

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Poly[[dodecaagua(μ_4 -benzene-1,4dicarboxylato)(μ_2 -4.4'-bipyridine- $\kappa^2 N: N'$)dicerium(III)] bis(benzene-1,4dicarboxylate)]

Hitoshi Kumagai,^a* Yoshiyuki Sakamoto,^a Satoshi Kawata^b and Shinii Inagaki^a

^aToyota Central R and D Labs. Inc., Nagakute 41-1, Aichi, Japan, and ^bDepartment of Chemistry, Fukuoka University, Fukuoka 814-0180, Japan Correspondence e-mail: e1254@mosk.tytlabs.co.jp

Received 29 March 2012; accepted 15 April 2012

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.005 Å; R factor = 0.034; wR factor = 0.068; data-to-parameter ratio = 13.4.

The asymmetric unit of the title compound, $\{[Ce_2(C_8H_4O_4) (C_{10}H_8N_2)(H_2O)_{12}](C_8H_4O_4)_2$, consists of half a Ce^{III} cation, a quarter of a coordinated benzene-1,4-dicarboxylate (bdc^{2-}) dianion, a quarter of a 4,4'-bipyridine (bpy) molecule, three water molecules and a half of an uncoordinated benzene-1,4dicarboxylate dianion. The Ce^{III} ion is located on a twofold rotation axis and exhibits a distorted trigonal prism squareface tricapped coordination geometry. The coordinated and uncoordinated bdc^{2-} ions and the bpy molecule lie about special positions of site symmetries 2/m, m and 2/m, respectively. The Ce^{III} ions are bridged by the bdc²⁻ and bpy ligands, giving a sheet structure parallel to the *ac* plane. The uncoordinated bdc²⁻ dianion exists between the sheets and links the sheets by intermolecular O-H···O hydrogen bonds between the uncoordinated bdc²⁻ and coordinated water molecules. A π - π stacking interaction between the uncoordinated bdc²⁻ dianion and the bpy ligand [centroidcentroid distance = 3.750(4) Å] is also observed.

Related literature

For coordination polymers, see: Cheetham et al. (1999); Furukawa et al. (2010). For related host-guest systems, see: Kawata & Kitagawa (2002).

Experimental

Crystal data	
$[Ce_2(C_8H_4O_4)(C_{10}H_8N_2)-$	$V = 1954.3 (18) \text{ Å}^3$
$(H_2O)_{12}](C_8H_4O_4)_2$	Z = 4
$M_r = 5/2.48$ Orthorhombic <i>Pnnm</i>	Mo K α radiation $\mu = 2.40 \text{ mm}^{-1}$
a = 6.112 (4) Å	T = 293 K
b = 14.278 (8) Å	$0.60 \times 0.20 \times 0.10 \ \mathrm{mm}$
c = 22.395 (12) Å	

14945 measured reflections

 $R_{\rm int} = 0.029$

refinement

 $\Delta \rho_{\rm max} = 0.49 \ {\rm e} \ {\rm \AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.42 \text{ e} \text{ Å}^{-3}$

2246 independent reflections 2163 reflections with $F^2 > 2\sigma(F^2)$

H atoms treated by a mixture of independent and constrained

Data collection

Rigaku Mercury70 diffractometer Absorption correction: multi-scan (REQAB; Rigaku, 1998) $T_{\min} = 0.511, \ T_{\max} = 0.787$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.034$
$wR(F^2) = 0.068$
S = 1.39
2246 reflections
167 parameters
6 restraints

Table 1

Selected bond lengths (Å).

Ce1-O1	2.479 (3)	Ce1-O3 ⁱ	2.551 (3)
Ce1-O1 ⁱ	2.479 (3)	Ce1-O4	2.533 (3)
Ce1-O2	2.530 (3)	Ce1-O4 ⁱ	2.533 (3)
Ce1-O2 ⁱ	2.530 (3)	Ce1-N1	2.873 (5)
Ce1-O3	2.551 (3)		

Symmetry code: (i) -x + 2, -v, z.

