously, aromatase is generally expressed only in neurons basally, with 

astrocytes showing little to no expression. However, in 1999 Garcia-Segura’s group was the 

first to demonstrate that aromatase can be strongly induced in astrocytes in various regions 

of the male and female rat and mouse brain following a penetrating brain injury or injection 

of the excitotoxin kainic acid (Garcia-Segura et al., 1999). In kainic acid-injected animals, 

aromatase-positive astrocytes were observed in all brain regions that had significant neuronal 
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damage, including the hippocampus, pyriform and entorhinal cortex, amygdala, and bed 

nucleus of the stria terminalis (Garcia-Segura et al., 1999). Interestingly, neuronal aromatase 

expression was not affected by kainic acid injection. Furthermore, in the penetrating injury 

model, aromatase-positive astrocytes were observed in all injured brain regions, including 

the striatum, corpus callosum, cortex, hippocampus, hypothalamus, and thalamus (Garcia-

Segura et al., 1999). These findings indicate that aromatase is induced in astrocytes in most 

areas of the brain following excitotoxic or penetrating brain injury. Furthermore, penetrating 

brain injury also induced a significant increase of aromatase activity, indicating increased 

local E2 production (Garcia-Segura et al., 1999). Subsequent studies in the zebra finch 

confirmed penetrating brain injury upregulated aromatase in astrocytes in the lesion site 

within 24− 48 h after injury and demonstrated a parallel upregulation of local E2 (Mehos 

et al., 2016; Peterson et al., 2001). Robust aromatase induction in astrocytes and local E2 

elevation has also been observed in the hippocampus at 2–7 days following global cerebral 

ischemia (GCI) in male and female rats and mice (Cincioglu et al., 2012; Kelicen Ugur et 

al., 2011; Lu et al., 2020; Wang et al., 2020; Zhang et al., 2014). Focal cerebral ischemia has 

also been shown to increase aromatase expression in the penumbra/peri-infarct area of the 

cerebral cortex in rats (Carswell et al., 2005; Zhong et al., 2017).

The mechanisms underlying aromatase induction after brain injury are not entirely clear. 

However, brain injury is known to induce several pathological mechanisms that have 

been implicated in the regulation of brain aromatase, such as inflammation, cytokine 

and prostaglandin production, as well as induction of reactive oxygen species and 

oxidative stress (Lozano et al., 2015). In support of a potential regulatory role of 

inflammation and cytokines, it was found that expression of the cytokines, interleukin-1beta 

(IL-1β) and interleukin-6 (IL-6) are increased several hours prior to the increase of 

aromatase in astrocytes following a penetrating injury to the brain of male zebra finch 

(Duncan and Saldanha, 2011). Furthermore, administration of lipopolysaccharide (LPS) or 

phytohemagglutin to induce inflammation in the brain strongly induced expression of brain 

aromatase (Duncan and Saldanha, 2011; Sadasivam et al., 2014). Interestingly, LPS-induced 

acute inflammation was associated with increased brain expression of phosphoenolpyruvate 

carboxykinase (PEPCK), a key gluconeogenic enzyme (Sadasivam et al., 2014). Further 

work showed that inhibition of PEPCK by administration of the inhibitor glipizide 

significantly attenuated the inflammation-induced upregulation of aromatase expression in 

the brain, as well as the steroidogenic enzymes 3β-HSD, 17β-HSD and steroidogenic acute 

regulatory protein (STaR) (Sadasivam et al., 2014). The authors suggest that PEPCK may 

have an important role in regulating brain neurosteroidogenesis mediated by inflammation 

(Sadasivam et al., 2014). Interestingly, expression of proinflammatory cytokines was 

increased by inhibition of PEPCK, which the authors suggested could be due to the 

decreased production of neurosteroids (Sadasivam et al., 2014).

Additional work has implicated prostaglandin E2 (PGE2) as a key factor regulating 

aromatase and BDE2. PGE2 is increased in the male and female zebra finch brain after 

a penetrating injury (Pedersen et al., 2017, 2018), and central administration of the 

prostaglandin inhibitor, indomethacin was shown to reduce brain injury-induced elevation 

of aromatase and BDE2 in the zebra finch brain (Pedersen et al., 2018). Use of more specific 

E-prostanoid (EP) receptor antagonists for EP3 and EP4 receptors implicated EP3 receptors 
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in mediating BDE2 release in the injured male zebra finch brain, while EP4 receptors 

were implicated in injury-induced BDE2 release in females (Pedersen and Saldanha, 2017). 

Additionally, inflammation and PGE2 have also been demonstrated to increase aromatase 

activity and BDE2 in the immature rat and human cerebellum, with the PGE2 effect 

similarly involving EP3 and EP4 mediation (Dean et al., 2012; Wright et al., 2019), which 

indicates that inflammation and PGE2 regulation of aromatase and BDE2 occurs in other 

brain areas and in multiple species. Finally, nitrosative stress/oxidative damage to sheep 

astrocytes or sheep neurons in culture was shown to increase aromatase gene expression and 

immunoreactive protein levels (Lepore et al., 2009, 2011). This finding raises the possibility 

that oxidative stress following brain injury may also contribute to enhanced E2 production 

in the brain. As a whole, the studies indicate that trauma and ischemic injury to the brain 

causes a robust elevation of aromatase in astrocytes and a corresponding increase in BDE2, 

possibly through induction of inflammation, cytokines, and prostaglandins. Many of the 

above studies were performed in birds, with few studies in other species. Thus, future studies 

using other species are needed. Functionally, the elevation of aromatase and BDE2 after 

brain injury has been implicated to exert important neuroprotective and anti-inflammatory 

actions to help protect and repair the injured brain, which will be discussed in detail in a 

subsequent section (Arevalo et al., 2015; Brocca and Garcia-Segura, 2019; Garcia-Segura et 

al., 2003, 1999; Wang et al., 2020).

Interestingly, in addition to trauma and ischemic brain injury, there is evidence that 

aromatase and local E2 are altered in other types of neurodegenerative disorders, although 

the number of studies is relatively small. For instance, aromatase expression was found to be 

increased in astrocytes at disease onset in an animal model of amyotrophic lateral sclerosis, 

followed by decreased expression as the disease progressed (Eisenman, 1988). In addition, 

examination of brain tissue samples from Alzheimer’s disease (AD) subjects revealed 

increased aromatase immunoreactivity in the hippocampal CA4 region, but contrastingly 

aromatase immunoreactivity was decreased in the brains of 5xFADD mice versus wild 

type controls (Prange-Kiel et al., 2016). Increased aromatase mRNA and immunoreactive 

protein levels were also demonstrated in the prefrontal cortex of the late-stage human 

AD brain, with the aromatase increase occurring primarily in astrocytes (Luchetti et al., 

2011). Unfortunately, local E2 levels were not determined in these two studies on AD. A 

subsequent study did measure brain E2 levels in postmortem brain samples from women 

with AD, as well as aromatase expression and immunoreactivity (Yue et al., 2005). This 

study found that aromatase expression, aromatase immunoreactivity, and E2 levels were 

significantly decreased in frontal cortex and cerebellum of AD subjects, as compared to 

normal controls (Yue et al., 2005). In addition, there was a significant negative correlation 

between the reduced aromatase expression and amyloid plaque density in the cortex in AD 

subjects, suggesting that BDE2 may protect the AD brain by regulating plaque formation 

(Yue et al., 2005). In support of this possibility, APP23/Ar+/− mice, which are transgenic 

mice that overexpress amyloid precursor protein (APP) and lack aromatase, were found 

to have increased BACE activity as well as early onset and increased Aβ deposition in 

the brain (Yue et al., 2005). Finally, seizure activity in a rat model of status epilepticus 

was found to stimulate de novo synthesis of E2 in the hippocampus (Sato and Woolley, 

2016). Furthermore, systemic or intra-hippocampal administration of the AI, fadrozole in 
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gonadectomized rats suppressed kainic acid-induced seizures (Sato and Woolley, 2016). 

These findings suggest that over-production of hippocampal-derived E2 may have a role 

in promoting seizures and that aromatase inhibitors may have therapeutic utility for status 

epilepticus.

4. Role of brain aromatase and BDE2 in sexual differentiation, 

reproduction and socio-sexual behavior

The above studies demonstrated aromatase localization and BDE2 production in many brain 

regions in multiple species, and showed regulation occurs by multiple processes and factors, 

often in a tissue- or cell-specific manner. In the following sections, we will review and 

discuss the evidence supporting multiple important functional roles implicated for BDE2 in 

the brain.

