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Recently developed vaccines provide a new way of controlling rotavirus in sub-Saharan Africa. Models for
the transmission dynamics of rotavirus are critical both for estimating current burden from imperfect
surveillance and for assessing potential effects of vaccine intervention strategies. We examine rotavirus
infection in the Maradi area in southern Niger using hospital surveillance data provided by Epicentre col-
lected over two years. Additionally, a cluster survey of households in the region allows us to estimate the
proportion of children with diarrhea who consulted at a health structure. Model fit and future projections
are necessarily particular to a given model; thus, where there are competing models for the underlying
epidemiology an ensemble approach can account for that uncertainty. We compare our results across
several variants of Susceptible-Infectious-Recovered (SIR) compartmental models to quantify the impact
of modeling assumptions on our estimates. Model-specific parameters are estimated by Bayesian infer-
ence using Markov chain Monte Carlo. We then use Bayesian model averaging to generate ensemble esti-
mates of the current dynamics, including estimates of R0, the burden of infection in the region, as well as
the impact of vaccination on both the short-term dynamics and the long-term reduction of rotavirus inci-
dence under varying levels of coverage. The ensemble of models predicts that the current burden of sev-
ere rotavirus disease is 2.6–3.7% of the population each year and that a 2-dose vaccine schedule achieving
70% coverage could reduce burden by 39–42%.
� 2017 The Authors. Published by Elsevier Ltd. This is anopenaccess article under the CCBY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Diarrheal disease is the second leading cause of death around
the world for children under 5 years of age [4]. Though there are
many infectious causes of diarrheal disease in children, rotavirus
is the leading cause of gastroenteritis [6,39,37]. In many countries,
better sanitation, hygiene and access to care have reduced the bur-
den of diarrhea [9,20]. Despite this trend, the proportion of diar-
rheal hospitalizations attributable to rotavirus increased [28].
The recent development of new prophylactic vaccines for rotavirus
is a promising advance in the prevention of diarrheal disease and
the reduction of overall childhood mortality [29,23].

Observation of rotavirus dynamics and estimation of the burden
of rotavirus disease is limited both by non-specific surveillance and
under-reporting. The dynamics of rotavirus transmission must
often be inferred from non-specific temporal surveillance of
diarrheal disease that includes multiple causes. This is analogous
to the dynamics of specific influenza strains, which are commonly
inferred from non-specific time series surveillance of influenza-like
illness (ILI) that includes infection by multiple influenza strains
(influenza A and B), as well as additional viral infections, for exam-
ple parainfluenza, coronavirus, rhinovirus [33,8]. In sub-Saharan
Africa, the cause of diarrheal disease is often unknown due to a lack
of diagnostic capacity [26]. Even when the cause of disease is
known, an unknown fraction of cases will occur in the community
and never be recorded by the health system, leading to a poten-
tially significant level of under-reporting. Dynamic models in gen-
eral, and so-called state-space models in particular, have been an
important tool in the assessment of disease burden from non-
specific or imperfect surveillance [17,14,5]. We estimate the bur-
den of rotavirus in the Maradi region of Niger by synthesizing
two sources of data. We use hospital surveillance data collected
by Epicentre for the incident cases over time, including lab-
confirmation to assess the likelihood that a case of severe diarrhea
is caused by rotavirus. In addition, we use a cluster survey of
households conducted to estimate the proportion of diarrheal
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disease cases in the region seeking care. The latter is used to help
estimate the reporting rate.

State-space models rely on the temporal correlation in a
dynamic model to make the unobservable true state of the system,
that is, the incidence of the pathogen of interest, estimable from
noisy or imperfectly sampled data [19]. Thus, the inference about
disease burden is conditional on the structure of the underlying
dynamic model. For pathogens with well characterized epidemiol-
ogy, such as measles and influenza, the application of state-space
models to infer disease burden and transmission dynamics has
become common [17,7,5,35]. The dynamics of rotavirus, which
itself comprises multiple strains that result in varying levels of
cross-protective immunity to other strains, has been variously
described by a suite of different models [30]. Therefore, inference
about rotavirus burden is limited both by imperfect surveillance
of rotavirus infection and uncertainty about the underlying trans-
mission dynamics. Rather than condition our analysis on any one
model, we fit the observed time series to a suite of 5 different
model structures and assumptions to account for uncertainty in
model parameters as well as the dynamics represented in the mod-
els themselves.