Tab	e 2	

Hydrogen-bond	geometry	(Å,	°).
---------------	----------	-----	-----

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} 02 - H2 \cdots O5 \\ 02 - H3 \cdots O6^{ii} \\ 03 - H4 \cdots O5 \\ 03 - H5 \cdots O6^{iii} \\ 04 - H7 \cdots O5^{iv} \end{array}$	0.84 (4) 0.84 (3) 0.83 (5) 0.84 (5) 0.84 (4)	1.93 (4) 1.90 (4) 2.02 (5) 1.81 (5) 1.91 (4)	2.754 (5) 2.725 (5) 2.828 (4) 2.650 (4) 2.749 (5)	167 (5) 166 (4) 164 (6) 175 (6) 174 (6)

Symmetry codes: (ii) x + 1, y, z; (iii) $x + \frac{1}{2}$, $-y + \frac{1}{2}$, $-z + \frac{1}{2}$; (iv) $-x + \frac{3}{2}$, $y - \frac{1}{2}$, $-z + \frac{1}{2}$.

metal-organic compounds

Data collection: *CrystalClear* (Rigaku/MSC, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SIR2008* (Burla *et al.*, 2007); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *CrystalStructure* (Rigaku, 2010); software used to prepare material for publication: *CrystalStructure*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS5110).

References

- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.
- Cheetham, A. K., Ferey, G. & Loiseau, T. (1999). Angew. Chem. Int. Ed. 38, 3268–3292.
- Furukawa, H., Ko, N., Go, Y. B., Aratani, N., Choi, S. B., Choi, E., Yazaydin, A. O., Snurr, R. Q., O'Keeffe, M., Kim, J. & Yaghi, O. M. (2010). *Science*, **329**, 424–428.
- Kawata, S. & Kitagawa, S. (2002). Coord. Chem. Rev. 224, 11-34.
- Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.
- Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2012). E68, m643-m644 [doi:10.1107/S1600536812016388]

Poly[[dodecaaqua(μ_4 -benzene-1,4-dicarboxylato)(μ_2 -4,4'-bipyridine- $\kappa^2 N:N'$)dicerium(III)] bis(benzene-1,4-dicarboxylate)]

Hitoshi Kumagai, Yoshiyuki Sakamoto, Satoshi Kawata and Shinji Inagaki

Comment

The design of coordination polymers (CPs), also known as metal-organic frameworks (MOFs), have received considerable attention in recent years due to potential applications for sorption, catalysis, optical, magnetic materials and host-guest interactions (Cheetham *et al.*, 1999; Furukawa *et al.*, 2010; Kawata & Kitagawa, 2002). Here we report synthesis and single-crystal structure of the title compound.

The coordination polymer of the title compound, {[$Ce_2(C_8H_4O_4)(C_{10}H_{10}N_2)(H_2O)_{12}$]($C_8H_4O_4)_2$ }_n, consists of Ce^{III} ions, bdc²⁻ dianions and bpy as bridging ligands, and water molecules. In the crystal, two types of bdc²⁻ dianions are found. One bdc²⁻ dianion coordinates to Ce^{III} ions and acts as a bridging ligand to form a two-dimensional network. The other is an uncoordinated bdc²⁻ dianion. Uncoordinated bdc²⁻ dianions are stabilized by intermolecular hydrogen bonds between the uncoordinated bdc²⁻ and coordinated water molecules and π - π stacking interactions between uncoordinated bdc²⁻ dianions are bridging ligands to give a three-dimensional network structure.

Experimental

An aqueous solution (5 ml) of cerium nitrate hexahydrate (0.81 g) was transferred to a glass tube, then an ethanol-water mixture (5 ml) of tetrabromoerephthalic acid (0.2 g), NaOH (0.08 g) and 4,4'-bpy (0.19 g) was poured into the glass tube without mixing the two solutions. Colorless crystals began to form at ambient temperature in 1 month. One of these crystals was used for X-ray crystallography.

Refinement

H atoms bonded to C atoms were introduced at the positions calculated theoretically (C—H = 0.93 Å) and treated as riding, with $U_{iso}(H) = 1.2U_{eq}(C)$. H atoms of water molecules were located in a difference Fourier map and were refined isotropically with distance restraints of O—H = 0.84 (2) Å.

