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Simple Summary: Immune checkpoint inhibitors (ICI) have reshaped treatment paradigms of
multiple solid organ malignancies. In genitourinary malignancies (GU), ICI provide significant
clinical benefit and are approved for use in localized and metastatic renal cell carcinoma and urothelial
carcinoma. Investigational approaches to maximize clinical benefit and expand use of ICI across
GU malignancies are actively being pursued. In addition, biomarkers predictive of clinical benefit
to ICI have been identified; however, further validation and incorporation into guideline-based
management remain active areas of investigation.

Abstract: Cancers of the genitourinary (GU) tract are common malignancies in both men and women
and are a major source of morbidity and mortality. Immune checkpoint inhibitors (ICI) targeting
CTLA-4, PD-1 or PD-L1 have provided clinical benefit, particularly in renal cell and urothelial carci-
noma, and have been incorporated into standard of care treatment in both localized and metastatic
settings. However, a large fraction of patients do not derive benefit. Identification of patient and
tumor-derived factors which associate with response have led to insights into mechanisms of re-
sponse and resistance to ICI. Herein, we review current approvals and clinical development of ICI in
GU malignancies and discuss exploratory biomarkers which aid in personalized treatment selection.

Keywords: immunotherapy; immune checkpoint inhibitors; genitourinary cancer; kidney; prostate;
testicular; bladder cancer

1. Introduction

Cancers of the genitourinary (GU) tract are a major source of cancer morbidity and
mortality. GU malignancies include prostate adenocarcinoma, the most common malig-
nancy in men, urothelial and renal cell carcinoma (RCC), the sixth and eighth most common
cancer among men and women combined, and testicular cancer, the most common solid
tumor malignancy among men younger than 35 years old [1]. There have been substantial
improvements in therapeutic strategies for treatment of these malignancies in the recent
past. Current standard of care includes diverse treatment modalities such as hormonal
therapy in prostate cancer, chemotherapy for urothelial and testicular cancer and targeted
treatment of vascular–endothelial growth factor and mammalian target of rapamycin
(mTOR) signaling in RCC.

Therapies which harness anti-cancer immune responses, referred to broadly as im-
munotherapy, have changed the paradigm of treatment for many cancers in recent years.
Immune checkpoint inhibitors (ICI) are a class of immunotherapy which block immune-
inhibitory receptors, or immune checkpoints, and re-invigorate anti-cancer immunity and
facilitate tumor elimination [2]. Within the last decade, ICI which target CTLA-4, PD-1 or
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PD-L1 have achieved profound and durable responses in many patients and have been
approved for use in multiple cancers (Table 1) [3]. Herein, ICI will refer to anti-CTLA-4
and anti-PD-1/PD-L1 agents unless otherwise noted. In GU malignancies, most notably in
RCC and urothelial cancer, ICI as monotherapy or in combination with other agents have
emerged as FDA approved standards of care in the treatment of metastatic disease as well
as in the curative adjuvant and neoadjuvant localized disease settings [4–10].

Table 1. Immune checkpoint inhibitors in current clinical use.

Immune Checkpoint Inhibitor Target

Atezolizumab (Tecentriq) PD-L1
Avelumab (Bavencio) PD-L1
Cemiplimab (Libtayo) PD-1
Durvalumab (Imfinzi) PD-L1
Ipilimumab (Yervoy) CTLA-4
Nivolumab (Opdivo) PD-1

Pembrolizumab (Keytruda) PD-1
Tremelimumab CTLA-4

Unfortunately, practice-changing efficacy of ICI has been limited to a subset of tumor
types, such as melanoma, kidney, bladder and non-small cell lung cancer (NSCLC), and
many tumors fail to derive benefit, such as tumors of the gastrointestinal tract [3]. Features
of tumor-immune biology have been found to associate with response and resistance
to ICI and are being evaluated in the clinical setting for use as predictive biomarkers.
For example, increased PD-L1 expression on tumor cells correlates with clinical benefit
to anti-PD-1/PD-L1 ICI in patients with NSCLC, a trend that is observed in some but
not all ICI-responsive malignancies [11]. Patients without threshold PD-L1 expression
achieve responses, however, suggesting PD-L1 assessment alone is insufficient to identify
patients for whom ICI should be withheld [11,12]. Biomarkers which act as surrogates of
T cell infiltration, also described as the T cell-inflamed tumor microenvironment (TME),
have been observed to associate with improved outcomes to ICI across multiple cancer
types [2,13–15]. In addition, high non-synonymous somatic tumor mutational burden
(TMB) and genomic insertions and deletions correlate with benefit to ICI [16–18]. Patient
demographic and clinical parameters such as the commensal microbiome and body-mass
index have also been shown to associate with responses to ICI [19–22]. Elucidating a
mechanistic basis for these associations are areas of active research.

Herein, we review current FDA approved indications and active areas of clinical
development of ICI in GU malignancies (Figure 1). In addition, we discuss investigational
biomarkers and their association with response to ICI.
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Figure 1. Current indications and biomarkers for immune checkpoint inhibitors in GU malignancies.

2. Treatment Indications, Investigational Approaches and Biomarkers of ICI in
GU Cancers
2.1. Kidney Cancer (Renal Cell Carcinoma)

Renal cell carcinomas (RCC) are the eighth most common cancer diagnosis with an
estimated 74,000 new cases diagnosed in 2019 [23]. RCC is subclassified into two groups:
clear cell histology which makes up 75–80% of cases and non-clear cell histology which
includes papillary, sarcomatoid, chromophobe subtypes [24]. Targeted therapies with
vascular endothelial growth factor (VEGF) tyrosine kinase inhibitors (TKIs), mammalian
target rapamycin (mTOR) inhibitors are widely used in first and second-line treatment in
both metastatic clear cell and non-clear cell RCC [25,26]. In addition, clear cell RCC was one
of the first cancers to be treated with cytokine-based immunotherapy such as recombinant
IFN-α and high-dose IL-2 [27,28]. High-dose IL-2 maintains a category 2B recommendation
for treatment of metastatic disease in certain circumstances by the National Comprehensive
Cancer Network (NCCN). More recently, clinical trials have established a role for ICI and
ICI-based combinations in multiple settings for the treatment of clear cell and non-clear
cell RCC. Results of these trials are summarized in Table 2.

2.1.1. ICI Indications

ICI is approved for the treatment of untreated and refractory metastatic clear cell
RCC. ICI use in the adjuvant and neoadjuvant setting are in advanced stages of clinical
development. In metastatic disease, treatment guidelines and FDA indications take into
account International Metastatic RCC Database Consortium (IMDC) Risk groups, which
assign a risk score based on clinical variables such as time from diagnosis to systemic
therapy greater than or less than 12 months, performance status, hemoglobin, neutrophil
and platelet counts and corrected calcium level. Patients without any positive variables are
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considered favorable-risk, while those with one or two positive variables are considered
intermediate-risk, and those with three or more factors considered poor-risk [27,29].

In localized disease, neoadjuvant and adjuvant ICI is being investigated and treatment
considers risk groups based on histology, grade and TNM stage. Subsequent sections
referring to clinical trials and indications for RCC discuss clear cell histology and non-clear
cell histology separately.

Advanced/Metastatic Clear Cell RCC

First Line

In patients with previously untreated metastatic clear cell RCC, treatment indications
are based on IMDC risk group. Combination anti-PD-1/PD-L1 plus VEGF TKI is approved
in all risk groups while combination nivolumab plus ipilimumab is indicated in patients
with intermediate- and poor-risk disease.

Nivolumab plus ipilimumab was approved for first-line therapy based on the phase
3 CheckMate-214 trial versus sunitinib monotherapy [7]. In this trial, nearly 90% of
1096 intention-to-treat population had either intermediate or poor-risk disease, and in these
patients, treatment with nivolumab plus ipilimumab resulted in superior 18-month OS. In
favorable-risk patients, treatment with nivolumab plus ipilimumab resulted in inferior PFS
and OS than sunitinib monotherapy, results which were confirmed at 42-month follow-up
analysis [30]. As such, nivolumab plus ipilimumab is not indicated for first-line treatment
in patients with favorable-risk disease at time of diagnosis.

Multiple anti-PD-1/PD-L1 plus VEGF TKI combinations have been approved for
first-line treatment of advanced RCC regardless of risk group. These combinations include
axitinib plus pembrolizumab evaluated in the KEYNOTE-426 clinical trial, lenvatinib plus
pembrolizumab evaluated in the CLEAR clinical trial, axitinib plus avelumab evaluated
in the JAVELIN Renal 101 clinical trial and cabozantinib plus nivolumab evaluated in the
CheckMate-9ER clinical trial [4,6,31,32]. Across all studies, combination treatment resulted
in a higher ORR, median PFS, OS and a higher percentage of complete responses than
sunitinib monotherapy. Extended follow-up results have confirmed these findings [5,33,34].