While the development of several novel rotavirus vaccines is a
promising advance for the control of diarrheal disease in children,
the potential impact of the introduction of these vaccines at the
population-scale is uncertain. The predicted impact of vaccine
introduction may depend both on the efficacy of the vaccine and
model structure; for example [30] proposed alternative models
for boosting of immunity following sequential exposure to rota-
virus. Bayesian model averaging (BMA) [2,16] allows for the inte-
gration of predictions of multiple models, weighted by their
posterior support, to generate a single ensemble estimate that
accounts for uncertainty in model selection. Here, via BMA, we
use the ensemble of fitted models to predict the short-term and
long-term impact of vaccination on rotavirus incidence. We then
estimate the predicted impact using the vaccine efficacy from
two different studies. Our ensemble approach predicts that the
current burden of severe rotavirus disease is 2.6–3.7% of the popu-
lation each year and that a 2-dose vaccine schedule achieving 70%
coverage could reduce burden by 39–42%.
2. Material and methods

We use data from two sources: a time series of clinic admissions
for diarrheal disease and a community based survey of health-
seeking behavior. Clinic surveillance covers a collection of health
centers and district hospitals from four districts in the Maradi
region of Niger including Aguie, Guidan Roumdji, Madarounfa,
and the city of Maradi. A total of 9590 cases of diarrhea in children
under 5 were recorded from December 23, 2009 to March 31, 2012
(118 weeks). For each patient age in months, village of origin, date
of consultation were recorded. Also noted were potential symp-
toms including temperature, duration of diarrhea before consulta-
tion, presence of blood in the stool, presence and duration of
vomiting, and level of dehydration. In each case a rapid test was
administered for detecting rotavirus. Using the rapid test, 2921
cases tested positive for rotavirus. A subset of 378 cases testing
positive for rotavirus were also genotyped. While 32 separate
strains were identified, more than two thirds of positive cases were
of strains G12P[8] or G2P[4].

The distributed nature of Niger’s healthcare system is a chal-
lenge for surveillance. Roughly a third of all health centers in these
districts were included. Notably absent were the many local health
posts staffed by community health workers. To estimate both the
fraction of cases seeking care at a health center, and the fraction
seeking any level of care, a second source of data is needed. We
use a community survey [27] of children approximately under 5
years old to get estimates of these reporting rates.

A total of 2940 children under 5 were selected for inclusion in
the cluster survey from households across the four districts. Clus-
ters were allotted according to the population of each village from
census data. Sampling weights accounted for household composi-
tion and the relative populations of the districts. Among those sur-
veyed, 1099 caregivers reported at least one episode of diarrhea
during the recall period of 27 days. Respondents reported whether
they sought care at a health structure. We use the reporting rate of
severe diarrhea, which is defined as the presence of acute watery
diarrhea and the presence of two or more of the signs of loss of
consciousness, sunken eyes, and an incapacity to drink or drinking
very little.

From the cluster survey we determine that an estimated total of
42.9% of caregivers who reported severe diarrhea consulted at a
health center 95%CI : ð33:1%;52:7%Þð Þ. The rest either sought care
at a district hospital, local health post or did not seek care at a for-
mal health structure. This estimate is used as a proxy for the
reporting rate of rotavirus. More specifically, this information is
used to construct an informative prior for our Bayesian approach
(as described in the supplementary material).