4.1. Regulation of sexual differentiation

In many species, including rodents, birds, ruminants and carnivores, neuronal aromatase 

and BDE2 have been implicated to play a key role in masculinization of the brain (Gorski, 

1985), although the evidence for a similar role in other mammalian species such as monkeys 

and humans is less clear. As discussed previously, aromatase is highly expressed in the 

hypothalamus and sexual dimorphic regions of the POA (Sasano et al., 1998; Selmanoff 

et al., 1977). During the perinatal period, aromatase in these and other brain regions 

acts to convert testosterone to estrogen, which then contributes significantly to sexual 

differentiation (masculinization) of the brain (McCarthy, 2008). Masculinization of the 

brain is characterized by expression of male-typical sexual behavior, male-type pattern 

of gonadotropin secretion, and aggression (Negri-Cesi et al., 2004). In addition, there 

is a second process of defeminization, in which male ability to exhibit female typical 

behaviors in adulthood is significantly attenuated (Negri-Cesi et al., 2004). After exposure to 

testosterone from the developing testes, the mammalian brain develops as male, while in the 

absence of such exposure it develops as female (Gorski, 1985). In females, the lack of early 

exposure to testosterone is essential for sexual behavior and expression of the ovulatory 

surge of gonadotropins (Gorski, 1985; Negri-Cesi et al., 2004).

In support of a key role for aromatase and BDE2 in sexual differentiation of the brain 

in rodents, early work showed that estrogen administration neonatally in castrate male 

rats suppressed the female pattern of gonadotropin secretion and behavior, while inducing 

the male pattern of sexual behavior (Booth, 1977). This finding suggested that sexual 

differentiation of the brain involves aromatization of testicular androgens to estrogens in 

the brain. In further support of this suggestion, administration of an aromatase inhibitor 

perinatally to male rats resulted in reduced development of the sexual dimorphic nucleus 

in the POA and reduced masculine sexual behavior (Houtsmuller et al., 1994). Injection 

of an aromatase inhibitor later on day 12 postnatally had no significant effect in male 

rats, indicating that BDE2 acts in the early postnatal period to induce sexual differentiation 

(Gonzalez and Leret, 1994). Furthermore, BDE2 actions appear to be mediated by estrogen 

receptors as postnatal administration of the estrogen receptor antagonist, tamoxifen inhibited 

sexual differentiation of the brain (Dohler et al., 1984). Further work using estrogen receptor 
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knockout mouse models has suggested that ERα mediates masculinization, while ERβ is 

critical for the defeminization effects of BDE2 (Kudwa et al., 2006). BDE2 appears to 

regulate sexual differentiation through multiple processes including regulation of apoptosis, 

neurite outgrowth, and synaptic patterning in various brain regions (McCarthy, 2008; 

Tsukahara and Morishita, 2020). Additional work indicates that BDE2 increases excitatory 

inputs to the POA in order to promote male sexual behavior in adulthood, and there is 

evidence this effect involves an increase in PGE2 that promotes anchoring of glutamate 

receptors in dendritic spines (Wright et al., 2010). There is also evidence that BDE2 

enhances glutamate release in the hypothalamus as a mechanism to facilitate defeminization 

(Schwarz et al., 2008).

4.2. Regulation of reproduction

In addition to regulation of sexual differentiation, there is increasing evidence that BDE2 

has an important role in adult animals to regulate GnRH and gonadotropin secretion, as well 

as puberty and socio-sexual behavior. With respect to a role in regulation of gonadotropin 

secretion, recent work has demonstrated that systemic letrozole administration strongly 

attenuated the exogenous E2-induced LH surge in ovariectomized monkeys (Kenealy et al., 

2017). This effect appears to be due to actions in the hypothalamus to regulate factors that 

control LH release, as letrozole administration in the median eminence of the hypothalamus 

of ovariectomized monkeys significantly attenuated the exogenous E2-induced surges of 

kisspeptin and GnRH, which are the key hypothalamic factors responsible for the LH 

surge (Kenealy et al., 2013; Terasawa, 2018). Estradiol benzoate administered into the 

median eminence of ovariectomized monkeys was also found to rapidly stimulate release of 

pulsatile GnRH and E2 and this effect was blocked by letrozole treatment. The investigators 

also found that excitation of the mediobasal hypothalamus through electrical stimulation 

stimulated both GnRH and E2 release, suggesting an activity-dependent regulation of BDE2 

in the hypothalamus (Kenealy et al., 2013; Terasawa, 2018). Additional work revealed that 

direct administration of letrozole into the median eminence of ovariectomized monkeys 

suppressed spontaneous GnRH release and estradiol benzoate-induced release of GnRH 

and E2 (Kenealy et al., 2013; Terasawa, 2018). Collectively, these studies provide evidence 

that BDE2 is involved in regulation of pulsatile GnRH release and is necessary for full 

expression of the GnRH and LH surge. In addition to these effects, there is also evidence 

that BDE2 may contribute to negative feedback regulation of gonadotropin secretion. In 

support of this suggestion, chronic daily letrozole treatment of ovariectomized female 

monkeys resulted in a suprahypergonadotropic phenotype one month after treatment was 

initiated (Kraynak et al., 2017). A potential role for BDE2 in negative feedback control 

in males was also suggested based on the finding that treatment of male monkeys 

with the aromatase inhibitor, 1,4,6-androstratriene-3,17-dione (ATD) reduced hypothalamic 

aromatase activity by 80–90 % and resulted in elevation of LH (Ellinwood et al., 1984). 

Likewise central administration of the aromatase inhibitor fadrozole in male sheep increased 

LH pulse frequency, suggesting that central aromatization controls pulsatile LH secretion 

(Sharma et al., 1999).

The above finding that BDE2 may exert negative feedback control over gonadotropin 

secretion is intriguing and raises the possibility it could participate in restraining GnRH 
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pulsatility until the time of puberty. During the infantile period after birth, there is strong 

GnRH pulsatility, which becomes quiescent during childhood, and then recommences at 

the time of puberty. This finding has led to the suggestion that there is a “brake” or 

inhibitory signal that restrains GnRH pulsatility, which is released at puberty. Intriguingly, 

Lephart and Ojeda Lephart and Ojeda (1990) found that in both male and female 

rats, hypothalamic aromatase activity is significantly decreased at the time of puberty. 

Furthermore, hypothalamic aromatase mRNA and protein levels were also shown to be 

decreased at the onset of true precocious puberty in female rats (Tian et al., 2004). 

Additional work revealed that stalk-median eminence levels of E1 and E2 levels are higher 

at the prepubertal phase in female monkeys than at later early pubertal phase when GnRH 

release begins to increase at night (Kenealy et al., 2016). This finding suggests that the 

elevated E1 and E2 are hypothalamic in origin as circulating E1 and E2 are low in prepubertal 

and early pubertal monkeys. Collectively, these findings raise the possibility that BDE2 

may play a role in central inhibition of GnRH before the onset of puberty. This intriguing 

hypothesis awaits further testing.

4.3. Regulation of socio-sexual behavior

Over the past several decades, there has emerged abundant evidence that BDE2 regulates 

socio-sexual behavior. A large part of this work has been performed in male quail, 

although some work has also been performed in other species. Early work in adult male 

quail found that exogenously administered testosterone must be aromatized to activate 

copulation (Watson and Adkins-Regan, 1989). In the study, administration of an aromatase 

inhibitor blocked copulatory behavior in castrate males that had testosterone implants in 

the POA. Subsequent work demonstrated that systemic administration of the aromatase 

inhibitor vorozole rapidly inhibited sexual motivation in male quail (Cornil et al., 2006). 

Additional support for a role of BDE2 in regulation of sexual behavior came from the 

finding that central administration of vorozole rapidly inhibited sexual motivation but 

not sexual performance in male quail (Seredynski et al., 2013). Interestingly, central 

administration of E2 or membrane-impermeable E2 analogs was also able to enhance sexual 

motivation in estrogen-deplete male quail (Seredynski et al., 2013). This suggests that 

the effects of BDE2 may involve mediation by membrane estrogen receptors. In support 

of this suggestion, administration of estrogen receptor antagonists have been shown to 

decrease sexual motivation (Seredynski et al., 2013). BDE2 may also regulate aggressive 

behavior in males. In support of this possibility, high aromatase activity in the anterior 

hypothalamus/POA was shown to be correlated with aggressive behavior in male quail 

and male song sparrows (Schlinger and Callard, 1989; Soma et al., 2003). Furthermore, 

administration of an aromatase inhibitor inhibited aggression in reproductively active male 

quail (Schlinger and Callard, 1990) and in nonbreeding male song sparrows in winter 

(Soma, 2006), and blocked testosterone-induced aggression in reproductively inactive male 

quail (Schlinger and Callard, 1990).

Studies in mice also support a role for brain aromatase in sexual behavior. Whole body 

aromatase knockout in male mice resulted in deficits in motivational and consummatory 

sexual behavior (Bakker et al., 2002). In addition, a brain-specific aromatase knockout 

mouse was recently generated by crossing floxed aromatase mice with nestin-cre mice and 
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used to examine the role of BDE2 in male sexual behavior (Brooks et al., 2020). The 

brain-specific aromatase male mice exhibited a 50 % decrease in number of mounts and 

intromissions, which could be rescued by testosterone and E2 replacement. The mice had 

elevated testosterone levels which the authors postulated could be due to a defect in negative 

feedback upon gonadotropin secretion (Brooks et al., 2020). However, they were unable to 

demonstrate any significant effect on gonadotropin levels in the knockout mice versus wild 

type mice.