Computing details

Data collection: *CrystalClear* (Rigaku/MSC, 2005); cell refinement: *CrystalClear* (Rigaku/MSC, 2005); data reduction: *CrystalClear* (Rigaku/MSC, 2005); program(s) used to solve structure: *SIR2008* (Burla *et al.*, 2007); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *CrystalStructure* (Rigaku, 2010); software used to prepare material for publication: *CrystalStructure* (Rigaku, 2010).

Figure 1

View of the title compound with atomic numbering scheme. Hydrogen atoms have been omitted for clarity. [Symmetry codes: (i) -x + 2, -y, z; (iii) x, y, -z + 1; (iv) -x + 2, -y, -z; (vii) x, y, -z.]

Figure 2

Packing diagram of the title compound, showing a sheet structure. Hydrogen atoms have been omitted for clarity.

Figure 3

Hydrogen bonding interactions for the title compound. Hydrogen atoms and hydrogen bonding interactions are shown as purple color and dashed line, respectively.

Poly[[dodecaaqua(μ_4 -benzene-1,4-dicarboxylato)(μ_2 -4,4'-bipyridine- $\kappa^2 N:N'$)dicerium(III)] bis(benzene-1,4dicarboxylate)]

Crystal data	
$[Ce_{2}(C_{8}H_{4}O_{4})(C_{10}H_{8}N_{2})(H_{2}O)_{12}](C_{8}H_{4}O_{4})_{2}$ $M_{r} = 572.48$ Orthorhombic, <i>Pnnm</i> Hall symbol: -P 2 2n a = 6.112 (4) Å b = 14.278 (8) Å c = 22.395 (12) Å V = 1954.3 (18) Å ³ Z = 4	F(000) = 1140.00 $D_x = 1.946 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71070 \text{ Å}$ Cell parameters from 3992 reflections $\theta = 3.1-27.5^{\circ}$ $\mu = 2.40 \text{ mm}^{-1}$ T = 293 K Platelet, colorless $0.60 \times 0.20 \times 0.10 \text{ mm}$
Data collection Rigaku Mercury70 diffractometer Detector resolution: 7.314 pixels mm ⁻¹ ω scans Absorption correction: multi-scan (<i>REQAB</i> ; Rigaku, 1998) $T_{min} = 0.511, T_{max} = 0.787$ 14945 measured reflections	2246 independent reflections 2163 reflections with $F^2 > 2\sigma(F^2)$ $R_{int} = 0.029$ $\theta_{max} = 27.5^{\circ}$ $h = -7 \rightarrow 7$ $k = -18 \rightarrow 18$ $l = -29 \rightarrow 29$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.034$	Secondary atom site location: difference Fourier map
$wR(F^2) = 0.068$ S = 1.39	Hydrogen site location: inferred from neighbouring sites
2246 reflections 167 parameters	H atoms treated by a mixture of independent and constrained refinement
6 restraints	$w = 1/[\sigma^2(F_o^2) + (0.P)^2 + 7.6254P]$
direct methods	where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$
	$\Delta \rho_{\rm max} = 0.49 \text{ e } \text{\AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.42 \text{ e A}^{-3}$