Despite clear activity of anti-PD-1/PD-L1 plus VEGF TKI combinations, it is unclear if
the activity is synergistic or additive. VEGF inhibitors have been shown to normalize tumor
vasculature and increase immune cell tumor infiltration, decrease immunosuppressive cell
populations and promote T cell priming and activation via dendritic cell maturation [35–37].
Interestingly, the phase 3 IMMotion151 trial of atezolizumab plus bevacizumab, a mono-
clonal antibody to VEGF receptor, did not improve overall survival, calling into question
whether targeted VEGF blockade alone, in contrast to the multi-kinase inhibition of VEGF
TKIs, is sufficient to enhance ICI [38,39].

In patients with intermediate- and poor-risk disease, evidence-based selection of first-
line treatment between nivolumab plus ipilimumab or anti-PD-1/PD-L1 plus VEGF TKI
combinations remains undefined. Longer follow-up is required to determine if combina-
tion anti-PD-1/PD-L1 plus VEGF-TKI will produce as durable of complete responses as
nivolumab plus ipilimumab since median OS has not been reached in many pivotal studies
of anti-PD-1/PD-L1 plus VEGF TKI. These outcomes will provide basis for comparison
and facilitate discussion with patients when selecting treatment; however, cross-study com-
parison has limitations. In the long-term, a head-to-head phase 3 clinical trial comparing
these two strategies is warranted.

ICI-specific outcome measures such as treatment free survival (TFS), defined as time
from ICI cessation to subsequent systemic therapy initiation or death, should be consid-
ered in future clinical trials [38]. In favorable-risk patients in the CheckMate-214 trial,
despite inferior outcomes to sunitinib monotherapy, patients treated with nivolumab plus
ipilimumab achieved higher rates of complete response and duration of TFS [30]. These
observations represent important patient-centered metrics that are critical to assess in
future trials [39].
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Second Line

In current practice, most patients receive upfront anti-PD-1 in combination with
either anti-CTLA-4 agent or VEGF TKI, and there is limited data to guide subsequent
treatment selection. Investigators have begun to conduct clinical trials which specifically
enroll patients who have progressed on anti-PD-1/anti-PD-L1 based combination as most
recent therapy. In patients with metastatic RCC initially treated with anti-PD-1 therapy
plus VEGF TKI, salvage nivolumab plus ipilimumab has demonstrated activity and is
approved regardless of IMDC risk group [40–42]. A recent phase 1b/2 clinical trial in
advanced solid tumors including RCC demonstrated encouraging anti-tumor activity for
lenvatinib plus pembrolizumab for post-ICI treatment [43]. The role of continuing the anti-
PD-1/PD-L1 backbone in post-ICI treatment is being evaluated in the CONTACT-03 trial
of atezolizumab plus cabozantinib versus cabozantinib alone in patients with metastatic
RCC after progression on anti-PD-1/PD-L1 treatment (NCT04338269).

In patients treated first-line with VEGF TKI monotherapy, nivolumab monotherapy
is approved based on results from the phase 3 CheckMate 025 trial which demonstrated
improved OS compared with everolimus [44,45].

Non-clear cell RCC

Analysis of the CheckMate 374 study of nivolumab monotherapy in previously treated
RCC revealed meaningful responses in non-clear cell RCC [46]. The KEYNOTE-427 trial
Cohort B, a phase 2 trial of pembrolizumab monotherapy in 165 patients with non-clear cell
RCC, demonstrated encouraging anti-tumor activity, particularly in papillary or unclassi-
fied histology [47]. A multi-center phase 2 trial demonstrated efficacy of atezolizumab in
combination with bevacizumab with ccRCC or non-clear cell RCC with >20% sarcomatoid
differentiation [48]. A phase 2 trial of nivolumab plus cabozantinib demonstrated responses
in non-clear cell RCC however activity in chromophobe was limited [49]. Nivolumab plus
ipilimumab versus standard of care (VEGF TKI) in patients with previously untreated
and advanced non-clear cell RCC demonstrated substantially higher ORR and is currently
being evaluated in an ongoing multi-center phase 2 trial (SUNNIFORECAST) [50].
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Table 2. ICI clinical trials in renal cell carcinoma.

ICI Agent Trial (Phase) Setting Line Arms N ORR, CR, PR Median PFS
(Mo) (95% CI)

PFS HR (95%
CI)

Overall
Survival

OS HR
(95% CI)

OS in PD-L1
Positive AE

Nivolumab
CheckMate 214 (3)

NCT02231749 [7,30]

RCC, metastatic

Intermediate/Poor
IMDC risk groups

1 Nivolumab +
ipilimumab 550 42%, 9% 11.2 48.1 mo

(35.6–NE) 0.65 (0.54–0.78)
Any grade:

93%
G3-4: 46%

Sunitinib 546 27%, 1% 8.3 26.6 mo
(22.1–33.5)

Any grade:
97%

G3-4: 63%

Nivolumab
CheckMate 9ER (3)

NCT03141177 [5]

RCC, metastatic

All risk groups

1 Nivolumab +
cabozantinib 323 55.7%, 8%,

47.7% 16.6 (12.5–24.9) 0.51 (0.41–0.64;
p < 0.001) NE 0.60 (0.40–0.89;

p = 0.001)
Any grade:

96.6%
G3: 60.6%

Sunitinib 328 27.1%, 4.6%,
22.6% 8.3 (7.0–9.7) NE (22.6-NE)

Any grade:
93.1%

G3: 50.9%

Nivolumab
CheckMate 025 (3)

NCT01668784 [44]

RCC, metastatic

All risk groups

2 Nivolumab 406 25%, 1%, 24% 4.6 (3.7–5.4) 0.88 (0.75–1.03;
p = 0.11)

25 mo 95% CI
(21.8-NE)

0.73 98.5% CI
0.57–0.93
p = 0.002)

G3–4: 19%

Everolimus 397 5%, <1%,
5% 4.4 (3.7–5.5) 19.6 mo

(17.6–23.1) G3–4: 37%

Nivolumab
CheckMate 009 (1)

NCT01358721 [51]
RCC, metastatic 2 Nivolumab 92 15%, 2%, 12%

16.4 mo (10.1-NR) in previously
treated pts

25.2 mo (12.0-NR) in untreated pts

23.4 mo in pts with <5% PD-L1+
tumor expression

NR with >5% PD-L1 tumor
expression

Pembrolizumab
KEYNOTE-426 (3)

NCT02853331 [4,33]

RCC, metastatic

All risk groups

1 Pembrolizumab +
axitinib 432 59.3%, 5.8%,

53.5% 15.1 (12.6–17,7) 0.69 (0.57 to
0.84; p < 0.001) NE 0.53 (0.38–0.74;

p < 0.0001)
Any grade:

96%
>/= G3 : 67%

Sunitinib 429 35.7%, 1.9%,
33.8% 11.1 (8.7–12.5) 35.7 (33.3-NE)

Any grade:
98%

>/= G3 : 62%

Pembrolizumab
CLEAR (3)

NCT02811861 [34]

RCC, metastatic

All risk groups [34]

1 A Pembrolizumab +
Lenvatinib 355 71.0%, 16.1%,

54.9% 23.9 (21–28)
A vs. C 0.39
(0.32–0.49;
p< 0.0001)

NR (33.6-NE)
A vs. C 0.66
(0.49–0.88;
p < 0.004)

>/= G3 : 82.4%

B Everolimus +
lenvatinib 357 53.5%, 9.8%,

43.7% 14.7 (11.1–16.7)
B vs. C 0.65

(0.53–0.8;
p < 0.001)

NR (NE-NE)
B vs. C

1.15 (0.88–11.5;
p = 0.3)

>/= G3 :
83.1.%

C Sunitinib 357 36.1%, 4.2%,
31.9% 9.2 (11–17) NE (NE-NE) >/= G3 : 71.8%
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Table 2. Cont.