2.1. Model overview

We consider a range of dynamic models for rotavirus transmis-
sion. Information linking individual-level data on the course of
infection to the between-person transmission of rotavirus is lack-
ing, leading to variation in the structure of mathematical models
for rotavirus [30]. Using a range of different models allows us to
account for the uncertainty in estimation due to model choice.
The five models we consider are SIR-like compartmental models
of transmission, building upon the models in [30]. While the struc-
ture of our model is the same as [30], there are two distinctions: (1)
our focus is on age-structured modeling for children under the age
of five instead of across all age groups; (2) we use a Bayesian infer-
ential approach (as opposed to the maximum likelihood approach
in [30]). The latter difference is crucial because we use Bayesian
methodology to obtain posterior model probabilities for each of
five potential model structures given the observations. This not
only enables a probabilistic comparison of the different models
but also allows for Bayesian model averaging, thereby providing
an ensemble-based projection of rotavirus burden as well as the
impact of vaccination. We incorporate age into the model with sep-
arate compartments for ages from 0–1 month, 2–3 months, 4–5
months, 6–11 months, 12–23 months, and 24–59 months. Fixed
parameters including infection period, immunity period, and
exposed period in the SIR models are obtained from Table 2 in pre-
vious work [30]; these estimates are from data from England and
Wales.

Here we very briefly outline the main features of five models,
Models A through E, based on the SIR framework. Details of the
model and inferential procedure are described in the supplemen-
tary material. Model A tracks severe and mild rotavirus separately.
Severe infections disproportionately contribute to the force of
infection (e.g. because of higher rates of shedding [30]). Unlike
Model A, Models B-E assume successive infections and immunity
are obtained through repeated infections. Subsequent infections
will have a reduced susceptibility to infection and level of infec-
tiousness. Model C allows for an incubation period of infections
as well. In Model D there is no temporary immunity during succes-
sive infections and immunity is granted after all repeated infec-
tions. Model E assumes that full immunity can be obtained
during successive infections. In all models, we assume that the
transmission varies as a cosine function with a period of 1 year;
the mean and amplitude of that function are parameters to be
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estimated in our approach. We further assume that birth rate var-
ies seasonally based on estimates for Niger from the Demographic
and Health Surveys [13]. Then the number of observed reported
cases is modeled as a negative binomial with mean equal to the
expected number of cases from each model. Transmission rate-
related parameters, a reporting rate, a dispersion parameter of
the above negative binomial, as well as the mean and amplitude
of the time-varying transmission function are estimated via Mar-
kov chain Monte Carlo (MCMC). The estimated burden over time
was then obtained from each fitted model (see supplementary
material for details).
2.2. Vaccination

We assume vaccination imparts immunity comparable to a nat-
ural infection, and consider a strategy wherein a first dose is
administered at 2 months of age and a second dose is administered
at 4 months. The vaccine was assumed to confer protection compa-
rable to protection conferred by primary infection following the
first dose. The second dose confers additional protection compara-
ble to that conferred by secondary infection. For Model A, where
the risk of infection does not decrease based previous number of
infections, a separate input parameter is used for the vaccine effi-
cacy. The vaccine efficacy is set to be equal to the predicted efficacy
for Models B-E (see supplementary material for details). We study
the effect of the vaccine under varying levels of coverage. The
short-term effect of vaccination is assessed by looking at incidence
over a five year period following introduction of the vaccine. The
long-term effect is measured by the yearly reduction in incident
cases of Rotavirus gastroenteritis (RVGE) measured 20 years after
introduction of the vaccine. Field efficacy of a multi-dose rotavirus
vaccination strategy is uncertain. To reflect this uncertainty, we
investigate the impact of vaccination using the value of efficacy
from two different studies. First based on the results of [22], for
low income countries, we assume a seroconversion rate of 63%.
Second, a recent study of a 3-dose vaccination strategy in Niger
[18] estimated efficacy of 66.7% with all doses. The details of rep-
resenting these two estimates of efficacy in the 5 models are pre-
sented in the supplement.
3. Results