Special details

Geometry. ENTER SPECIAL DETAILS OF THE MOLECULAR GEOMETRY

Refinement. Refinement was performed using all reflections. The weighted *R*-factor (*wR*) and goodness of fit (*S*) are based on F^2 . *R*-factor (σ t) are based on *F*. The threshold expression of $F^2 > 2.0 \sigma(F^2)$ is used only for calculating *R*-factor (σ t).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Cel	1.0000	0.0000	0.286968 (11)	0.01450 (9)
01	0.6621 (5)	0.03486 (19)	0.34397 (11)	0.0229 (6)
O2	1.0784 (5)	0.1316 (2)	0.35957 (13)	0.0257 (6)
03	0.8063 (5)	0.14579 (19)	0.24774 (12)	0.0234 (6)
O4	0.6817 (5)	-0.0885 (2)	0.24157 (13)	0.0259 (6)
05	0.7801 (5)	0.2740 (2)	0.34373 (11)	0.0276 (7)
O6	0.4224 (6)	0.2508 (3)	0.34529 (12)	0.0331 (8)
N1	1.0000	0.0000	0.15870 (19)	0.0230 (10)
C1	0.5000	0.0000	0.4378 (2)	0.0152 (9)
C2	0.6884 (6)	0.0245 (3)	0.46904 (14)	0.0171 (8)
C3	0.5000	0.0000	0.37044 (19)	0.0152 (9)
C4	0.8241 (7)	0.0259 (3)	0.12810 (16)	0.0252 (9)
C5	0.8174 (7)	0.0271 (3)	0.06620 (16)	0.0244 (9)
C6	1.0000	0.0000	0.0334 (2)	0.0187 (10)
C7	0.6065 (7)	0.2588 (3)	0.43811 (15)	0.0182 (7)
C8	0.7943 (7)	0.2825 (3)	0.46897 (16)	0.0209 (8)
C9	0.4180 (7)	0.2347 (3)	0.46905 (15)	0.0218 (8)
C10	0.6024 (7)	0.2610 (3)	0.37083 (16)	0.0214 (8)
H1	0.8145	0.0410	0.4483	0.0206*
H2	0.983 (7)	0.174 (3)	0.361 (3)	0.041 (15)*
Н3	1.197 (5)	0.160 (3)	0.353 (2)	0.030 (14)*
H4	0.778 (11)	0.188 (4)	0.272 (2)	0.07 (2)*
Н5	0.848 (10)	0.176 (4)	0.2178 (18)	0.062 (19)*
H6	0.555 (5)	-0.094 (5)	0.255 (3)	0.059 (19)*
H7	0.684 (10)	-0.130 (3)	0.2149 (18)	0.053 (17)*
H8	0.6998	0.0439	0.1491	0.0303*
Н9	0.6908	0.0461	0.0466	0.0293*
H10	0.9207	0.2984	0.4482	0.0251*
H11	0.2917	0.2186	0.4483	0.0262*

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cel	0.01572 (15)	0.01786 (15)	0.00993 (13)	-0.00118 (11)	0.0000	0.0000
O1	0.0214 (14)	0.0323 (15)	0.0151 (12)	-0.0021 (12)	0.0063 (11)	-0.0001 (11)
O2	0.0233 (15)	0.0241 (15)	0.0296 (15)	0.0009 (13)	-0.0026 (13)	-0.0080 (12)
O3	0.0324 (17)	0.0219 (14)	0.0160 (13)	0.0043 (13)	0.0037 (12)	0.0031 (11)
O4	0.0189 (15)	0.0319 (16)	0.0269 (15)	-0.0084 (13)	0.0037 (12)	-0.0094 (12)
O5	0.0305 (17)	0.0330 (16)	0.0191 (13)	0.0052 (14)	0.0063 (12)	0.0056 (11)
O6	0.0366 (18)	0.0413 (18)	0.0215 (14)	-0.0084 (15)	-0.0094 (13)	0.0093 (13)
N1	0.024 (3)	0.022 (3)	0.023 (2)	-0.004 (3)	0.0000	0.0000
C1	0.017 (3)	0.017 (3)	0.011 (2)	0.001 (3)	0.0000	0.0000
C2	0.0144 (18)	0.0205 (19)	0.0165 (17)	-0.0018 (14)	0.0031 (14)	0.0010 (13)
C3	0.020 (3)	0.014 (3)	0.012 (2)	0.002 (3)	0.0000	0.0000
C4	0.023 (2)	0.033 (3)	0.0206 (18)	0.0004 (17)	0.0021 (15)	-0.0021 (15)
C5	0.023 (2)	0.031 (3)	0.0193 (18)	0.0004 (17)	-0.0021 (15)	-0.0005 (15)
C6	0.025 (3)	0.015 (3)	0.016 (3)	-0.009 (3)	0.0000	0.0000
C7	0.0205 (19)	0.0173 (18)	0.0167 (16)	0.0034 (15)	0.0002 (14)	0.0015 (13)
C8	0.017 (2)	0.0222 (19)	0.0233 (19)	-0.0012 (16)	0.0033 (15)	0.0021 (15)
C9	0.0181 (19)	0.027 (2)	0.0199 (18)	0.0009 (16)	-0.0045 (15)	0.0000 (15)
C10	0.029 (2)	0.0168 (18)	0.0184 (17)	0.0037 (16)	-0.0012 (15)	0.0026 (14)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