ICI Agent Trial (Phase) Setting Line Arms N ORR, CR, PR Median PFS
(Mo) (95% CI)

PFS HR (95%
CI)

Overall
Survival

OS HR
(95% CI)

OS in PD-L1
Positive AE

Pembrolizumab KEYNOTE-427
(2) [52] RCC, metastatic 1 Pembrolizumab 107 36.4

(3.6%,32.7% 7.1 (5.6–11.0) NR >/= G3 :
30%

Pembrolizumab KEYNOTE-427
(Cohort B) (2) [47]

Non-ccRCC,
metastatic 1 Pembrolizumab 165 24.8% (4.8%,

20%) 4.2 (2.9–5.6) 28.9 (24.3-NR) Any grade:
69.7%

Avelumab
Javelin Renal 101 (3)

NCT02684006 [6]

RCC, metastatic

All risk groups
1

Avelumab +
axitinib 442 51.4%, 3.4%,

48.0% 13.3 (11.1-NE)
0.69

(0.574–0.825);
p < 0.0001;

Median not
reached

HR 0.65
(0.413–0.933)

PD-L1+: Not
reached

>/= G3:
71.2%

Sunitinib 444 25.7%, 1.8%,
23.9% 8.4 (6.9–11.1) Median not

reached

PD-L1+: 28.6
(27.4–NE)

HR: 0.83 (95%
CI 0.596–1.151),

1-sided
p = 0.1301

>/= G3: 71.5%

Avelumab
JAVELIN Solid

Tumor (1b)

NCT01772004 [53]

RCC, metastatic

All risk groups
1 or 2 Avelumab

82 (62
in 1L,
20 in

2L

1L: 16.1%,
1.6%, 14.5%

2L: 10%, 0%,
3%

1L: 8.3 (5.5–9.5)

2L: 5.6 (2.3–9.6)

1L: NE

2L: 16.9
(8.3-NE)

G3–4
1L: 12.9%

2L: 5%

Atezolizumab
IMMotion151 (3)

NCT02420821 [54]

RCC, metastatic

All risk groups
1

Atezolizumab +
bevacizumab 454 37%, 5%, 31% 11.2

0.74 [95% CI
0.57–0.96];
p = 0.0217

33.6 (29.0-NE) 0.93 (0.76–1.14) OS in PD-L1+:
34.0 (28.6-NE) G3–4: 40%

Sunitinib 461 33%, 2%, 31% 7.7 35.9 (27.9-NE)

32.7 (23.3-NE)

HR: 0.84
(0.62–1.15;
p = 0.2587)

G3–4: 54%

Atezolizumab
IMmotion150 (2)

NCT01984242 [55]

RCC, metastatic

All risk groups
1

A Atezolizumab +
bevacizumab 101 32%, 7%, 25% 11.7 (8.4–17.3)

A vs. C

1.00 (0.69–1.45;
p = 0.982)

PFS in PD-L1+

A vs. C
0.64 (0.38–1.08;

p = 0.095)

G3–4:
63%

B Atezolizumab 103 25%, 11%, 14% 6.1 (5.4–13.6)
B vs. C

1.19 (0.82–1.71;
p = 0.358)

B vs. C
1.03 (0.63–1.67;

p = 0.917)
G3–4: 40%

C Sunitinib 101 29%, 5%, 24% 8.4 (7.0–14.0) G3–4: 69%

Atezolizumab (1a) [56] RCC, metastatic 1 or 2 Atezolizumab 77 15% 5.6 (3.9–8.2) 28.9 (20-NR) G3:
21%
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Table 2. Cont.

ICI Agent Trial (Phase) Setting Line Arms N ORR, CR, PR Median PFS
(Mo) (95% CI)

PFS HR (95%
CI)

Overall
Survival

OS HR
(95% CI)

OS in PD-L1
Positive AE

PERIOPERATIVE

ICI Agent Trial (Phase) Setting Line Arms N Disease Free
Survival (DFS) Median OS AE

KEYNOTE-564
(3) [8]

RCC, Locally
advanced or M1

with no evidence
of disease

after primary
resection and

metastasectomy
completely resected

<1 year from
nephrectomy

Intermediate-high
risk

Adjuvant Pembrolizumab 496 NR 0.68; 0.53–0.87;
p = 0.001) NR 0.54; 0.30-0.96

Any Grade:
96.3%

G3–5: 32.4%

Placebo 498 NR NR
Any Grade:

91.1%
G3–5: 17.7%

ORR = overall response rate; CR = complete response; PR = partial response; PFS = progression free survival; HR = hazard ratio; AE = adverse events.
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2.1.2. Investigational Approaches

Perioperative ICI

Several large phase 3 clinical trials are being performed to evaluate perioperative ICI
in patients with intermediate or high-risk localized RCC. In the phase 3 KEYNOTE-564
trial, adjuvant pembrolizumab versus placebo demonstrated significant improvement with
a hazard ratio for disease recurrence or death of 0.68, making it the first trial to show
benefit for adjuvant immunotherapy in localized RCC [8]. Results from other studies are
being awaited, including the phase 3 PROSPER Trial, in which nivolumab is given as
neoadjuvant treatment followed by nine adjuvant doses after nephrectomy [57]. The phase
3 CheckMate 914 trial is evaluating adjuvant nivolumab and nivolumab plus ipilimumab
versus placebo [58]. The IMmotion010 trial is evaluating adjuvant atezolizumab in a similar
setting (NCT03024996) [59,60].

Alternative Therapy Schedules

An ongoing phase 2 trial is evaluating intermittent nivolumab dosing in which patients
who achieve >10% reduction in tumor burden enter a treatment-free observation period
and are re-imaged every 3 months. In this study, out of five patients who met criteria for
treatment-free observation, only one patient re-started therapy and the other four sustained
responses for median of 34 weeks after therapy discontinuation [61].

Triple Therapy

Triple combination cabozantinib with nivolumab and ipilimumab in clear cell RCC
demonstrated tolerability and encouraging outcomes and is being evaluated in a multi-
center, randomized phase 3 clinical trial (NCT03937219) [62].

2.1.3. Biomarkers for ICI Treatment in RCC

There are no widely accepted models predictive of response and clinical benefit to
ICI treatment in patients with RCC; however, prospective and retrospective analyses have
identified demographic, clinical, histologic and molecular biomarkers which associate with
treatment outcomes.

Assocation between PD-L1 expression and outcomes to ICI treatment have been mixed
in RCC. In the CheckMate 025 trial, patients found to have PD-L1 expression >1% had
worse survival outcomes than those with low PD-L1 expression, even when treated with
single agent anti-PD-1. This was not observed in the CheckMate 214 trial of combination
anti-CTLA-4/PD-1 [44]. Interestingly, increased tumor cell PD-L1 was associated with
shorter survival in patients treated with sunitinib or pazopanib in the COMPARZ trial in
metastatic clear cell RCC, suggesting increased PD-L1 on tumor cells may represent a more
clinically aggressive disease [63].

In the IMmotion150 trial of atezolizumab with or without bevacizumab versus suni-
tinib in metastatic RCC, gene expression profiling of pre-treatment tumor samples was
found to associate with clinical outcomes within and across treatment arms [55]. Tumors
with higher-than-median expression of a T cell effector gene signature (Teff signature,
Teff

High) had improved ORR to atezolizumab plus bevacizumab treatment versus Teff
Low.

Similar benefit was observed in the JAVELIN Renal 101 trial, where higher-than-median
Immuno Score resulted in more favorable outcomes in patients treated with avelumab plus
axitinib [6,64]. Teff and Immuno score did not meaningfully impact outcomes in VEGF TKI
monotherapy arms.

A myeloid-related inflammation signature was also profiled in both studies. Tumors
with concurrent myeloidHigh and Teff

High were less likely to benefit from atezolizumab
monotherapy. Interestingly, in the IMmotion150 trial, benefit in patients with myeloidHigh

Teff
High tumors was preserved with combination atezolizumab plus bevacizumab, suggest-

ing the addition of bevacizumab may overcome myeloid inflammation-associated resis-
tance in these tumors. In the JAVELIN Renal 101 trial, patients with myeloidHigh Teff

High

tumors had worse outcomes in both avelumab plus axitinib and sunitinib treated arms.
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VEGF-inducible angiogenesis-associated gene signature (Angio signature) associated
with benefit to VEGF-TKI monotherapy. Patients with angioHigh tumors experienced
greater benefit from VEGF-TKI monotherapy while patients with AngioLow had better
outcomes when treated with ICI plus VEGF TKI [55,64,65]. This suggests utility of Angio
score as a way to select patients for VEGF TKI monotherapy.

As mentioned above, IMDC favorable-risk score associated with inferior outcomes
to nivolumab plus ipilimumab treatment [7]. In the IMmotion150 trial, benefit to ate-
zolizumab plus bevacizumab was seen across IMDC risk groups [55]. An elevated BMI
associated with improved outcomes to ICI treatment in RCC in two independent retrospec-
tive studies [20,21]. Association between neutrophil-to-lymphocyte ratio and outcomes has
been mixed and larger prospective cohorts are needed to confirm its predictive role [20,66].
Lastly, retrospective analysis of multiple studies has found loss-of-function truncating
PBRM1 mutations may confer increased responsiveness to ICI [67–69]. However, recent
evaluation in first-line setting did not corroborate these findings [55].

2.2. Bladder Cancer (Urothelial Carcinoma)

Bladder cancer, or urothelial carcinoma (UC), is the sixth most common cancer di-
agnosis among men and women in the United States. In 2020, an estimated 84,000 new
cases of bladder cancer were diagnosed, with 75% of cases affecting men [70]. ICI has
been approved for treatment of bladder cancer including both non-muscle-invasive and
locally advanced or metastatic disease. Results from pivotal clinical trials are summarized
in Table 3.