Finally, there have been contradictory results on whether aromatization is necessary for 

male sexual behavior in humans. One study reported that in men who received testosterone, 

treatment with an aromatase inhibitor was associated with significant decreases in sexual 

desire and erectile function (Finkelstein et al., 2013). In contrast, another study reported 

that administration of an aromatase inhibitor or an estrogen receptor antagonist had no 

effect upon sexual function in men (Gooren, 1985). Likewise, it was shown that male 

sexual function could be maintained without aromatization in healthy men who received 

the non-aromatizable androgen, 5α-dihydro-testosterone (DHT) (Sartorius et al., 2014). The 

study found no effect of DHT on 33 measures of sexual function except for a mild decrease 

in sexual desire. Taken as a whole, the above studies suggest that brain aromatization is 

necessary for normal sexual behavior in quail and rodents, but the case for a similar role in 

humans is unclear and requires additional study.

5. Role of brain aromatase and BDE2 in synaptic plasticity and cognitive 

function

5.1. Synaptic plasticity

BDE2 has been implicated to also play an important role in regulating synaptic plasticity 

in the brain in a variety of species. Rune and coworkers were the first to report that 

letrozole treatment of rat hippocampal slices cultured in vitro decreased E2 release and 

the density of spines and spine-synapses, as well as decreased levels of the presynaptic 

protein synaptophysin and the postsynaptic protein spinophilin (Kretz et al., 2004). A 

decrease of spine synapses in rat hippocampal neurons cultured in vitro was also observed 

following letrozole treatment (Kretz et al., 2004). Furthermore, letrozole treatment in 

mouse hippocampal slice cultures caused decreases in mitochondrial volume, dendritic 

spine density and synaptic proteins, and exacerbated Aβ1−42-induced mitochondrial and 

synaptic plasticity defects (Chang et al., 2013). In vivo letrozole treatment of adult female 

mice decreased spine synapse density in the hippocampal CA1 region and dentate gyrus 

molecular layer of the hippocampus; with no significant effect observed in the prefrontal 

cortex or cerebellum (Bender et al., 2010; Fester et al., 2012; Prange-Kiel et al., 2013). 

Similar to the in vitro findings, in vivo letrozole treatment also decreased spinophilin and 

synaptophysin expression levels in the female mouse hippocampus, as well as the glutamate 

receptor, NMDAR1 (Zhou et al., 2010). Interestingly, Rune and coworkers also reported a 

sex difference in the letrozole effect on synaptic plasticity, as in vivo peripheral letrozole 

treatment for 4-weeks decreased hippocampal spine synapses in cycling and ovariectomized 

female mice (Zhou et al., 2010), as well as cycling female rats, but not in male rats (Fester 

et al., 2012). In contrast to this report, Zhou et al. found that in vivo letrozole treatment 
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did significantly decrease hippocampal spines, synapses and post-synaptic density (PSD) 

proteins in male mice (Zhao et al., 2018). They also found decreased PSD thickness and 

increased actin depolymerization in the letrozole-treated male mice. Regulation of actin 

polymerization by BDE2 may help explain the changes in spine density observed in the 

letrozole-treated mice, as the actin cytoskeleton plays an important role in spine formation, 

elimination and morphology (Harris, 1999; Matus, 2000). It is not clear why the two 

studies yielded divergent results with regards to the sex-specific effect of letrozole on 

synaptic plasticity. While both groups used 4-weeks of daily intraperitoneal administration 

of letrozole, Zhou et al. used a two-fold higher dose of letrozole as compared to Rune’s 

group (e.g., 80μg/kg BW versus 40μg/kg BW). Interestingly, some studies have found that 

E2 levels in the male hippocampus are higher than that observed in females (Ooishi et 

al., 2012). Therefore, a higher dose of letrozole might be required to effectively reduce 

hippocampal E2 levels in males and observe an inhibitory effect on synaptic plasticity.

Long-term potentiation (LTP) is widely considered a synaptic mechanism for memory 

(Bliss and Collingridge, 1993; Nicoll, 2017). Over the past decade, a number of groups 

have examined the role of aromatase and local-derived E2 in LTP in several brain regions. 

Grassi and coworkers were the first to demonstrate that local-derived E2 is essential for 

induction of LTP in the brainstem (Grassi et al., 2009). Using male rat brainstem slices, 

they showed that letrozole had no effect on baseline glutamatergic synaptic responses but 

prevented LTP produced by high frequency tetanic stimulation (HFS) (Grassi et al., 2009). 

HFS administered at 5 min after letrozole administration did not induce LTP (Grassi et 

al., 2009). This finding would appear to rule out relevant storage of E2 and raises the 

possibility that HFS enhances aromatase activation to rapidly induce E2. In support of this 

possibility, HFS has been shown to induce E2 release in spinal cord slices, which could 

be blocked by aromatase inhibitor treatment (Zhang et al., 2012). These findings suggest 

that activity-dependent regulation of local E2 synthesis and release is a key mechanism 

mediating HFS-induced LTP.

Subsequent work demonstrated that local-derived E2 similarly mediates LTP in the 

hippocampus (Grassi et al., 2011). Using male rat hippocampal slices, the investigators 

found that letrozole reduced the amplitude of LTP by 60 % while not affecting baseline 

responses. A full LTP response could be rescued by exogenous E2 treatment in letrozole-

treated slices (Di Mauro et al., 2017). In additional studies, inhibition of E2 synthesis by 

letrozole also prevented LTP in medial spiny neurons and cholinergic interneurons in the 

dorsal striatum of male rats, and this effect could be rescued by exogenous E2 (Tozzi et 

al., 2015). Letrozole treatment also prevented LTP at the cerebellar parallel fiber-Purkinje 

cell synapse, which was correlated with impairment of both gain increases and decreases 

adaption of the vestibular-ocular reflex (Dieni et al., 2018a, b). BDE2 likely acts through 

estrogen receptors to mediate its synaptic plasticity effect, as administration of an estrogen 

receptor antagonist also significantly reduced LTP amplitude in hippocampal slices (Grassi 

et al., 2011). Interestingly, letrozole treatment had no effect upon maintenance of LTP 

or on pair pulse facilitation, a type of presynaptic plasticity that involves a change in 

neurotransmitter release probability (Grassi et al., 2011). Further work found that letrozole 

also had no effect upon induction of long-term depression (LTD) in hippocampal and 

cerebellar slices, which indicates that BDE2 only regulates induction of LTP and not LTD 
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in the hippocampus and cerebellum (Di Mauro et al., 2017, 2015; Dieni et al., 2018a). 

Letrozole can lead to an increase of androgens due to inhibition of their conversion to 

estrogen. This raises the possibility that androgens may mediate the effect of letrozole on 

LTP. However, the fact that E2 replacement rescued LTP would seem to argue against this 

possibility. Furthermore, Tozzi et al. (Tozzi et al., 2019) showed that androgen receptor 

antagonists had no effect on LTP in male rat hippocampal slices. Thus, it appears that 

activation of estrogen receptors, but not androgen receptors, is critical for inducing LTP in 

hippocampal pyramidal neurons. The finding of a role of BDE2 in LTP also extends to mice 

and to females, as 7-day in vivo letrozole treatment reduced LTP amplitude in hippocampal 

slices from ovariectomized mice by 50 %, and by 20 % in male mice (Vierk et al., 2012). 

It is not clear why the magnitude of inhibition of LTP in this study in male mice was less 

than that observed in the above studies for male rats (e.g. 20 % versus 60 % inhibition). It 

could be due to the different species used, different in vitro versus in vivo letrozole treatment 

paradigms, and/or different dosing schedules employed in the studies.

Finally, to more specifically explore the roles and function of neuron-derived E2 (NDE2) 

in the regulation of synaptic plasticity in the brain, our group generated a forebrain-neuron-

specific aromatase knock-out (FBN-ARO-KO) mouse model to specifically deplete NDE2 

in the forebrain (Lu et al., 2019). Cyp19a1-Cre/LoxP conditional KO mice were created, 

under the control of the CaMKIIα promoter, which expresses Cre exclusively in forebrain 

excitatory neurons. Characterization of the mice using PCR, Western blot, IHC and ELISA 

analysis demonstrated a profound loss of aromatase in hippocampal and cortical neurons 

with an associated 65–70 % decrease of E2 levels in the hippocampus and cortex of both 

male and ovariectomized female FBN-ARO-KO mice, as compared to FLOX mice (Lu et 

al., 2019). Aromatase expression was unchanged in the hindbrain and ovary and there was 

no change in serum E2 levels in FBN-ARO-KO versus FLOX mice, demonstrating that 

the knockout was specific for forebrain neurons. Furthermore, the postnatal deletion of the 

aromatase gene in excitatory forebrain neurons did not result in any apparent defects in brain 

structure in FBN-ARO-KO mice (Lu et al., 2019).