Cel—Ol	2.479 (3)	C5—C6	1.391 (5)
Ce1-O1 ⁱ	2.479 (3)	C6—C6 ^{iv}	1.496 (7)
Ce1—O2	2.530 (3)	C7—C8	1.382 (6)
Ce1—O2 ⁱ	2.530(3)	С7—С9	1.388 (6)
Ce1—O3	2.551 (3)	C7—C10	1.507 (5)
Ce1—O3 ⁱ	2.551 (3)	C8—C8 ⁱⁱⁱ	1.390 (6)
Ce1—O4	2.533 (3)	C9—C9 ⁱⁱⁱ	1.386 (5)
Ce1—O4 ⁱ	2.533 (3)	O2—H2	0.84 (4)
Ce1—N1	2.873 (5)	O2—H3	0.84 (4)
O1—C3	1.257 (4)	O3—H4	0.83 (5)
O5—C10	1.258 (5)	O3—H5	0.84 (5)
O6—C10	1.248 (5)	O4—H6	0.84 (4)
N1-C4	1.327 (5)	O4—H7	0.84 (4)
N1—C4 ⁱ	1.327 (5)	C2—H1	0.930
C1—C2	1.392 (5)	C4—H8	0.930
C1-C2 ⁱⁱ	1.392 (5)	С5—Н9	0.930
C1—C3	1.509 (7)	C8—H10	0.930
C2—C2 ⁱⁱⁱ	1.387 (5)	C9—H11	0.930
C4—C5	1.387 (6)		
C5…C7 ^v	3.532 (6)	C6···C8 ^{vi}	3.589 (4)
C5…C9 ^v	3.544 (6)	C7…C2	3.453 (6)
C6…C7 ^v	3.562 (4)	C7····C5 ^{vii}	3.532 (6)
C6…C7 ^{vi}	3.562 (4)	C7···C6 ^{vii}	3.562 (4)
C6…C8 ^v	3.589 (4)	C8····C6 ^{vii}	3.589 (4)