2.2.1. ICI Indications
Non-Muscle-Invasive Bladder Cancer

Up to 40% of patients with high-risk non-muscle-invasive bladder cancer (NMIBC)
will recur after Bacillus Calmette–Guerin (BCG) intravesicular immunotherapy for which
radical cystectomy is indicated [71]. Many patients with urothelial cancer are elderly or
of compromised performance status and cannot tolerate radical cystectomy, for which
contemporary 90-day mortality estimates have been reported to be >10% [72]. As such,
there is a need for treatment options for patients who cannot tolerate or wish not to undergo
surgery. Pembrolizumab was recently evaluated in KEYNOTE-057, a multi-center, single-
arm phase 2 clinical trial in patients with high-risk, BCG-unresponsive NMIBC who were
ineligible for or elected not to undergo cystectomy. Pembrolizumab treatment resulted
in a 41% complete response rate at 3 months assessed by cystoscopy, urine cytology and
CT urography [73]. Encouragingly, 46% of patients who achieved response maintained a
complete response at 12 months. This trial resulted in FDA approval in this setting.

Locally Advanced or Metastatic Bladder Cancer

First Line

In patients with metastatic bladder cancer, platinum-based chemotherapy (PBC) with
cisplatin is preferred first-line standard of care with carboplatin as an alternative. ICI for
first-line treatment in metastatic bladder cancer was first evaluated in cisplatin-ineligible
patients. Results from the single-arm KEYNOTE-052 and IMvigor210 clinical trials of
pembrolizumab and atezolizumab monotherapy in this setting resulted in accelerated
approval by the FDA in 2017 [74,75]. Subsequent confirmatory phase 3 randomized clinical
trials of these agents in the KEYNOTE-361 and IMvigor130, respectively, revealed first-line
pembrolizumab and atezolizumab monotherapy did not improve outcomes versus stan-
dard of care PBC. This resulted in a label restriction of anti-PD-1 monotherapy for use only
in cisplatin-ineligible patients whose tumors express PD-L1 (combined positive score ≥10),
or in patients who are not eligible for any PBC (cisplatin or carboplatin) regardless of PD-L1
status [76,77]. Of note, in KEYNOTE-361, patients treated with pembrolizumab, responses
were more durable compared to chemotherapy-containing arms.
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In addition to evaluating ICI monotherapy versus PBC, the KEYNOTE-361 and
IMvigor130 clinical trials evaluated first-line ICI in combination with PBC, analogous
to ICI-chemotherapy combinations used for treatment of non-small cell lung cancer.
The KEYNOTE-361 trial found no improvement in outcomes with the addition of pem-
brolizumab to PBC versus PBC alone [76]. In the IMvigor130 trial, addition of atezolizumab
to PBC prolonged PFS; however, improvement in OS did not reach statistical significance
at interim analysis [77–79]. Combination treatment led to a near doubling of complete
responses versus chemotherapy alone. In addition, data suggest cisplatin-treated patients
derived greater OS benefit from addition of atezolizumab than carboplatin-treated patients;
further follow-up is ongoing [80].

The DANUBE trial, a randomized phase 3 trial combining anti-PD-1 durvalumab and
anti-CTLA-4 tremelimumab, did not result in survival benefit versus PBC [81].

Second Line

Multiple ICI, including pembrolizumab, atezolizumab, nivolumab, durvalumab and
avelumab, received accelerated approval for treatment of patients who progressed on first-
line platinum-based chemotherapy (PBC) or within 12 months of neoadjuvant or adjuvant
PBC [82–85]. The confirmatory phase 3 KEYNOTE-045 clinical trial of pembrolizumab
versus paclitaxel, docetaxel or vinflunine treatment confirmed improved objective response
rate and overall survival [77,86]. However, the confirmatory phase 3 IMvigor211 clinical
trial of atezolizumab monotherapy in relapsed bladder cancer failed to meet its primary
endpoint of improving OS versus investigator’s choice of chemotherapy, and the company
has since voluntarily withdrawn its indication for the refractory setting [87,88]. The
indication for durvalumab has also been voluntarily withdrawn [89].

Maintenance Therapy

Results of randomized clinical trials of ICI confirmed a role for first-PBC in patients
with metastatic bladder cancer. Use of ICI avelumab immediately after PBC induction (as
maintenance therapy), rather than at progression, was evaluated in the JAVELIN Bladder
100 clinical trial in patients whom either achieved response or presented stable disease to
first-line PBC. In this trial, avelumab maintenance was found to provide improved PFS
and OS versus best supportive care (BSC) [9]. Importantly, the OS benefit for avelumab
maintenance occurred after greater than 40% of the control group crossed over and re-
ceived ICI after progression, revealing a benefit of starting ICI immediately after first-line
chemotherapy rather than at disease progression.
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Table 3. ICI clinical trials in urothelial carcinoma.

ICI Agent Trial (Phase) Setting Line Arms N ORR, CR, PR
Median

PFS
(months)

PFS HR (95%
CI)

Overall
Survival

OS HR (95%
CI)

OS in PD-L1
Positive AE

Atezolizumab
IMvigor130 (3)

NCT02807636 [16,17]

Locally advanced or
mUC *

ECOG PS </= 2

Cisplatin-eligible or
ineligible

1

A: Atezolizumab +
carboplatin or

cisplatin +
gemcitabine

451 47%, 13%, 35% 8.2
(6.5–8.3)

16.0
(13.9–18.9)

% of patients
AEs leading to

treatment
discontinuation

34%

B: Atezolizumab
monotherapy

(Arm added after
protocol

amendment)

362 235, 6%, 17% 15.7
(13.1, 17.8)

HR B vs. C: 1.02
(0.83–1.24)

In pts with IC2/3 **:
NE (Not evaluable) 6%

C: Placebo +
carboplatin or

cisplatin +
gemcitabine

400 44%, 7%, 37% 6.3
HR A vs. C: 0.82

(0.70–0.96)
p = 0.007

13.4
(12.0, 15.2)

HR A vs. C: 0.83
(0.69–1.00)
p = 0.027

In pts with IC2/3 **:
17.8

HR B vs. C: 0.68,
(95% CI 0.43–1.08)

34%

Atezolizumab IMvigor210 (2) [75] Cisplatin-ineligible 1 Atezolizumab 123 23%, 9% 2.7
(2.1–4.2)

15.9
(10.4-NE)

OS by IC (PD-L1
status on immune

cells):
IC2/3: 12.3 (6.0-NE)
IC0/1: 19.1 (9.8-NE)

G3–4:
16%

Pembrolizumab
Keynote-361 (3)

NCT02853305 [76]

First-Line

Locally advanced or
mUC *

ECOG PS </= 2

GFR > 30mL/min
Randomized 1:1:1

>6 mo since MIBC ttr

1

A: Plat/gem +
pembrolizumabMain-

tenance:
Pembro

351 54.7%, 15.1%,
39.6% 8.3 17

(14.5–19.5)
Any G3–5:

87.4%

B: Plat/gem

Maintenance: none
352 44.9%, 12.2%,

32.7% 7.1
HR A vs. B: 0.78

(0.65–0.93)
p = 0.0033

14.3 mo
(12.3–16.7)

HR A vs. B: 0.86
(0.72–1.02)
p = 0.0407

In pts with PD-L1
CPS >10

HR of A vs. B:
0.90 (95% CI

0.69–1.18)

Any G3–5:
81.9%.1%

C: Pembrolizumab 307 30.3%, 11.1%,
19.2%

3.9
Due to statistical design, OS of

B vs. C was not tested

15.6
(12.1–17.9)

Any G3–5:
62.9%

Pembrolizumab
Keynote-052 (2)

NCT02335424 [74]
Cisplatin-ineligible 1 Pembrolizumab 370 24%, 5%, 19%

Response rate in
PD-L1-expression of

10%:
42% (28–48%)

G3–4:
10%

Durvalumab

DANUBE (3)

NCT02516241

Locally advanced or
mUC *

ECOG PS </= 2

Randomized 1:1:1

1

A: Plat/Gem 344 49%, 6%, 43% 6.7 12.1
(10.9–14.0)

OS in PD-L1 >25%,
either tumor and

immune cells

12.1 (10.4–15.0)

Grade 3–4 AE:
60%

Tremelimumab

B: Durvalumab +
Tremelimumab 342 36%, 8%, 28% 3.7 15.1

(13.1–18.0)
HR A vs. B: 0.89

(0.71–1.11)
p = 0.3039

Grade 3–4 AE:
27%

C: Durvalumab 346 26%, 8%, 18% 2.3
14.4 (10.4–17.3)

HR A vs. C: 0.85
(0.72–1.02) p = 0.0751

Grade 3–4 AE:
14%
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Table 3. Cont.