Interestingly, Golgi analysis revealed that spine density is significantly decreased in the 

hippocampal CA1 region and cortex of adult male and ovariectomized female FBN-ARO-

KO mice, with thin spines showing the greatest decrease in males, and mushroom spines 

showing the greatest decrease in females (Lu et al., 2019). This finding indicates that 

NDE2 is an important regulator of spine formation in the cerebral cortex and hippocampal 

CA1 region in both male and female mice. Examination of synapse number by examining 

synaptophysin and PSD95 contacts revealed a 33 % decrease of synapse density in the 

hippocampal CA1 and cortex of male FBN-ARO-KO mice, and a 55–58 % decrease in 

female FBN-ARO-KO mice (Lu et al., 2019). Thus, this result suggests that NDE2 also 

regulates forebrain synaptic density in both male and female mice.

We also examined the role of NDE2 in regulation of synaptic transmission and LTP in 

our FBN-ARO-KO mouse model (Lu et al., 2019). The results revealed a significant 

defect in the efficiency of synaptic transmission in hippocampal slices of both male and 

ovariectomized female FBN-ARO-KO mice, which was fully rescued by exogenous E2 (Lu 

et al., 2019). Examination of LTP in hippocampal slices from FLOX and FBN-ARO-KO 
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mice revealed a 57 % decrease in the amplitude of LTP in male FBN-ARO-KO mice 

versus a 91 % decrease in female FBN-ARO-KO mice (Lu et al., 2019). As seen in 

the effect upon synaptic density above and here for LTP, depletion of forebrain E2 in 

FBN-ARO-KO mice significantly decreased synaptic density and LTP amplitude in both 

sexes, but a greater percent decrease was observed in ovariectomized females as compared 

to males. Nevertheless, the effects in both sexes appear functionally significant, as cognitive 

function was robustly and significantly attenuated in both sexes of FBN-ARO-KO mice 

(e.g., significantly decreased in ovariectomized females, intact females and intact males) (Lu 

et al., 2019), as discussed in the section below. It is not entirely clear which comes first 

following NDE2 depletion, loss of spines and synapses or loss of LTP. It is possible that the 

loss of spines and synapses could drive a diminishment of LTP in the forebrain. However, 

in argument against this, Vierk et al. (Vierk et al., 2012) found that LTP impairment 

preceded the loss of spines and synapses in the hippocampus of letrozole-treated female 

mice. Furthermore, we found that LTP in hippocampal slices from FBN-ARO-KO mice 

could be rapidly rescued within minutes by exogenous E2 (Lu et al., 2019), an effect that 

would seem too fast for induction of spine synapses to have occurred. Interestingly, LTP 

has been reported to induce spines and synapses in the brain (Toni et al., 1999), further 

supporting that loss of LTP could drive the loss of spine and synapses following BDE2 

depletion. Nevertheless, before definitive conclusions can be reached, more studies are 

needed to understand the precise temporal dynamics underlying the spine and synapse loss 

and LTP impairment observed in the FBN-ARO-KO mice.

Mechanistically, both non-genomic and genomic signaling mechanisms may contribute to 

NDE2 regulation of synaptic plasticity (Lai et al., 2017). In support of a non-genomic 

mechanism, we found that E2 replacement in vitro could rapidly rescue the decrease in 

synaptic transmission efficiency and LTP amplitude in hippocampal slices from both male 

and female FBN-ARO-KO mice (Lu et al., 2019). Furthermore, the E2 rescue appeared 

to involve rapid mitogen-activated protein kinase (MAPK) signaling as it was blocked by 

co-administration of the MAPK inhibitor, U0126 (Lu et al., 2019). In further support of a 

critical role for NDE2 in regulating rapid kinase signaling in the forebrain, both AKT and 

ERK activation were found to be significantly attenuated in the hippocampus and cortex of 

both male and female FBN-ARO-KO mice, and this effect could be rescued by exogenous 

E2 replacement (Lu et al., 2019). Functionally, both AKT and ERK signaling have been 

implicated to mediate LTP and synaptic plasticity in the brain (Levenga et al., 2017; Mao 

and Wang, 2016; Sweatt, 2001). Furthermore, exogenous E2 rapidly enhances induction of 

both signaling pathways in the hippocampus and cortex (Ogiue-Ikeda et al., 2008; Singh, 

2001; Singh et al., 1999), and inhibitors to these pathways block exogenous E2-induced 

LTP in hippocampal slices (Hasegawa et al., 2015). The rapid signaling effects of NDE2 

on kinase signaling are proposed to be mediated by estrogen receptors localized at the cell 

membrane. Indeed, ERα and ERβ, in addition to being localized in the cytoplasm and 

nucleus, have also been reported to be localized at the cell membrane in neurons (Evinger 

and Levin, 2005; McEwen et al., 2001; Milner et al., 2005, 2001; Raz et al., 2008), and 

the newest proposed member of the estrogen receptor family, G-protein coupled estrogen 

receptor-1 (GPER1), has also been shown to be localized at the membrane in various cell 

types including neurons (Kumar and Foster, 2020; Raz et al., 2008; Revankar et al., 2005; 
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Waters et al., 2015). Furthermore, all three receptors have been implicated in mediating both 

the rapid signaling and plasticity effects of E2 in the brain (Fester et al., 2013; Kumar et al., 

2015; Kumar and Foster, 2020; Liu et al., 2008; Mukai et al., 2010; Raz et al., 2008; Sellers 

et al., 2015; Smejkalova and Woolley, 2010; Spencer-Segal et al., 2012). While we did not 

examine which estrogen receptor mediates NDE2 effects in our studies, future studies are 

planned to test selective ligands for the three estrogen receptors in our FBN-ARO-KO mice 

to help determine which receptor(s) mediates rescue of the plasticity and memory defects. 

Testing of membrane impermeable E2-BSA or E2-dendrimer conjugates to further confirm 

the role of membrane localized estrogen receptors and cytoplasmic estrogen receptors would 

also be important. Interestingly, the results of our study did suggest a possible role for 

NDE2 in differential regulation of estrogen receptor levels in the forebrain, as we found 

ERβ is up-regulated in the hippocampus and cortex of FBN-ARO-KO mice, while ERα is 

down-regulated (Lu et al., 2019). Similar to our results in FBN-ARO-KO mice, letrozole 

treatment was found to also decrease ERα while increasing ERβ in mouse hippocampal 

slices (Fester et al., 2013). Since neither study examined GPER1 expression, it is not clear 

whether GPER1 is also regulated by BDE2. Therefore, future studies are needed to address 

this question. It should be pointed out that since exogenous E2 was able to rescue synaptic 

plasticity and memory defects in both FBN-ARO-KO mice (Lu et al., 2019) and aromatase 

inhibitor-treated animals (Tozzi et al., 2015; Tuscher et al., 2016) it suggests that local E2 

synthesis may not be necessary for exogenous E2 effects to enhance plasticity and memory.

Finally, we also examined cAMP response element binding protein (CREB) activation and 

brain-derived neurotropic factor (BDNF) expression in the forebrain of FBN-ARO-KO mice, 

as both factors are also known to be key regulators of synaptic plasticity and memory 

(Benito and Barco, 2010; Kida, 2012; Miranda et al., 2019). Interestingly, CREB is a 

transcription factor activated by phosphorylation that can regulate expression of many 

genes, including BDNF (Kida, 2012; Shieh et al., 1998). Conversely, BDNF can regulate 

activation of CREB through tropomyosin receptor kinase (Trk) B receptors (Finkbeiner 

et al., 1997). Examination of intact male and ovariectomized female FBN-ARO-KO mice 

revealed a significant decrease in CREB phosphorylation (pCREB) and BDNF expression 

in the hippocampus and cortex of FBN-ARO-KO mice, as compared to FLOX controls (Lu 

et al., 2019). This effect appeared to be due to loss of forebrain E2, as reinstatement of E2 

levels in the forebrain by exogenous E2 replacement was able to rescue CREB activation and 

BDNF expression in FBN-ARO-KO mice (Lu et al., 2019). Thus, in addition to regulating 

rapid kinase signaling, BDE2 appears to be a key regulator of CREB and BDNF in the 

forebrain, which is proposed to contribute to its plasticity and memory regulatory effects.

Based on our results from the FBN-ARO-KO mice (Lu et al., 2019), a proposed mechanism 

for NDE2 effects on synaptic plasticity and LTP in the forebrain is illustrated in Fig. 

5. As shown in Fig. 5, NDE2 regulation of spines, synapses and LTP is proposed to 

involve membrane estrogen receptor-mediated rapid PI3K/AKT and MEK/ERK kinase 

signaling, which is capable of quickly modulating synaptic plasticity. As also shown in 

Fig. 5, the activated intracellular kinase signaling can in turn phosphorylate the important 

transcriptional factor, CREB which translocates into the nucleus to facilitate the expression 

of CREB target genes that regulate synaptic plasticity, including the neurotrophic factor 

BDNF and the synaptic protein PSD95. Furthermore, BDNF can also regulate synaptic 
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plasticity by coupling to the rapid intracellular kinases. BDNF signaling can also activate 

cofilin, which is required for F-actin assembly and dendritic spine formation (Briz et al., 

2015). Classical nuclear ERα- and ERβ-mediated genomic signaling may also contribute to 

NDE2 regulation of synaptic plasticity by transactivating estrogen response elements (ERE) 

in plasticity-related genes and promoting their transcription.