In this section we describe the results of fitting various models
and calculating ensemble estimates across those models using
Bayesian model averaging (BMA) [2,16] (see supplementary mate-
rial for details). Our BMA-based estimates, which provide a
weighted average of estimates across five different models, formal-
ize uncertainty in model selection. This is because the weighting is
done by using posterior model probabilities which measure how
well each model is supported by the data. There is significant dis-
cordance across models in the measures of model fit (Table 1).
Model C, the model with incubation periods performs the best.
Notably, Model A, the only model that does not allow for successive
Table 1
For each model we provide posterior model probability (PMP), the basic reproductive numb
of population). The last row corresponds to the model-averaged (via Bayesian model aver

Model PMP R0

A 0 30.7 (25.8,34.3)
B 0.06 12.8 (11.9,13.6)
C 0.92 12.9 (11.6,14.0)
D 0.01 10.1 (9.4,11.9)
E 0.01 9.3 (8.3,10.2)

BMA 13.3 (12.0,16.7)
infections with decreased levels of infectiousness, performs signif-
icantly worse as measured by posterior model probability.
3.1. Pre-vaccination

Our fitted models allow us to construct estimates of the burden
in these four districts (Table 1). Of children under five, an approx-
imate 3.1% per year develop severe RVGE as estimated by Models
B-E, though this estimate is significantly larger for Model A. The
basic reproductive number, R0 is the expected number of sec-
ondary cases caused by a single infection in a fully susceptible pop-
ulation. R0 is found as the largest eigenvalue of the next-generation
matrix [12] and significantly larger for Model A. BMA for burden
and R0 are close to those of Model C, which has the highest weight.
Values of R0 reported in the literature range from 1 to 100
[10,31,30] depending on the assumptions made. We estimate
3.1% 95%CI : ð2:6%;3:7%Þð Þ of children under 5 years of age will
experience severe RVGE per year; this corresponds to an estimate
of 25.5% 95%CI : ð22:6%;28:9%Þð Þ of children under 5 experiencing
rotavirus infection per year. This compares to estimates of between
13% and 33% of children under 5y experiencing rotavirus infection
in low and middle income countries reported in [15]. In Fig. 1, we
plot our model projections with uncertainty for reported cases of
rotavirus as well as for all cases of severe RVGE. We also note that
Models B-E predict a steep decline in cases in children over 1y of
age following the epidemic peak; cases in infants under 1y, by con-
trast, are predicted to decline more slowly.

Fig. 2 shows the BMA-based model projections which are close
to those of Model C. However we note that BMA-based projections
have wider confidence intervals because averaged projections
incorporate model uncertainty.

All of the fitted models are able to successfully capture the
observed age distribution of cases (Fig. 3), though Models C and
E predict noticeably more cases than observed for older children
(2–5 years). The models vary in their ability to capture the tempo-
ral dynamics. During the second year of hospital surveillance we
can see a secondary peak in the number of cases that is not cap-
tured by our fitted model, although we did find that the model
dynamics can produce this double peak through an interaction of
a high birth rate and seasonal variation in transmission rate when
the seasonal forcing is stronger than that estimated here. BMA
shows a similar trend as the Model C, which has the highest
weight.
3.2. Projected impact of vaccination

Here we investigate the impact of vaccination based on the
seroconversion rate for low socio-economic settings [22]. In the
supplementary material we provide the impact of vaccination
using a different value of efficacy which is measured based on a
3-dose strategy [18]. This was qualitatively similar, but quantita-
tively small compared to the results in the main paper. Vaccination
causes a noticeable shift in the age distribution across Models B-E
(Fig. 3), with a higher proportion of RVGE cases occurring in older
er R0, and estimated burden. Burden corresponds to yearly cases with severe RVGE (%
aging) versions of these estimates.