ICI Agent Trial (Phase) Setting Line Arms N ORR, CR, PR
Median

PFS
(months)

PFS HR (95%
CI)

Overall
Survival

OS HR (95%
CI)

OS in PD-L1
Positive AE

Durvalumab
1/2

NCT01693562 [90]
Locally advanced or

mUC 2 Durvalumab 191 17.8%, 3.6%,
14.2%

1.5
(1.4–1.9) 18.2 (81.-NR) Grade 3–4 AE:

2%

Avelumab
Javelin Bladder 100

NCT02603432 [9]
mUC 1

Maintenance

A: Avelumab mainte-
nance(treatment after

platinum-based
induction)

350 21.4 NE (20.3-NR)
All: 98%

Grade 3–4:
47.4%

B: Best supportive
care 350 14.3

HR 0.69
(0.56–0.86)
p = 0.001

17.1 (13.5–23.7)

HR: 0.56 (0.4–0.79)
p < 0.001

All: 77.7%
Grade 3–4:

25.2%

ICI Agent Trial (Phase) Setting Arms N Response Rate DFS DFS HR
(95% CI)

In PD-L1
(+) Popula-

tions
AES

Pembrolizumab
PURE-01 (2)

NCT02736266 [91]

Localized,
muscle-invasive, M0

UC

Neoadjuvant:
3 courses
preceding

radical
cystectomy

Pembrolizumab 27

pT0 Rate:42%
(28.2–56.8%)

pT < 2 = 54%
(39.3–68.2%)

pT0 in
PD-L1 CPS
≥ 10%:
54.3%

pT0 in CPS
< 10%:
13.3%

G3-4: 6%

Atezolizumab
ABACUS (2)

NCT03800134 [92]

Localized,
muscle-invasive,

M0 UC

Neoadjuvant:
2 cycles prior to

radical
cystectomy

Atezolizumab 88 pT0 Rate: 31%
(21–41%)

pT0 Rate in
tumors

with PD-L1
>5% of

immune
cells: 37%
(21–55%)

G3-4: 12%

Atezolizumab
IMvigor010 (3)

NCT02450331 [93]

Localized,
muscle-invasive,

M0 UC

Adjuvant:
enrolled within

14 wees
post-surgery,

treated for up to
1 year

Atezolizumab 406
19.4

months
(95% CI

15.9–24.8)

0.89 [95% CI
0.74–1.08];

p = 0.24
Serious AE: 31%

Observation 403
16.6

months
(11.2–24.8)

18%

Nivolumab
CheckMate-274 (3)

NCT02632409 [10]

Localized,
muscle-invasive,

M0 UC

Adjuvant: after
radical surgery

+/−
neoadjuvant

cisplatin

A: Nivolumab 353 20.8
(16.5–27.6)

Median
DFS in PD
= L1 >/=

1%
NR

(21.2–NE)

63 (17.9) >/=G3 17.9%

B: Placebo 356 10.8
(8.3–13.9)

0.70 (0.57–0.86),
p = 0.0008

8.4
(5.6–21.2)

HR: 0.55
(0.39–0.77);
p = 0.0005

25 (7.2) >/=G3 7.2%

* mUC = metastatic urothelial carcinoma. ** PD-L1 staining of tumor-infiltrating immune cells (IC); IC2/3 indicates >5% PD-L1 expression.
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2.2.2. Investigational Approaches

Enfortumab Vedotin Plus Pembrolizumab

The antibody-drug conjugate enfortumab vedotin is being evaluated in combination
with pembrolizumab as first-line therapy in locally advanced and metastatic bladder cancer.
Initial results of the EV-103 phase 1b clinical trial revealed an encouraging response rate
of 73% and reassuring safety profile [94]. Durability was demonstrated with a median
duration of response of 25.6 months and approximately 53% of patients achieving responses
lasting at least 24 months [95,96].

PerioperativeICI

There are multiple ongoing and completed clinical trials of ICI treatment in the pe-
rioperative setting in localized bladder cancer [97]. In the phase 3 placebo-controlled
CheckMate 274 study, nivolumab given after radical cystectomy with or without neoadju-
vant platinum based chemotherapy in patients with high-risk of recurrence demonstrated
improved DFS in all patients independent of tumor PD-L1 status, although greater ben-
efit was seen in patients with PD-L1 expression >1% [10]. This study resulted in FDA
approval for nivolumab for adjuvant treatment of urothelial carcinoma independent of
prior neoadjuvant chemotherapy, nodal involvement or PD-L1 status [98]. The PURE-
01 and ABACUS clinical trials evaluated neoadjuvant single-agent pembrolizumab and
atezolizumab, respectively, and demonstrated feasibility and tolerability with minimal
delays in surgery and an encouraging rate of pathologic complete responses [91,92]. In
the phase 3 IMvigor010 trial, adjuvant atezolizumab failed to meet its primary endpoint
of improving OS compared with observation [93]. Combination ICI or single agent ICI
plus chemotherapy are being evaluated in phase 3 trials [99,100]. Preliminary activity for
neoadjuvant ICI in bladder cancer with variant histology has also been reported [101].
Long-term survival benefit and cost effectiveness analysis remain to be reported.

IO and Bladder Preservation Approaches

In patients with locally advanced muscle-invasive bladder cancer, multi-modal blad-
der preservation treatment strategies are being investigated as an alternative to cystectomy.
As mentioned above, cystectomy carries high morbidity and mortality and there is a need
for alternatives to surgery. A phase 2 study of anti-PD-1 durvalumab plus anti-CTLA-4
tremelimumab with concurrent radiation therapy demonstrated feasible and encourag-
ing outcomes [102]. Pembrolizumab in combination with gemcitabine and concurrent
radiation therapy also demonstrated good tolerability and encouraging efficacy [103].
Two ongoing phase 3 clinical trials, S1806 and KEYNOTE-992, are evaluating concurrent
chemoradiotherapy with or without atezolizumab and pembrolizumab in MIBC, respec-
tively (NCT03775265, NCT04241185).

2.2.3. Biomarkers for ICI Treatment in Bladder Cancer

PD-1/PD-L1 Status

No consensus has been reached on the prognostic value of PD-L1 expression in bladder
cancer as its association with clinical benefit has been inconclusive [104,105]. A positive
correlation between PD-L1 expression on immune cells (IC), but not tumor cells (TC),
and response to anti-PD-1/L1 ICI has been observed in the second line setting [83,106].
A combined IC/TC score, the CPS score, defined as the percentage of tumor cells and
infiltrating immune cells with positive PD-L1 expression of the total number of tumor cells,
provides greater positive and negative predictive value than TC or IC evaluation alone.
However, the CPS score was not associated with improved OS to ICI monotherapy versus
chemotherapy in the KEYNOTE-361 trial [90,107].

In the phase 3 IMvigor130 trial, improved interim OS was seen in patients with PD-
L1 IC2/3 (>/=5% PD-L1 expression on immune cells via Ventana SP142 IHC) treated
with atezolizumab monotherapy versus PBC [84]. In addition, patients with concomitant
TMBHigh and PD-L1 IC2/3 had more profound benefit to atezolizumab monotherapy.
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Currently, a positive PD-1/L1 status is an indication to use anti-PD1/PD-L1 monother-
apy in patients who cannot receive cisplatin [79]. If the patient is ineligible for any platinum-
containing chemotherapy, atezolizumab or pembrolizumab are indicated in the first line
setting regardless of PD-L1 status.

Other Biomarkers

Higher than median expression of a T cell-effector gene expression signature has
not consistently associated with benefit to ICI in large clinical trials in metastatic bladder
cancer [70,108]. Notably, in the phase 3 IMvigor130 trial, a positive T cell-effector gene
expression signature did not correlate with improved OS in atezolizumab containing arms
versus PBC alone.

Gene expression signatures that profile TGF-β signaling, such as the fibroblast TGF-
β-response signature (F-TBRS) or the stromal/EMT/ TGF-β score, have been linked to
extracellular matrix (ECM) dysregulation and T cell exclusion. These genes expression
signatures have associated with worse response to ICI in metastatic bladder cancer, includ-
ing the IMvigor130 trial and KEYNOTE-052, where patients with higher median F-TBRS
gene expression and high stromal/EMT/ TGF-β score had inferior OS to treatment with
atezolizumab and pembrolizumab monotherapy, respectively [108–112]. Associations
between inferior clinical outcomes and expression of TGF-β-induced genes were also
observed in the ABACUS trial of neoadjuvant atezolizumab [92].

APOBEC mutagenesis gene expression signature was found to correlate with im-
proved overall survival in atezolizumab containing arms in the IMvigor130 study [108].

Bladder cancer has one of the highest somatic mutations rates and TMB status cor-
relates with response to ICI [106,113]. In addition, mutations in DNA damage response
(DDR) genes have associated with clinical benefit in ICI in bladder cancer [114]. However,
in the ABACUS trial of neoadjuvant atezolizumab, TMB or mutations in DDR genes did
not associate with improved outcomes [92].