5.2. Cognitive function

BDE2 regulation of synaptic plasticity and LTP in the forebrain suggests it may regulate 

memory. Indeed, there is now a large body of evidence in a variety of species implicating 

an important role of BDE2 in the regulation of cognitive function. For instance, a number 

of clinical studies in humans have found that aromatase inhibitor treatment in breast cancer 

patients is associated with a variety of memory defects, including defects in verbal and 

visual learning/memory, executive function, and processing speed, which were reversible 

after cessation of aromatase inhibitor therapy (Bender et al., 2007; Phillips et al., 2011; 

Rocha-Cadman et al., 2012; Underwood et al., 2018), although there are dissenting studies 

(Hurria et al., 2014). Furthermore, Bayer and coworkers performed cognitive testing and 

MRI analysis on postmenopausal women with breast cancer and a control group to examine 

the effect of aromatase inhibition on cognitive function (Bayer et al., 2015). The study 

participants underwent cognitive testing twice before the start of letrozole therapy and then 

again at least 3 months after start of treatment (Bayer et al., 2015). The results revealed that 

letrozole treatment impaired hippocampal-dependent memory, and MRI analysis revealed 

this effect was associated with decreased hippocampal activity during encoding (Bayer et 

al., 2015). Collectively, the above studies provide evidence that BDE2 may be important for 

cognitive function in humans.

Basic science studies in animals have also confirmed a critical role for BDE2 in cognitive 

function. One of the first studies to examine this question was a study that used adult 

castrate male zebra finches (songbirds) with implants of vehicle, an aromatizable androgen 

(testosterone), a non-aromatizable androgen (5α-DHT), or E2 and measured the effect 

upon spatial memory (Oberlander et al., 2004). Testosterone- and E2-treated birds, but 

not 5α-DHT-treated birds, learned the spatial memory task. The investigators concluded 

that brain aromatization enhances spatial memory in songbirds (Oberlander et al., 2004). 

Subsequent work utilized aromatase inhibitors to confirm the suggested role of BDE2 in 

cognitive function. These elegant studies demonstrated that aromatase inhibition in male 

songbirds disrupts auditory association learning and neural memory for previously heard 

songs (Macedo-Lima and Remage-Healey, 2020; Yoder et al., 2012). Acute aromatase 

inhibition was also shown to reduce motivation to sing in male canaries, as well as song 

acoustic stereotypy, a measure of consistency over song renditions (Alward et al., 2016). 

Further work showed that local-derived E2 is important for auditory processing in the NCM, 

a part of the songbird auditory association cortex important for song learning, memorization 

and perception (Tremere et al., 2009). The study found that aromatase inhibitor infusion 

in the NCM markedly decreased neuronal firing rates in a dose-dependent manner in birds 

stimulated with conspecific songs (Tremere et al., 2009). Aromatase inhibition in the NCM 

was also associated with reduced induction of MAPK-dependent genes, which have been 

implicated to mediate synaptic plasticity and memory in the songbird (Tremere et al., 2009). 
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In addition to the NCM, there is evidence that local E2 also acts in the hippocampus to 

regulate spatial memory. For instance, central aromatase inhibition in the male zebra finch 

attenuated PSD95 levels in the hippocampus and impaired spatial memory in a food-finding 

task (Bailey et al., 2013, 2017; Bailey and Saldanha, 2015).

A role for BDE2 in cognitive function has also been implicated in rodents. For instance, 

intracerebroventricular administration of letrozole for 14 days in intact male and female 

rats decreased hippocampal E2 levels and hippocampal pyramidal neuron firing and caused 

dose-dependent defects in working memory and novel object recognition memory (Marbouti 

et al., 2020a). Similarly, letrozole treatment in male and female mice resulted in spatial 

memory impairment (Liu et al., 2019; Zhao et al., 2018). Furthermore, infusion of 

letrozole bilaterally into the hippocampus impaired hippocampal memory consolidation in 

ovarectomized female mice, and this defect could be rescued by exogenous E2 replacement 

(Tuscher et al., 2016). This finding suggests that BDE2 has a critical role in hippocampal 

memory consolidation.

To confirm and extend these pharmacological studies, we used the genetic FBN-ARO-KO 

mouse model to specifically deplete forebrain NDE2 and examined its role in cognitive 

function (Lu et al., 2019). As shown in Fig. 6, we conducted cognitive behavioral testing 

on intact male, intact female and ovariectomized female FLOX and FBN-ARO-KO mice 

using standard behavioral testing paradigms for rodents, including the Barnes maze for 

testing hippocampal-dependent spatial reference learning and memory, the novel object 

recognition test for testing hippocampal-dependent spatial recognition memory, the forced 

swim test for testing for depressive-like behavior, and the fear conditioning test to examine 

long-term fear memory. The results revealed that the adult intact male, intact female 

and ovariectomized female FBN-ARO-KO mice all had significant deficits in hippocampal-

dependent spatial reference learning and memory, hippocampal-dependent recognition 

memory, and hippocampal-dependent contextual fear memory (Lu et al., 2019). These 

differences were not due to differences in locomotor function, as FBN-ARO-KO mice had 

normal locomotor function and anxiety, as measured by the open field test. Interestingly, 

ovariectomized female FBN-ARO-KO mice, but not intact male and intact female FBN-

ARO-KO mice, exhibited depressive-like behavior in the forced swim test (Lu et al., 2019). 

The behavior defects in the FBN-ARO-KO mice appear to be due to the loss of forebrain 

E2 as reinstatement of forebrain E2 levels by exogenous E2 replacement was able to fully 

rescue the hippocampal-dependent spatial recognition memory and reference memory in 

ovariectomized female FBN-ARO-KO mice (Lu et al., 2019). We did not examine E2 rescue 

of fear memory or depressive behavior, and thus future studies are needed to examine this 

issue.

Finally, examination of male and ovariectomized female astrocyte-specific aromatase 

knockout (GFAP-ARO-KO) mice revealed no defects in hippocampal-dependent spatial 

reference learning and memory, hippocampal-dependent recognition memory or long-term 

fear memory Wang et al. (2020). This finding indicates that only NDE2 regulates cognitive 

function in the basal (non-injured) state. This finding is not unexpected as aromatase is 

low to undetectable in astrocytes basally and is only induced by stress, injury or ischemia. 

However, as will be discussed in the next section, GFAP-ARO-KO mice do exhibit enhanced 
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cognitive deficits after GCI, which appears to be due to a loss of a neuroprotective function 

of ADE2 in the GFAP-ARO-KO mice Wang et al. (2020). Taken as a whole, the above 

studies indicate that NDE2 has a critical role in regulating synaptic plasticity, LTP and 

memory in a variety of species.

6. Role of brain aromatase and BDE2 in neuroprotection

6.1. Aromatase inhibitor and knockdown studies

As discussed previously, numerous studies have demonstrated that brain injury induces 

aromatase in astrocytes, which leads to a local increase of BDE2 in the brain. This 

finding has led to the suggestion that elevation of BDE2 may serve as a protective 

mechanism in response to brain injury. Azcoitia and coworkers were the first to examine 

this question in detail (Azcoitia et al., 2001). Based on their previous work showing that 

aromatase was induced in brain astrocytes after excitotoxin injury (Garcia-Segura et al., 

1999), the investigators examined the potential neuroprotective effect of an aromatizable 

androgen (testosterone) and non-aromatizable androgen (5α-DHT), as well as E2 in the 

hippocampus. They found that testosterone and E2, but not 5α-DHT, was neuroprotective 

against the excitotoxin, domoic acid in castrate male rats (Azcoitia et al., 2001). The 

ability of testosterone to exert neuroprotection was suggested to be due to aromatization 

to E2 as testosterone’s neuroprotective effect was blocked by administration of the 

aromatase inhibitor, fadrozole (Azcoitia et al., 2001). Furthermore, a neuroprotective 

role for aromatase and hippocampal BDE2 was implicated by the finding that systemic 

or intracerebroventricular administration of fadrozole in intact male rats protected the 

hippocampus from neuronal damage induced by kainic acid (Azcoitia et al., 2001). 