O1—Ce1—O1 ⁱ	118.00 (9)	C2C1C2 ⁱⁱ	119.7 (4)
O1—Ce1—O2	71.20 (10)	C2—C1—C3	120.2 (2)
O1—Ce1—O2 ⁱ	70.15 (10)	C2 ⁱⁱ —C1—C3	120.2 (2)
O1—Ce1—O3	68.08 (10)	C1—C2—C2 ⁱⁱⁱ	120.2 (4)
O1—Ce1—O3 ⁱ	136.72 (9)	O1—C3—O1 ⁱⁱ	123.7 (4)
O1—Ce1—O4	70.53 (10)	O1—C3—C1	118.1 (2)
O1—Ce1—O4 ⁱ	138.31 (10)	O1 ⁱⁱ —C3—C1	118.1 (2)
O1—Ce1—N1	121.00 (7)	N1-C4-C5	122.9 (4)
O1 ⁱ —Ce1—O2	70.15 (10)	C4—C5—C6	120.1 (4)
$O1^{i}$ —Ce1—O2 ⁱ	71.20 (10)	$C5-C6-C5^{i}$	116.2 (4)
Ol ⁱ —Cel—O3	136.72 (9)	C5-C6-C6 ^{iv}	121.9 (3)
O1 ⁱ —Ce1—O3 ⁱ	68.08 (10)	$C5^{i}$ — $C6$ — $C6^{iv}$	121.9 (3)
Ol ⁱ —Cel—O4	138.31 (10)	C8—C7—C9	120.0 (4)
O1 ⁱ —Ce1—O4 ⁱ	70.53 (10)	C8—C7—C10	120.6 (4)
Ol ⁱ —Cel—N1	121.00 (7)	C9—C7—C10	119.4 (4)
O2—Ce1—O2 ⁱ	100.03 (11)	C7—C8—C8 ⁱⁱⁱ	120.0 (4)
O2—Ce1—O3	72.74 (10)	С7—С9—С9 ^{ііі}	120.0 (4)
O2—Ce1—O3 ⁱ	137.67 (10)	O5—C10—O6	123.9 (4)
O2—Ce1—O4	140.68 (10)	O5—C10—C7	118.1 (4)
O2—Ce1—O4 ⁱ	75.06 (10)	O6—C10—C7	118.1 (4)
O2—Ce1—N1	129.99 (7)	Ce1—O2—H2	115 (3)
O2 ⁱ —Ce1—O3	137.67 (10)	Ce1—O2—H3	114 (3)
O2 ⁱ —Ce1—O3 ⁱ	72.74 (10)	Н2—О2—Н3	104 (4)
O2 ⁱ —Ce1—O4	75.06 (10)	Ce1—O3—H4	117 (4)
$O2^{i}$ —Ce1—O4 ⁱ	140.68 (10)	Ce1—O3—H5	124 (4)
O2 ⁱ —Ce1—N1	129.99 (7)	H4—O3—H5	102 (5)
O3—Ce1—O3 ⁱ	139.71 (9)	Ce1—O4—H6	128 (4)
O3—Ce1—O4	84.96 (10)	Ce1—O4—H7	128 (4)
O3—Ce1—O4 ⁱ	79.12 (10)	H6—O4—H7	102 (6)
O3—Ce1—N1	69.85 (7)	C1—C2—H1	119.897
O3 ⁱ —Ce1—O4	79.12 (10)	C2 ⁱⁱⁱ —C2—H1	119.930
$O3^{i}$ —Ce1—O4 ⁱ	84.96 (10)	N1C4H8	118.556
O3 ⁱ —Ce1—N1	69.85 (7)	С5—С4—Н8	118.540
O4—Ce1—O4 ⁱ	132.66 (10)	С4—С5—Н9	119.957
O4—Ce1—N1	66.33 (7)	С6—С5—Н9	119.991
O4 ⁱ —Ce1—N1	66.33 (7)	C7—C8—H10	119.995
Ce1—O1—C3	145.08 (19)	C8 ⁱⁱⁱ —C8—H10	119.992
Ce1—N1—C4	121.1 (3)	С7—С9—Н11	120.023
Ce1—N1—C4 ⁱ	121.1 (3)	C9 ⁱⁱⁱ —C9—H11	120.026
C4—N1—C4 ⁱ	117.8 (4)		
O1—Ce1—O1 ⁱ —C3 ^{viiii}	-84.2 (3)	O4 ⁱ —Ce1—N1—C4 ⁱ	51.94 (8)
O1 ⁱ —Ce1—O1—C3	-84.2 (3)	Ce1-01-C3-01 ⁱⁱ	-75.3 (4)
O2—Ce1—O1—C3	-138.3 (3)	Ce1—O1—C3—C1	104.7 (4)
O2 ⁱ —Ce1—O1—C3	-29.7 (3)	Ce1—N1—C4—C5	179.8 (2)
O3—Ce1—O1—C3	143.3 (4)	Ce1—N1—C4 ⁱ —C5 ⁱ	179.8 (2)
O3 ⁱ —Ce1—O1—C3	2.8 (4)	$C4$ — $N1$ — $C4^{i}$ — $C5^{i}$	-0.2 (5)
O4—Ce1—O1—C3	50.9 (3)	C4 ⁱ —N1—C4—C5	-0.2 (5)
O4 ⁱ —Ce1—O1—C3	-175.9 (3)	$C2$ — $C1$ — $C2^{ii}$ — $C2^{ix}$	0.0 (4)