Analysis of samples from a phase 2 trial of atezolizumab revealed low expression of
endoplasmic reticulum aminopeptidase 2 (ERAP2) associated with improved survival to
ICI [106,115].

2.3. Prostate Cancer

Over the past decade, both anti-CTLA4 and anti-PD1/PD-L1 agents have been studied
extensively in metastatic castrate-resistant prostate cancer (mCRPC); however, no ICI or
ICI-based combination evaluated to date has received FDA approval (Table 4). Examination
of prostate tissues acquired from cystoprostatectomy in advanced bladder cancer patients
treated with neoadjuvant ipilimumab revealed favorable immunologic changes in malig-
nant and non-malignant prostate tissues [116]. Ipilimumab in combination with radiother-
apy was initially evaluated in the CA184-043 clinical trial, a multi-center, randomized phase
3 trial in patients with mCRPC who progressed after docetaxel chemotherapy. Ipilimumab
plus radiotherapy failed to meet its primary endpoint of improving OS; however, recent pre-
planned long-term analysis signaled OS benefit for ipilimumab-treated patients [117,118].
The phase 3 CA184-095 clinical trial evaluated ipilimumab in chemotherapy-naïve mCRPC
patients and excluded patients with visceral metastases; however, ipilimumab failed to
improve OS versus placebo [119]. Failure to reach primary endpoint in this study was
impacted by improved survival in the control arm versus historical controls, suggesting
improvement in standard of care for the treatment of mCRPC patients. Despite negative re-
sults, subsequent studies have observed clinical benefit in a subset of patients treated with
ipilimumab. A non-randomized phase 2 study of ipilimumab in mCRPC demonstrated
that patients with evidence of pre-existing immunity on pre-treatment samples, such as
a high intratumoral CD8 T cell density or IFN-γ response gene signature, had favorable
outcomes to treatment [120,121].

Ipilimumab in combination with nivolumab was evaluated in the phase 2 CheckMate
650 trial and demonstrated encouraging response rates in mCRPC patients both pre- and
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post-chemotherapy including complete responses [121]. This trial has recently begun to
accrue additional patients.

Anti-PD-1/PD-L1 agents as monotherapy have been studied in mCRPC but have
provided minimal benefit. Pembrolizumab, evaluated in a multi-cohort, non-randomized
study in patients with mCRPC resulted in minimal response [122]. The KEYNOTE-199
clinical trial, a multi-cohort phase 2 clinical trial of pembrolizumab monotherapy in previ-
ously treated patients with PD-L1-positive, PD-L1-negative and bone-predominant disease
showed only modest anti-tumor response in all cohorts [123].

Anti-PD-1/PD-L1 agents have been evaluated in combination with chemotherapy,
novel anti-androgens and other agents. Atezolizumab in combination with novel anti-
androgen enzalutamide did not improve OS compared with enzalutamide alone in a large
phase 3 clinical trial [124]. Atezolizumab in combination with cabozantinib resulted in en-
couraging ORR in pre-treated population in the Phase Ib COSMIC-021 study [125]. A phase
3 study of pembrolizumab plus docetaxel plus prednisone has recently been initiated [126].
There is an ongoing phase 3 clinical trial evaluating combination pembrolizumab plus
olaparib versus novel anti-androgen monotherapy in mCRPC [127].

There are no FDA approved indications for ICI for treatment of castrate-sensitive
prostate cancer (mCSPC); however, their use is being evaluated in clinical trials. A phase 3
trial is underway to evaluate pembrolizumab plus enzalutamide plus androgen deprivation
therapy (ADT) versus enzalutamide and ADT alone [NCT04191096]. Multiple phase 1
and phase 2 trials are evaluating ICI in combination with treatments such as abiraterone
and cabozantinib [NCT04477512], radiation therapy [NCT04262154, NCT03795207] and an
experimental IL-8 directed monoclonal antibody [NCT03689699]. In addition, perioperative
ipilimumab in combination with castration prior to radical prostatectomy has demonstrated
feasibility with longer follow-up ongoing [128].

Biomarkers for ICI Treatment in Prostate Cancer

Biomarker-directed treatment selection has become standard of care in prostate cancer.
Two to five percent of prostate cancers have been found to have microsatellite instability-
high status for which pembrolizumab has recently been approved in the refractory set-
ting [16,129,130]. In mCRPC with mutations in BRCA or other homologous recombination
DNA-damage repair genes, PARP inhibitors, such as rucaparib, have been recently ap-
proved [131,132]. Pre-clinical work has suggested PARP inhibitor treatment may activate
the cGAS-STING pathway through accumulation of cytosolic double-strand DNA breaks
and prime anti-tumor immunity and increase therapeutic efficacy of ICI independent of
BRCA status [133]. This observation led to clinical trials evaluating anti-PD-1/PD-L1 treat-
ment in combination with PARP inhibitors in unselected population of mCRPC patients;
however, these trials have demonstrated inconsistent benefit [134,135].

A single arm phase 2 study of ipilimumab in mCRPC found the presence of tumor-
infiltrating lymphocytes by IHC and IFN-γ gene signatures associated with favorable
outcomes [120].

Loss-of-function alterations of tumor suppressor protein CDK12, found in approxi-
mately 5–7% of prostate cancers, results in genomic instability, increased neoantigen burden
and T cell infiltration [136,137]. Retrospective analyses of heavily pre-treated patients with
CDK12 mutated prostate cancer observed clinical activity of anti-PD-1 ICI suggesting
CDK12 may serve as a biomarker for ICI response [138]. Recent correlate analysis of
mCRPC biopsies revealed CDK12-mutated mCRPCs were enriched in immunosuppressive
CD4 + FOXP3- cells [139].
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Table 4. ICI clinical trials in prostate adenocarcinoma.

ICI Agent Trial (Phase) Setting Arms N ORR Median
PFS

PFS HR
(95% CI)

Overall
Survival

OS HR
(95% CI)

OS in
PD-L1

Positive
AE

Ipilimumab CheckMate650
(2)

NCT02985957
[121]

mCRPC
Cohort 1 (n = 45): progressed after >1 2nd

gen hormone therapy, chemotherapy naïve
Ipilimumab (3mg/kg) +

Nivolumab for up to four
doses then nivolumab

monotherapy

45 25% 5.5 mo
(3.5–7.1)

19.0 mo
(11.5-NE) G3–4: 42.2%

Nivolumab Cohort 2 (n = 45): progressed after
chemotherapy 45 10% 3.8 mo

(2.1–5.1)
15.2 mo
(6.4-NE) G3–4: 53.3%

Ipilimumab
CA184-095 (3)

NCT01057810
[119]

mCRPC

Chemotherapy naïve

Asymptomatic or minimally symptomatic

Without visceral metastases

Ipilimumab (10 mg/kg) 400 PSA Response *
23% (19–27%) 5.6 mo 28.7 mo

(24.5–32.5) G3–4: 15%

Placebo 202 8% (5–13%) 3.8 mo HR: 0.67
(0.55–0.81)

29.7 mo
(26.1–34.2)

HR: 1.11;
(0.88 to 1.39)

p = 0.3667
G3–4: 1%

Ipilimumab
CA184-043 (3)

NCT01057810
[117,118]

mCRPC

Post-docetaxel

Ipilimumab (10 mg/kg) +
Radiation Therapy 399 11.2 mo

(9.6–12.6) G3–4: 58.7%

Placebo + Radiation
Therapy 400 10.0 mo

(8.4–11.2)

HR: 0.84
(0.72–0.98),

p = 0.03
* at 2-year
minimum
follow up

G3–4: 41%

Pembrolizumab
Keynote-199 (2)

NCT02787005
[123]

mCRPC

Cohort 1: PD-L1 positive
Pembrolizumab

133 5% (2–11%) 9.5 mo
G3–4: 15%

Cohort 2: PD-L1 negative 66 3% (<1–11%) 7.9 mo

Cohort 3: Bone-predominant 59 NE 14.1 mo

Atezolizumab

IMbassador250
(3)

NCT03016312
[124]

mCRPC

Progressed on abiraterone and docetaxel

Atezolizumab +
enzalutamide 379 15.2 mo

(14.0–17.0) G3–4: 28.3%

Enzalutamide 380 16.6 mo
(14/7–18.4)

HR, 1.12
(0.91, 1.37),

p = 0.28
G3–4: 9.6%

* PSA response = 50% decrease from baseline confirmed by a second PSA value >/= 6 weeks later.
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2.4. Testicular Cancer

Testicular germ cell tumors (TGCTs) are highly sensitive to cisplatin-based chemother-
apy and many achieve cure with either upfront or salvage chemotherapy upon relapse.
In chemotherapy-refractory cases, ICI has been studied in multiple case series as well as
early phase clinical trials [140–142]. Single-arm phase 2 clinical trials of anti-PD-1/PD-L1
inhibitors pembrolizumab, durvalumab and avelumab did not demonstrate meaningful
responses in refractory TCGTs [138,143,144]. Low response rates have been attributed
to the immunosuppressive microenvironment of testicular tissue. TGCTs have been ob-
served to have a low tumor mutational burden and have varying expression of PD-1/PD-
L1 [145,146].