In a subsequent study, it was found that the upstream precursors of E2, pregnenolone 

and dehydroepiandrosterone (DHEA), also protected hippocampal neurons from kainic 

acid neurotoxicity, and their neuroprotective effect was blocked by fadrozole (Veiga et 

al., 2003). This finding suggests that the neuroprotective effects of pregnenolone and 

DHEA are mediated by their conversion to E2. In addition, a neuroprotective role for 

BDE2 in the hippocampus was further supported by the finding that inhibition of E2 

synthesis by letrozole treatment enhanced methyl-mercury-induced neurotoxicity in male rat 

hippocampal slices in vitro, and this effect could be rescued by E2 replacement (Yamazaki 

et al., 2013). An additional interesting study examined a potential neuroprotective role of 

local E2 synthesis in the male rat striatum in the 6-hydroxydopamine-lesioned model of 

Parkinson’s disease model (McArthur et al., 2007). In this study, central administration of 

the aromatase inhibitor anastrozole was found to exacerbate 6-hydroxydopamine-induced 

striatal lesions, suggesting that BDE2 is neuroprotective in the striatum (McArthur et al., 

2007). Further work has demonstrated that the neuroprotective effect of aromatase and 

BDE2 extends to other types of brain injury in addition to excitotoxic injury. For instance, 

male zebra finches treated with fadrozole and subjected to a penetrating brain injury were 

found to have a significantly larger lesion size with a greater number of apoptotic nuclei 

(Wynne and Saldanha, 2004; Wynne et al., 2008). The investigators proposed that E2 from 

glial cells mediates the neuroprotection after penetrating brain injury. Additional work 

showed that E2 replacement was able to rescue the defects, which further supports that the 
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loss of local-derived E2 underlies the increased neuronal damage in fadrozole-treated birds 

(Wynne and Saldanha, 2004; Wynne et al., 2008).

While most studies have examined the neuroprotective effect of aromatase and BDE2 

in male animals, a few studies have utilized female animals and demonstrated a similar 

neuroprotective effect for BDE2 as was observed in males. For instance, early work using 

a global whole-body knockout of aromatase in female mice demonstrated increased infarct 

damage in the cortex and striatum of the knockout mice, and the effect in the knockout 

mice was greater than observed in ovariectomized mice, suggesting that extragonadal 

E2 has a neuroprotective role (McCullough et al., 2003). Similarly, letrozole treatment 

significantly increased infarct volume, neuronal damage, apoptosis and cognitive deficits 

in intact female rats following focal cerebral ischemia (Zhang et al., 2017b). To further 

confirm the role of BDE2 in females, subsequent studies were conducted in ovariectomized 

animals so as to remove the potential confound of contributions by gonadal-derived E2. 

The first studies examined protection of the brain from excitotoxicity and revealed that 

administration of a low dose of kainic acid, which did not produce neuronal damage in 

control ovariectomized rats, led to highly significant neuronal damage in the hippocampus 

of fadrozole-treated ovariectomized female rats (Veiga et al., 2003). In addition, work by 

our group found that antisense oligonucleotide knockdown of aromatase in the hippocampus 

of ovariectomized female rats led to significantly enhanced neuronal damage following 

global cerebral ischemia (GCI), further supporting a neuroprotective role of BDE2 in 

female animals (Zhang et al., 2014). Furthermore, aromatase knockdown animals had higher 

microglial activation in the hippocampus following GCI, suggesting that BDE2 exerts an 

anti-inflammatory effect after cerebral ischemia. In support of an anti-inflammatory role 

of BDE2 after brain injury, another study found that central fadrozole administration to 

male and female zebra finches that received a penetrating brain injury caused sustained 

elevation of tumor necrosis factor-alpha (TNF-α), COX-2 and PGE2 in the injured lobe 

in both sexes, with females also exhibiting enhanced elevation of IL-1β (Pedersen et al., 

2016). Central E2 replacement reversed these effects. These findings suggest that BDE2 may 

suppress inflammation in part by acting on microglia, which are known to play a key role in 

inflammation, and which express estrogen receptors and can be regulated by E2 (Villa et al., 

2016).

6.2. Conditional knockout studies - role of NDE2 in neuroprotection

Since aromatase is induced in astrocytes after brain injury, it has been inferred that 

ADE2 mediates neuroprotection of the brain following ischemia or injury. However, 

since neurons also make E2 constitutively, then NDE2 could also potentially exert a 

neuroprotective role. In addition, astrocyte and neuronal aromatase are both inhibited 

by aromatase inhibitors; thus, the inhibitor effects could be due to depletion of either 

NDE2 or ADE2, or both. Indeed, in vitro studies have found that NDE2 can exert 

neuroprotection similar to ADE2. For instance, anastrozole treatment in H19–7 hippocampal 

neurons suppressed E2 production and led to enhanced neuronal cell death following 

H2O2 treatment (Chamniansawat and Chongthammakun, 2012). Furthermore, morphine 

treatment of hippocampal neurons was shown to increase release of E2, and this effect 

was correlated with morphine-induced neuroprotection from Aβ neurotoxicity (Cui et al., 
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2011). A critical role for hippocampal NDE2 in the morphine-induced neuroprotection 

was shown by the finding that siRNA knockdown of aromatase blocked morphine 

neuroprotection from Aβ neurotoxicity. To more specifically determine the role of NDE2 

in neuroprotection, we utilized our FBN-ARO-KO mice in which forebrain NDE2 is 

specifically depleted and performed GCI (Lu et al., 2020). We utilized intact males and 

ovariectomized females and examined hippocampal neuronal damage, cognitive function, 

astrocyte reactivity, and astrocyte polarization. The studies revealed that both ovariectomized 

female and intact male FBN-ARO-KO mice had significantly greater neuronal damage 

and decreased neuronal structural integrity in the hippocampal CA1 region after GCI, as 

compared to FLOX controls (Lu et al., 2020). Barnes maze testing revealed that intact 

male and ovariectomized female FBN-ARO-KO mice both exhibited significantly greater 

impairment of hippocampal-dependent spatial reference memory after GCI (Lu et al., 2020). 

These findings indicate that NDE2 exerts a neuroprotective effect in the hippocampus 

following ischemic brain injury. Global transcriptome analysis coupled with qRT-PCR 

confirmation further revealed down-regulation of genes involved in reactive astrogliosis, 

neuroprotection, and neuroinflammation in the hippocampus of FBN-ARO-KO mice as 

compared to FLOX mice after GCI (Lu et al., 2020). Examination of reactive astrogliosis 

using immunohistochemistry and Western blot analysis for the astrocyte markers, GFAP or 

vimentin at 3, 7 and 14 days after GCI revealed that reactive astrogliosis in the hippocampus 

was significantly compromised in both intact male and ovariectomized female FBN-ARO-

KO mice as compared to FLOX mice (Lu et al., 2020). The reduced reactive gliosis may 

explain the enhanced neuronal damage and worse cognitive outcome following GCI in 

FBN-ARO-KO mice. In support of this possibility, GFAP−/−Vm−/− mice were found to have 

compromised reactive astrogliosis and GLT-1-mediated glutamate transport after cerebral 

ischemia, as well as enhanced neuronal damage (Li et al., 2008). Reactive astrocytes can 

enhance neuroprotection by increasing uptake of excess glutamate by GLT-1 and releasing 

neuroprotective factors, such as BDNF, insulin-like growth factor-1 (IGF-1), and even E2, 

itself (Liu and Chopp, 2016). We thus examined each of these astrocytic neuroprotective 

factors in FBN-ARO-KO mice after GCI and found that expression of each of these 

factors (GLT-1, BDNF, IGF-1, aromatase) was significantly decreased in FBN-ARO-KO 

astrocytes after GCI. Elevation of E2 in the FBN-ARO-KO hippocampus after GCI was 

also diminished (Lu et al., 2020). These findings indicate that the neuroprotective functions 

of astrocytes after GCI are significantly impaired by depletion of NDE2, and accordingly, 

reinstatement of forebrain E2 levels reversed all of the molecular and function defects (Lu et 

al., 2020).

Our study also assessed how NDE2 regulates reactive astrogliosis. Previous work has 

shown that fibroblast growth factor-2 (FGF2) is an important factor produced by neurons 

that functions to suppress reactive astrogliosis (Kang et al., 2014; Zhang et al., 2017a). 

Interestingly, our RNASeq analysis found that FGF2 was upregulated in the hippocampus 

of FBN-ARO-KO mice after GCI. Further examination by double immunohistochemistry 

confirmed that FGF2 was increased in hippocampal neurons in FBN-ARO-KO mice after 

GCI, and we additionally found increased expression of its major receptor FGFR3 in 

reactive astrocytes in FBN-ARO-KO mice after GCI, as compared to FLOX mice (Lu et 

al., 2020). These findings suggest that the attenuated reactive astrogliosis in FBN-ARO-KO 
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mice after GCI may be due to enhanced neuronal FGF2 signaling. This suggestion is 

supported by our group’s finding that blocking FGF2 signaling by central infusion of 

a FGFR3-neutralizing antibody rescued reactive astrogliosis after GCI in FBN-ARO-KO 

mice (Lu et al., 2020). Furthermore, astrocytic expression of BDNF, aromatase and GLT-1 

expression were also rescued, which correlated with a significant reduction of neuronal 

damage after GCI (Lu et al., 2020).

Interestingly, our findings also suggest that NDE2 is important for enhancing polarization 

of the reactive astrocytes toward an A2 neuroprotective phenotype. Previous transcriptome 

analysis by the Barres lab (Zamanian et al., 2012) has implicated at least two major types 

of reactive astrocytes: A1 and A2 astrocytes. A1-type astrocytes are pro-inflammatory and 

neurotoxic and are induced by inflammatory agents, such as LPS, while A2-type astrocytes 

are neuroprotective and are induced following cerebral ischemia (Liddelow et al., 2017). 