01—Ce1—N1—C4	5.40 (8)	C2 ⁱⁱ —C1—C2—C2 ⁱⁱⁱ	0.0 (4)
O1—Ce1—N1—C4 ⁱ	-174.60 (8)	C2-C1-C3-01	-9.77 (16)
N1—Ce1—O1—C3	95.8 (3)	C2-C1-C3-O1 ⁱⁱ	170.23 (16)
$O2$ — $Ce1$ — $O1^{i}$ — $C3^{viii}$	-29.7 (3)	C2 ⁱⁱ —C1—C3—O1	170.23 (16)
O2 ⁱ —Ce1—O1 ⁱ —C3 ^{viiii}	-138.3 (3)	C2 ⁱⁱ —C1—C3—O1 ⁱⁱ	-9.77 (16)
O3—Ce1—O1 ⁱ —C3 ^{viii}	2.8 (4)	C1— $C2$ — $C2$ ⁱⁱⁱ — $C1$ ^{ix}	0.0 (5)
O3 ⁱ —Ce1—O1 ⁱ —C3 ^{viiii}	143.3 (4)	N1-C4-C5-C6	0.4 (6)
O4—Ce1—O1 ⁱ —C3 ^{viii}	-175.9 (3)	$C4-C5-C6-C5^{i}$	-0.2 (4)
O4 ⁱ —Ce1—O1 ⁱ —C3 ^{viiii}	50.9 (3)	C4C5C6C6 ^{iv}	179.8 (3)
Ol ⁱ —Ce1—N1—C4	-174.60 (8)	$C5-C6-C6^{iv}-C5^{iv}$	180.00 (19)
O1 ⁱ —Ce1—N1—C4 ⁱ	5.40 (8)	$C5-C6-C6^{iv}-C5^{x}$	0.00 (19)
N1—Ce1—O1 ⁱ —C3 ^{viii}	95.8 (3)	$C5^{i}$ — $C6$ — $C6^{iv}$ — $C5^{iv}$	0.00 (19)
O2—Ce1—N1—C4	-85.35 (10)	C8—C7—C9—C9 ⁱⁱⁱ	0.2 (6)
O2—Ce1—N1—C4 ⁱ	94.65 (10)	C9—C7—C8—C8 ⁱⁱⁱ	-0.2 (6)
O2 ⁱ —Ce1—N1—C4	94.65 (10)	C8—C7—C10—O5	8.2 (6)
O2 ⁱ —Ce1—N1—C4 ⁱ	-85.35 (10)	C8—C7—C10—O6	-170.9 (4)
O3—Ce1—N1—C4	-41.42 (8)	C10-C7-C8-C8 ⁱⁱⁱ	178.4 (3)
O3—Ce1—N1—C4 ⁱ	138.58 (8)	C9—C7—C10—O5	-173.2 (4)
O3 ⁱ —Ce1—N1—C4	138.58 (8)	C9—C7—C10—O6	7.6 (5)
O3 ⁱ —Ce1—N1—C4 ⁱ	-41.42 (8)	С10—С7—С9—С9 ^{ііі}	-178.4 (3)
O4—Ce1—N1—C4	51.94 (8)	C7—C8—C8 ⁱⁱⁱ —C7 ⁱⁱⁱ	0.0 (6)
O4—Ce1—N1—C4 ⁱ	-128.06 (8)	C7—C9—C9 ⁱⁱⁱ —C7 ⁱⁱⁱ	0.0 (6)
O4 ⁱ —Ce1—N1—C4	-128.06 (8)		

Symmetry codes: (i) -*x*+2, -*y*, *z*; (ii) -*x*+1, -*y*, *z*; (iii) *x*, *y*, -*z*+1; (iv) -*x*+2, -*y*, -*z*; (v) *x*+1/2, -*y*+1/2, -*z*+1/2; (vi) -*x*+3/2, *y*-1/2, -*z*+1/2; (vii) *x*-1/2, -*y*+1/2, -*z*+1/2; (viii) *x*+1, *y*, *z*; (ix) -*x*+1, -*y*, -*z*+1; (x) *x*, *y*, -*z*.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H…A	D····A	D—H···A
02—H2…O5	0.84 (4)	1.93 (4)	2.754 (5)	167 (5)
O2—H3···O6 ^{viii}	0.84 (3)	1.90 (4)	2.725 (5)	166 (4)
O3—H4…O5	0.83 (5)	2.02 (5)	2.828 (4)	164 (6)
O3—H5…O6 ^v	0.84 (5)	1.81 (5)	2.650 (4)	175 (6)
$O4$ — $H7$ ··· $O5^{vi}$	0.84 (4)	1.91 (4)	2.749 (5)	174 (6)

Symmetry codes: (v) *x*+1/2, *-y*+1/2, *-z*+1/2; (vi) *-x*+3/2, *y*-1/2, *-z*+1/2; (viii) *x*+1, *y*, *z*.