3. Biomarkers for ICI Treatment

While durable responses to ICI treatment have been observed in multiple cancer types,
only approximately 15–30% patients achieve response in aggregate [147,148]. Correlative
analysis of clinical trial samples has identified features of the tumor cells, referred to as
tumor-intrinsic features, and of the TME, or tumor-extrinsic features, which reflect prog-
nosis or predict response to ICI. These biomarkers include histopathologic and molecular
features as well as demographic and clinical factors.

With rapidly evolving treatment options and clinical trial landscape within GU malig-
nancies, development and incorporation of prognostic and predictive biomarkers is critical
to personalize treatment selection and optimize clinical benefit for patients. Large clinical
trials of ICI in GU malignancies and other solid tumors have prospectively evaluated
the predictive and prognostic value of histopathologic and molecular assessment of indi-
vidual tumor characteristics and the TME. Some of these factors have been incorporated
into guideline-based approvals of ICI. Herein, we review established and investigational
biomarkers being utilized in the current landscape of ICI with a focus on GU malignancies.

3.1. The Immune Contexture: Characteristics of the Tme

Tumor-promoting inflammation and avoidance of immune destruction are considered
hallmarks of cancer [149]. Characteristics of a host’s immune response to tumor develop-
ment, referred to as the immune contexture, have an increasingly recognized impact on
clinical outcomes. For example, type, location, and density of immune cells within the
TME of colorectal tumors were found to correlate strongly with survival [150,151].

The presence of infiltrating T cells and supporting pro-inflammatory milieu, defined
as the T cell-inflamed tumor microenvironment (TME), has associated with improved
clinical outcomes in patients treated with ICI in a variety of solid tumors [2,13]. In contrast
to T cell-inflamed TME, tumors may lack infiltrate, referred to as immune deserts, or be
characterized by immune exclusion, where T cells are found on the tumor edge [152]. In
GU malignancies, a high proportion of RCC are found to be T cell inflamed at diagnosis
while bladder cancer often has an immune-excluded phenotype. Prostate cancer often
lacks an immune infiltrate altogether [153–155].

Factors associated with the development of T cell-inflamed TME remain areas of
active research. To date, the field has recognized the importance of the presence of tumor-
associated neoantigens sufficient to stimulate tumor-reactive T cells, the presence of antigen-
presenting dendritic cells and a TME hospitable for accumulation of anti-tumor immune
cells [153,156,157].

3.1.1. Immunofluorescence/Immunohistochemical Analysis

Advances in multiplex immunofluorescence (IF) and immunohistochemical (IHC)
techniques have allowed for spatial interrogation of a broad scope of immune cell popula-
tions within the TME of solid tumor malignancies. These techniques represent important
modalities to appropriately characterize complex immune TME and their relation to prog-
nosis and treatment outcomes. During initial evaluation of anti-PD-1 agents in melanoma,
IHC characterization of CD8 positivity and PD-L1 expression were significantly associated
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with response to ICI [2]. CD8+ T cell density within tumor infiltrate has negatively asso-
ciated with prognosis in prostate cancer and RCC, and positively associated in bladder
cancer [158]. In one study in RCC, CD8+ T cell quantification on anti-PD-1 treated RCC
samples found a majority of samples (73%) were infiltrated; however, infiltration did not
correlate with PFS [69]. In another study, an 11-marker multiplex IF panel-based prognostic
score associated with survival of RCC patients, particularly the density of T cell marker
CD3-positive cell populations [159]. Interestingly, spatial immune profiling of nephrectomy
samples revealed patients with excluded TME had reduced burden of metastatic disease
and improved overall survival versus T cell-inflamed TME [160].

3.1.2. Gene Expression Signatures

Quantification of RNA expression of gene subsets in tumor samples can characterize
aspects of underlying tumor and TME immune biology and serve as predictive biomarkers
for ICI treatment. Gene expression signature analysis of IFN-γ associated genes, cytotoxic
T cell effector genes, dendritic cell and antigen presentation associated genes and T cell
chemo-attractants have been shown to correlate with T cell infiltration and clinical benefit to
ICI and cancer vaccines [2,14,161–163]. Similar T-cell inflamed gene expression signatures
correlated with response to ICI in large-scale trials in RCC and bladder cancer [55,70].
However, many patients with higher-than-median expression of T cell-inflamed gene
expression signature do not respond to ICI.

Certain gene expression signatures designed to assess activity of a specific biologic
or signaling pathway, such as the angiogenesis signature or TGF-β signature have also
been evaluated in pre-treatment tumor samples in large clinical trials of ICI in RCC and
mUC, respectively [55,164]. These gene expression signatures may assist in identifying
potential mechanisms of resistance to ICI and patients who may not respond to upfront
ICI. For example, higher-than-median expression of a myeloid inflammation gene sig-
nature comprising cytokines and chemokines associated with recruitment of myeloid
derived suppressor associated with worse outcomes to ICI monotherapy in RCC despite
presence of concomitant positive T cell-inflammation [55]. Of note, VEGF-R blockade in
pre-clinical models has been shown to mitigate these signaling pathways, suggesting a
potential biomarker-directed indication for addition of VEGF-R blockade to ICI [165,166].
As discussed above, addition of bevacizumab to atezolizumab preserved benefit in patients
with myeloidHigh tumors. Alternatively, gene expression signatures which detect the pres-
ence of alternative immune checkpoints, such as LAG3 or TIM3, may inform selection of
combination treatments.

Non-T cell-inflamed tumors identified by gene expression analysis may be tumors
for which innate immune-stimulating agents, such as STING and TLR agonists, could
stimulate T cell-inflammation and induce response to ICI [167]. Serial assessment of T
cell-inflammation gene expression signatures, while on-treatment, may help assess efficacy
of novel treatment strategies.

Use of gene expression signatures as predictive biomarkers has thus far been limited
to prospective correlative analysis. As gene expression signatures continue to mature,
incorporation into both FDA-approved indications may assist in optimal personalized
treatment choices. In addition, incorporation of gene expression signatures into clinical
trial inclusion criteria will enable optimal identification of patients for appropriate clinical
trials and accelerate the development of new, personalized therapies [168].

3.1.3. PD-L1 Expression

No consensus has been reached on the predictive value of immunohistochemical
assessment of PD-L1 expression and response to ICI in GU malignancies. In large trials
in mUC, PD-L1 expression by immune cells, not tumor cells, correlated with response. In
RCC, PD-L1 expression did not correlate with improved outcomes in ICI plus VEGF TKI
combination treatment [7,64,77,169]. In prostate cancer, only a 2% increase in response rate
to pembrolizumab was observed between PD-L1 high versus low patient cohorts [123]. As
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predictive biomarkers continue to mature, it is likely that PD-1/PD-L1 status will continue
to be utilized but likely in combination with other biomarker assessments.

3.1.4. Tertiary Lymphoid Structures

Tertiary lymphoid structures, organized lymphoid aggregates made up primarily
of B cells, have been identified within tumors of a broad range of malignancies. TLS
quantification by H&E and immunohistochemical detection of B cells (CD20), T cells (CD3),
follicular dendritic cells (CD21) and high endothelial venules (MECA79) revealed increased
TLS associated with response to ICI in melanoma and RCC [170,171]. In bladder cancer,
transcriptomic assessment CXCL13, a chemokine critical for TLS formation, was found to
be associated with improved survival in ICI-treated bladder cancer [172].

3.1.5. MicroRNA Signatures

MicroRNA are small single-stranded non-coding RNA nucleotides which negatively
regulate gene expression by post-transcriptional RNA silencing. Analysis of human can-
cers has identified miRNA signatures which associate with tumor behavior and clinical
outcomes to treatment [173]. Expression of certain miRNAs has correlated with absence
of benefit to ICI treatment in patients with melanoma [174]. In a subset of patients with
RCC treated with nivolumab, miRNAs which target genes involved in PI3K-Akt and T cell
receptor signaling were found to be elevated in peripheral lymphocytes in patients who
had durable responses to nivolumab [175].

3.2. Tumor-Intrinsic Properties

Tumor-intrinsic factors such as high somatic tumor mutation burden (TMB), defective
mismatch repair pathways (dMMR) and dysregulated oncogenic signaling pathways have
been shown to impact response to ICI.