We thus examined astrocyte phenotype in FBN-ARO-KO mouse hippocampal astrocytes in 

our study using qRT-PCR, Western blot analysis and immunohistochemistry for A1 and A2 

genes/markers. The results revealed a significant downregulation of A2 astrocyte phenotype 

in the hippocampus of FBN-ARO-KO mice after GCI (Lu et al., 2020). We did not detect 

A1 astrocyte induction after GCI, a finding in agreement with the Barres’ group previous 

results. These results indicate that NDE2 is critical for induction of the neuroprotective A2 

reactive astrocyte phenotype following GCI.

Based on our findings in the FBN-ARO-KO mouse described above, we have schematically 

illustrated a summary of the proposed mechanisms that underlie NDE2 neuroprotection 

following GCI (see Fig. 7). As shown in Fig. 7, we propose that following GCI, NDE2: 

1) suppresses neuronal FGF2 signaling, a negative regulator of reactive astrogliosis, 2) 

enhances reactive astrogliosis after GCI, 3) enhances the A2 neuroprotective astrocyte 

phenotype, and 4) increases production of the astrocytic neuroprotective factors, GLT-1, 

BDNF and IGF-1, as well as ADE2 itself. Collectively, this leads to enhanced 

neuroprotection and preserved cognitive function following GCI. Furthermore, since NDE2 

can be released from neurons, we cannot exclude the possibility that NDE2 also acts 

on estrogen receptors on neighboring neurons as an additional mechanism to facilitate 

neuroprotection.

6.3. Conditional knockout studies - role of ADE2 in neuroprotection

To further determine the role of ADE2 in neuroprotection and neuroinflammation in 

ischemic brain injury, we utilized our GFAP-ARO-KO mice that have aromatase and E2 

specifically depleted in astrocytes (Wang et al., 2020). GFAP-ARO-KO mice were viable 

and fertile, with normal gross brain structure, normal aromatase expression in neurons, 

normal basal forebrain E2 levels, normal astrocyte morphology, intensity and distribution, 

and normal cognitive function basally (Wang et al., 2020). The lack of a phenotype 

basally is not unexpected, as aromatase is not expressed basally in astrocytes and is only 

induced following stress, brain injury or ischemia. Note that the knockout of aromatase was 

specific for astrocytes, as neuronal aromatase and basal forebrain E2 levels were unchanged 

in the GFAP-ARO-KO mice. In contrast, after GCI, we found that intact male, intact 

female and ovariectomized female GFAP-ARO-KO mice: 1) failed to exhibit the normal 
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elevation of astrocyte aromatase and hippocampal E2 levels after ischemia; 2) exhibited a 

profound reduction of ischemia-induced reactive astrogliosis; 3) had increased hippocampal 

neuronal damage, 4) exhibited enhanced microglia activation and reduced expression of 

microglial homeostatic genes, and 5) had enhanced cognitive deficits after GCI (Wang et al., 

2020). RNA-Seq analysis further revealed that the normal upregulation of the A2 panel of 

reactive astrocyte genes was significantly attenuated in the ischemic GFAP-ARO-KO mouse 

hippocampus, suggesting that ADE2 is critical for induction of the A2 astrocyte phenotype 

after ischemic brain injury (Wang et al., 2020).

Our study also examined the molecular pathways and mechanisms that might underlie 

ADE2 regulation of reactive astrogliosis after GCI. Along these lines, RNA-seq analysis 

revealed that the IL-6/Janus kinase (JAK)/signal transducer and activator of transcription3 

(STAT3) signaling pathway was negatively correlated with GFAP-ARO-KO after GCI 

(Wang et al., 2020). This is intriguing as the JAK-STAT3 pathway plays a critical role 

in mediating reactive astrogliosis after ischemia and injury (Ceyzeriat et al., 2016; Liddelow 

and Barres, 2017). Our study also found that STAT3 activation in the hippocampus after GCI 

is significantly suppressed in GFAP-ARO-KO astrocytes (Wang et al., 2020), which may 

explain the reduced reactive astrogliosis in our GFAP-ARO-KO mice after GCI. In support 

of this possibility, previous work demonstrated a failure of reactive astrogliosis in mice 

with conditional deletion of STAT3 following spinal cord injury (Okada et al., 2006), and 

this effect was associated with increased lesion volume and attenuated functional recovery. 

Interestingly, we also found that induction of leukemia inhibitory factor (LIF), a member of 

the IL-6 cytokine family and an upstream regulator of STAT3 (Murakami et al., 2019), was 

strongly attenuated in GFAP-ARO-KO astrocytes, as compared with FLOX astrocytes after 

GCI (Wang et al., 2020). Finally, E2 replacement fully rescued the defects in JAK-STAT3 

signaling and reactive astrogliosis and was able to reverse the enhanced neuronal damage 

and microglial activation in GFAP-ARO-KO mice after GCI (Wang et al., 2020). Fig. 

8 summarizes the mechanisms that are proposed to underlie ADE2 neuroprotection after 

GCI. Based on the findings discussed above, we propose that ADE2 has several key roles 

following GCI, including 1) being critical for reactive astrogliosis in the hippocampal CA1 

region, 2) inducing JAK-STAT3 signaling in astrocytes, 3) facilitating induction of the 

A2 panel of reactive astrocyte genes, 4) suppressing microglia activation, and 5) reducing 

neuronal damage and preserving hippocampal-dependent cognitive functions.

7. Future directions and conclusions

Despite the remarkable progress described above in elucidating BDE2 functions in the 

brain, there remain many unanswered questions that require further studies. Below, we have 

summarized key questions and future directions that could help advance this important 

research area and provide clarity to areas where controversy currently exists.

7.1. Development of new animal models

An important caveat of the FBN-ARO-KO mouse studies is that deletion of aromatase was 

specifically targeted in forebrain excitatory glutamatergic neurons. While these constitute 

the major excitatory neurons in the brain, other types of neurons also express aromatase, 
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including inhibitory neurons (Hoyk et al., 2014; Yague et al., 2010, 2008). To address the 

role of NDE2 in these neurons, future studies are needed to develop genetic models that 

ablate aromatase specifically in these other neuronal types. Furthermore, in addition to the 

forebrain, aromatase is also expressed in the midbrain and hindbrain. Therefore, future 

studies are needed to develop genetic models for targeted deletion in these brain areas to 

help elucidate the function of BDE2 in these brain areas.

An intriguing finding of our studies was that even though neuronal aromatase and NDE2 

appear uncompromised in the GFAP-ARO-KO mice, NDE2 was unable to compensate for 

the loss of ADE2. One explanation for this could be that the effects of NDE2 and ADE2 

are additive and loss of one or the other sources of local E2 will yield a similar phenotype. 

To address this question, we have generated double aromatase knockout mice by crossing 

the FBN-ARO-KO and GFAP-ARO-KO mice and will use these mice in future studies to 

determine if the double knockout mice have greater defects than the single knockout mice 

after GCI. Alternatively, NDE2 neuroprotective effects may require ADE2 mediation. In 

potential support of this possibility, NDE2 was shown to regulate reactive astrogliosis and 

ADE2 generation by suppressing neuronal FGF2 signaling, which serves as an inhibitory 

“brake” to astrocyte activation following ischemia (Lu et al., 2020).

It should also be mentioned that BDE2 effects on astrocyte activation may be injury- or 

context-specific. For instance, contrary to the reduced reactive astrogliosis observed in 

our knockout mice after GCI, aromatase inhibitor treatment in male zebra finches with a 

penetrating wound injury was associated with increased reactive gliosis around the wound 

area (Wynne et al., 2008). This discrepancy could be due to differences in the injury model 

(ischemic versus traumatic injury), differences in approaches (chronic knockout versus an 

acute pharmacological knockdown of aromatase), or to species differences. To rule out that 

the differences were due to different approaches, we examined the effect of pharmacological 

inhibition of aromatase by letrozole in our GCI model. The results revealed that letrozole 

treatment in wild type male mice yielded a similar reduced reactive astrogliosis in the 

hippocampus after GCI as observed in the GFAP-ARO-KO mice (Wang et al., 2020). Thus, 

the difference in results does not appear to be due to different approaches, but rather appears 

to be due to different injury models and/or species differences. To provide greater clarity 

on this issue, in the future, we plan to use our knockout mice to study the role of NDE2 

and ADE2 following different types of brain injury, including penetrating brain injury, 

traumatic brain injury, and excitotoxic injury. Furthermore, we have also generated inducible 

conditional astrocyte-specific knockout mice using tamoxifen-inducible Gfap-cre/ERT2 and 

Aldh1l1-cre/ERT2 mouse lines that we plan to utilize as an additional tool in the future to 

further interrogate and enhance our understanding of the roles and actions of ADE2 in brain 

function.

7.2. Sex differences

There are conflicting reports on sex differences in BDE2 actions in the brain especially 

regarding effects on synaptic plasticity. Some studies found evidence of a role in females but 

not in males, while others indicate a significant role in both sexes. Thus, future studies 

on BDE2 actions and functions in the brain should include both sexes and do direct 
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comparisons where possible so as to better clarify sex differences in BDE2 effects and 

actions in the brain. We also plan to more thoroughly interrogate for sex differences using 

our conditional aromatase knockout models. While we observed similar gross phenotypes 

in both sexes in our knockout mice, we did not do comprehensive direct comparisons of 

the two sexes that are needed to reveal specific sex differences in effects, magnitude, and/or 

temporal patterns of the processes under study.

7.3. Additional clinical studies

While animal studies have shown that aromatase is upregulated in astrocytes in the brain 

after stroke and trauma, it is unclear whether a similar upregulation occurs in humans. 

Future studies using post-mortem human brain samples could examine this question. Since 

NDE2 has been implicated to regulate memory and cognition, approaches that increase 

NDE2 in the brain could potentially have efficacy at memory improvement/enhancement in 

humans. Intriguingly, one such approach to increase NDE2 could be exercise, as exercise 

has been reported to enhance E2 levels in the hippocampus in ovariectomized rats, and this 

effect was correlated with enhanced cognitive function (Kaidah et al., 2016). Thus, it would 

be interesting to determine whether exercise can similarly upregulate aromatase/E2 in the 

brain in humans. It would also be intriguing to determine whether exercise enhancement of 

cognition may involve NDE2 mediation, especially since NDE2 has been shown to regulate 

BDNF, spine and synapse density, and LTP – all key regulators and/or processes that 

underlie memory. Studies are already underway in our laboratory to address this interesting 

question.

7.4. Microglial regulation

Few studies have examined BDE2 for regulatory effects upon microglia. This is surprising 

as microglia are well known to possess estrogen receptors and exogenously administered E2 

can regulate microglia function. Our study using GFAP-ARO-KO mice did provide evidence 

that ADE2 regulates microglial activation and microglial homeostatic gene expression in 

the hippocampus after GCI (Wang et al., 2020). However, follow up studies are needed to 

further explore the functional consequences of such regulation, the mechanisms underlying 

them, whether they extend to other types of brain injuries and neurodegenerative disorders, 

and whether NDE2 can exert similar regulation of microglial activation and function.

In conclusion, the findings described in this review provide substantial evidence of 

aromatase expression and local E2 production in many different brain areas of almost all 

species studied to date. E2 is produced in neurons basally, while production in astrocytes 

is induced by stress, brain injury or ischemia. A strength of this body of work is that 

many different techniques were used in studying the localization of aromatase and E2 

production in the brain, and many different approaches were used to confirm the roles 

of BDE2 in the brain, including aromatase inhibitor and knockdown studies, as well as 

global aromatase and brain cell-specific aromatase knockout animal models. A role for 

NDE2 is implicated in a diverse spectrum of functions in the brain, including regulation 

of sexual differentiation, reproduction, socio-sexual behavior, synaptic plasticity, LTP, 

memory and cognition, auditory processing, injury-induced reactive gliosis and astrocyte 

phenotype, neuroprotection, and anti-inflammatory effects. Following its induction after 
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brain injury or ischemia, ADE2 has been implicated in the regulation of reactive gliosis, 

astrocyte phenotype, neuroprotection, cognitive preservation, and anti-inflammatory effects. 

Collectively, these findings demonstrate a critical role for BDE2 in many different brain 

functions in both physiological and pathological conditions.
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Abbreviations:

3β-HSD 3β -hydroxysteroid dehydrogenase

17β-HSD 17β -hydroxysteroid dehydrogenase

AD Alzheimer’s disease

ADE2 astrocyte-derived estradiol/estrogen

AMG amygdala

APP amyloid precursor protein

ATD 1,4,6-androstratriene-3,17-dione

BDE2 brain-derived estradiol/estrogen

BDNF brain-derived neurotropic factor

CaMKII calcium/calmodulin-dependent protein kinase II

c/EBP enhanced CCATT-enhancer binding proteins

CREB cAMP response element binding protein

DHT 5 α –dihydrotestosterone

E2 17β-estradiol

EGFP enhanced green fluorescent protein

EP3/4 E-prostanoid receptor 3/4

ERα estrogen receptor alpha

ERβ estrogen receptor beta

ERK extracellular signal regulated kinase

FBN-ARO-KO forebrain neuronal aromatase knockout

GCI global cerebral ischemia

GFAP glial fibrillary acidic protein
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GFAP-ARO-KO astrocyte aromatase knockout

GnIH gonadotropin inhibitory hormone

GnRH gonadotropin releasing hormone

HFS high frequency tetanic stimulation

HPC hippocampus

HPLC high performance liquid chromatography

HYP hypothalamus

IHC immunohistochemistry

OVX ovariectomized

LIF leukemia inhibitory factor

IL-1β interleukin-1β

IL-6 interleukin-6

LH luteinizing hormone

LPS lipopolysaccharide

LTD long term depression

LTP long term potentiation

NCM caudomedial nidopallium

NDE2 neuron-derived estradiol/estrogen

P45017α P450 17 α-hydroxylase

P450scc P450 side chain cleavage

PEPCK phosphoenolpyruvate carboxykinase

PET positron emission tomography

PGE2 prostaglandin E2

POA preoptic area

PSD post-synaptic density

PSD95 postsynaptic density 95

RORA retinoic acid-related orphan receptor-alpha

RT-PCR reverse transcriptase-polymerase chain reaction

STaR steroidogenic acute regulatory protein
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VMN ventromedial nucleus
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Fig. 1. Simplified Biosynthetic Pathway for Estrogens.
Estrogen synthesis begins with conversion of cholesterol to pregnenolone in mitochondria. 

Through a series of steps, pregnenolone is converted into androstenedione, which is 

converted into testosterone and estrone (E1). Testosterone is then converted into 17β-

estradiol (E2) through the action of aromatase (CYP19A). As also shown, CYP19A can be 

inhibited by various aromatase inhibitors for research purposes and for therapies. Chemical 

structures were generated from the ChemSpider webpage (http://www.chemspider.com).
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Fig. 2. Partial Aromatase Gene Structure.
Tissue-specific promoters in untranslated first exons are responsible for tissue-specific 

transcripts of aromatase. Promoter 1.f is typically considered the brain-specific promoter; 

however, promoters 1.3 and 1.4 have also been reported to be expressed in the brain.
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Fig. 3. Primary aromatase inhibitors used to inhibit aromatase activity in the brain in animals 
and humans.
Chemical structures were generated from the ChemSpider webpage (http://

www.chemspider.com).
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Fig. 4. Summary diagram illustrating multiple processes and factors that have been implicated to 
regulate brain aromatase.
See text for full description and discussion. BDE2 = brain-derived 17β-estradiol. Created 

with BioRender.com.
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Fig. 5. Schematic illustration of the potential mechanisms underlying neuron-derived E2 (NDE2) 
regulation of synaptic plasticity.
It is proposed that neuron-derived E2 (NDE2) regulates synaptic plasticity via both rapid 

and genomic signaling mechanisms. 1) Membrane localized estrogen receptors (estrogen 

receptor-α and β, ERα and ERβ, and G-protein coupled estrogen receptor-1, GPER1) can 

bind NDE2 and 2) the receptor bound NDE2 then induces rapid PI3K/AKT and MEK/ERK 

kinase signaling, which is capable of quickly shaping synaptic plasticity. In addition, the 

activated intracellular kinase signaling also phosphorylates the important transcriptional 

factor, CREB which further translocates into nucleus to facilitate the expressions of 

neurotrophic factor BDNF and synaptic protein PSD95. BDNF can also regulate synaptic 

plasticity by coupling to the rapid intracellular kinases. Moreover, BDNF signaling activates 

cofilin which is required for F-actin assembly and dendritic spine formation. Intracellular 

ERα and ERβ act in the genomic signaling pathway by transactivating estrogen response 

elements (ERE) in regulated genes and promoting genes transcription. CRE = cAMP 

response element.
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Fig. 6. Cognitive functions regulated by neuron-derived E2 (NDE2) and the commonly used 
behavioral tests for rodent studies.
Neuron-derived E2 (NDE2) is critical for hippocampus-dependent spatial reference memory, 

which is often tested using the Barnes Maze test. Hippocampus-dependent recognition 

memory is another important cognitive function that is regulated by NDE2 and which can 

be assessed using the Novel Object Recognition Test (NORT). In addition, NDE2 was also 

demonstrated to regulate contextual, but not cued fear memory, which can be evaluated 

using Fearing Conditioning Test. Finally, NDE2 is essential to prevent depressive-like 

behavior in female mice, which can be tested with the Forced Swimming Test.
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Fig. 7. Proposed mechanisms underlying neuron-derived E2 (NDE2) neuroprotection in the 
ischemic brain.
See text for full description. FBN-ARO-KO: forebrain neuron-specific aromatase knockout.
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Fig. 8. Proposed mechanisms underlying astrocyte-derived E2 (ADE2) neuroprotection in the 
ischemic brain.
See text for full description. GFAP-ARO-KO: astrocyte-specific aromatase knockout.
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