3.2.1. Defective Mismatch Repair

Tumors with defective genes associated with mismatch repair mechanisms (dMMR),
such as MSH2, MSH6 and MLH1, or other DNA proofreading mechanisms have been
shown to be sensitive to ICI [16,176]. Mechanistic basis of this sensitivity to ICI is postu-
lated to be due increased mutational load resulting in immune cell infiltration [177,178].
In 2017, pembrolizumab was approved for treatment of metastatic dMMR or MSI-high
positive solid tumors which had progressed on prior therapy and did not have alterna-
tive treatment options based on a non-randomized single arm study of around 200 pa-
tients [179]. Prevalence of dMMR is highly variable across tumor types and is highest
in Lynch syndrome-associated tumor types (endometrial, colon, gastric and rectal) [180].
MSI-H status in GU malignancies is roughly 3% of prostate cancer patients, 2% of mUC
and 1% of RCC [129,181,182].

3.2.2. Tumor Mutation Burden

Tumors with high somatic mutation burden (TMB) have been found to have improved
clinical outcomes to ICI across cancer types in part due to the association of TMB with
neoantigen load and immune cell infiltration [17]. Pembrolizumab monotherapy is FDA
approved in patients with refractory solid tumors with TMB ≥ 10 mutations/Mb, based on
results from the phase 2 KEYNOTE-158 clinical trial [179]. Of note, small numbers of GU
malignancies were included in this study. Recent analysis found that only certain tumor
types have correlation between TMB, neoantigen load and CD8+ T cell infiltration [183].
Improved clinical outcomes to ICI were observed only in the cancer types where there was
correlation, which included mUC but not RCC and prostate cancer. This observation is
supported by clinical experience in clinical trials in GU malignancies in which TMB status
associated with clinical benefit in bladder cancer but not in RCC [55,64,70]. A small phase
2 study of ipilimumab in mCRPC also corroborated this finding; however, this same study
noted that T cell infiltration was observed in patients with relatively low TMB, suggesting



Cancers 2021, 13, 5415 21 of 33

certain mutational profiles may generate antigen-specific T cell responses independent of
TMB status [120].

3.2.3. Tumor and Treatment Characteristics

Increased tumor burden has correlated with worse outcomes to ICI treatment in solid
tumors [184]. In addition, presence of liver metastasis is associated with worse clinical
outcomes in patients with GU malignancies treated with ICI [185].

The association between occurrence of immune-related adverse events (irAEs) and
outcomes has been mixed. In patients with metastatic melanoma treated with ipilimumab,
studies found conflicting associations between development and an irAE with duration of
response [186,187]. In RCC, small retrospective analyses have found association between
irAE and clinical benefit to ICI [20,188,189]. Given these conflicting results, studies have
begun to evaluate the differential impact on response to ICI by the organ system affected by
irAEs. One study demonstrated certain organ involvement, thyroid for example, associated
with favorable outcomes versus others that did not show a clear trend or were associated
with worse prognosis [190,191].

3.3. Demographic and Clinical Factors

Patient demographic and clinical factors such as germline polymorphisms, gender,
BMI and circulating factors have been shown to associate with response to ICI. Mechanistic
exploration of each of these factors remains an active area of investigation.

3.3.1. Germline Polymorphisms

Gene expression analysis has demonstrated how genes related to immune response
are under strong germline genetic control suggesting an individual’s anti-tumor immune
response is, in part, determined by one’s genome [115]. In addition, germline variants
have been found to have a strong influence on immune cell production and response to
cytokines [192]. A particular germline polymorphism resulting in low level expression of
ERAP2 associated with enhanced immunogenicity and improved survival in ICI-treated
patients with luminal subtype of bladder cancer. In RCC, although somatic PRBM1 muta-
tions correlated with T cell infiltration, the infiltrated tumors were enriched for deleterious
PRBM1 mutations as compared to non-infiltrated tumors, which negatively impacted
survival [69].

3.3.2. Circulating Factors

Peripheral blood analysis represents a less-invasive method of personalized prediction
and prognostication. In RCC and bladder cancer, a higher neutrophil-to-lymphocyte ratio
associates with worse outcomes to ICI treatment [191,192]. Circulating tumor DNA (ctDNA)
can identify genomic features of tumors which may predict ICI responsiveness [193]. For
example, prognostic value of ctDNA-based TMB assessment is being evaluated in ongoing
clinical trials [NCT02542293]. In addition, ctDNA has demonstrated utility as a surrogate
for disease burden to assist in treatment decisions and need for adjuvant therapy after
surgical resection or induction chemotherapy [194,195].

T cell receptor repertoire has been found to predict response to ICI. In one study,
increased peripheral T cell receptor diversity associated with improved outcomes to ICI
treatment in melanoma [196]. In contrast, less diversity of TCR in tumor-infiltrating
lymphocytes associated with response to ICI, demonstrating the importance of both clonal
expansion and diversity of T cells in response to ICI [2].

3.3.3. BMI

Patients with elevated BMI were found to have improved outcomes to ICI in retro-
spective analysis of large clinical trials in RCC and metastatic melanoma, but other studies
have reported mixed results [20–22,197]. It is well established that obesity is associated
with dysregulated inflammatory processes which contribute to both tumorigenesis and im-
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paired immune responses; however, precise mechanisms of impact on ICI treatment remain
an area of active investigation [198–200]. Mechanistic studies in a diet-induced obesity
preclinical model revealed obese mice had heightened tumor progression and associated
immune dysfunction but improved response to ICI, suggesting that obesity may mediate
pathways of tumorigenesis and immune activation, which render a tumor particularly
susceptible to ICI [201]. In human RCC samples, transcriptomic analysis found patients
with obese BMI did not have a higher degree of intra-tumoral immune cell infiltration
but rather higher degrees of inflammation in peritumoral adipose tissue that may act as
an immune cell reservoir to augment response to ICI [202]. In contrast, another study
demonstrated obese patients with RCC had worse clinical outcomes with ICI treatment and
decreased frequency of tumor-infiltration PD-1 expressing T cells in pre-treatment biopsies,
which was recapitulated in a murine model [197]. Continued research is warranted. BMI
is also being recognized as an imperfect measure of body composition and application of
radiographic techniques such as computerized tomography-based composition has begun
to further define fat types and muscle densities and outcomes to ICI [203,204].

3.3.4. Commensal Microbiota

The commensal microbiome, which includes the gut and urinary microbiome, is
known to have significant influence on tumorigenesis and the immune system, and there
is a growing body of evidence demonstrating the impact of commensal microbiome com-
position on response to ICI [19,205–208]. Preclinical studies demonstrated fecal transfer
between responder to non-responder mice could increase responsiveness to ICI via en-
hanced dendritic cell-mediated T cell activation [19,209]. Recent prospective analysis of
RCC patients treated with ICI revealed association between gut microbial diversity and
benefit to treatment [210]. In non-muscle invasive bladder cancer, composition of the
urinary microbiome was associated with response to BCG immunotherapy [211]. Manipu-
lation of the microbiome through fecal microbiota transplant can influence efficacy of ICI
and this is being evaluated in clinical trials [212,213]. Fecal microbiota transplantation has
also been shown to effectively treat refractory ICI-associated colitis [214].

3.3.5. Diet

Understanding the impact of diet and nutrient availability within the TME on im-
munometabolism and function of tumor and immune cells is also an area of active inves-
tigation. Studies of the ketogenic diet (KD), a high-fat, low carbohydrate diet has been
shown to cause metabolic alterations in tumor cells and restrict tumor growth and sensitize
tumors to chemotherapy and radiotherapy [215–217]. Recent research has shown KD may
impact immune cell populations including an increase in favorable T cell populations in
adipose tissue [218]. Intermittent KD diet in mice was shown to facilitate T cell-mediated
tumor control by preventing upregulation of PD-L1 on myeloid cells while promoting
anti-cancer T cells [219]. Interestingly, a murine colorectal cancer model revealed high-fat
diet (HFD) with similarities to KD increases tumor growth and reduces intratumoral T
cell infiltration and activation [220]. Single-cell RNA sequence analysis revealed HFD can
mediate opposing metabolic changes in tumor and immune cells within the TME resulting
in immune dysfunction, specifically tumor cell upregulation of fatty acid oxidation (FAO)
and reduced proliferative capacity of T cells. Currently, it is difficult to draw conclusions
on the net effect of diets on cancer, and well-designed clinical trials are needed to assess
their impact. Many clinical trials are underway across multiple tumor types.

4. Conclusions

Immune checkpoint inhibitors have become standard of care for the treatment of GU
malignancies in both localized and metastatic disease settings. In patients with metastatic
disease, continued emphasis must be placed on the development of novel ICI and ICI-
based combinatorial strategies to increase response rates and enhance depth of response.
In localized disease, further clarification of the impact of adjuvant ICI on surgical outcomes
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or as an alternative to surgery is awaited. Lastly, continued validation of biomarker-based
approaches will be critical to personalize treatment strategies and optimize treatment
efficacy and clinical benefit for patients.
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