Burden (severe) Burden (any)

9.2 (8.1,10.1) 38.3 (33.6,42.4)
3.1 (2.8,3.4) 25.6 (23.1,28.1)
3.1 (2.8,3.5) 25.5 (22.8,28.1)
3.2 (2.8,3.6) 20.8 (18.6,23.0)
3.0 (2.7,3.2) 14.9 (13.8,16.0)
3.1 (2.6,3.7) 25.5 (22.6,28.9)



Fig. 1. Burden estimates under the five fitted models for 4 districts in Niger. Dashed lines denote 95% confidence interval. Top: weekly reported severe cases of RVGE and
model projections. Middle: model projections of all severe RVGE cases. Bottom: model projections of severe RVGE incidence by age. Lines are model projections while points
represent observed cases.

Fig. 2. Model-averaged (BMA) burden estimates from the five fitted models for 4 districts in Niger. Dashed lines denote 95% confidence interval. Left: weekly reported severe
cases of RVGE and model projections. Middle: model projections of all severe RVGE cases. Right: model projections of severe RVGE incidence by age. Lines are model
projections while points represent observed cases.
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children. This has significant benefits when considering the age-
specific mortality of rotavirus is higher for children under 2 years
of age [25]. The BMA-based burden shows a similar trend.

Over the short term, Models A-E predict an overall decline in
total burden, but an increase in the magnitude of peak incidence
(Fig. 4). This happens because the incidence in the inter-epidemic
trough drops significantly as well. So, the reduction in cases in
the low season means a larger build-up of susceptibles, and a
higher peak in the high season. The total annual burden is still
lower.

Fig. 5 provides short term and long term impact of vaccination
which are model-averaged values from five different models. The
short term trend of vaccination impacts based on BMA is similar
to that of Model C. At equilibrium (long term), we can observe
the reduction in severe rotavirus cases with higher levels of cover-
age. For a fixed (70%) level of coverage, we predict 40.1% (indirect
effect: 1.4%) reduction of severe RVGE 99%CI : ð38:8%;41:7%Þð Þ
over the long-term. Based on the recent vaccine efficacy study in
[18], we predict 31.1% (indirect effect: 1.0%) reduction
99%CI : ð29:4%;32:1%Þð Þ in RVGE over the long-term. Though we
observe that the indirect effect increases for higher coverage levels,
the indirect effect is still marginal. Details are provided in the sup-
plementary material.
4. Discussion

Diarrheal disease is a major source of childhood morbidity and
mortality. However, the multi-etiology nature of diarrheal disease
means that it is difficult, in the absence of lab confirmation, to infer
total burden or project the consequences of novel interventions.
We have rich but short-term data with which to understand the
dynamic process; in combination with survey data on health-
seeking behavior; however, we can bring additional information
to bear on the observation rate to interpret the patterns from the
non-specific clinic surveillance.



Fig. 3. Distribution of cases across age groups observed in the data (black dots), predicted by the models (solid lines), and predicted 20 years after vaccination has been
introduced at 70% coverage (dashed lines).

Fig. 4. Relative incidence of severe RVGE after vaccination has been introduced into the models assuming 70% coverage, out to five years after vaccination has been
introduced. The vaccination has been introduced at 0 year.

Fig. 5. Relative incidence of severe RVGE (Left), percent (Middle) and absolute (Right) long term reduction in cases by coverage for Bayesian model averaging from the five
fitted models. Dashed lines denote 99% confidence interval for the total effect. The vaccination has been introduced at 0 year. Variation in reduction for a fixed (70%) level of
coverage is demonstrated.
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For rotavirus, the uncertainty inherent in imperfectly observed
incidence is compounded by the lack of a generally accepted model
and debate about the underlying mechanisms that drive the epi-
demiological response [30]. This motivates an ensemble approach,
using a combination of different models along with quantitative
surveillance to get practical measures of burden and projections
about the operational impact of controls. This multi-model ensem-
ble approach is common in geosciences [24,36,38], where different
assumptions on complex underlying processes can produce differ-
ent climate projections, which motivates a probabilistic forecast
from a variety of models. A competing models approach has been
adapted to epidemiological problems as well, such as choosing
an optimal strategy for measles vaccination [34] and assessing
the impact of control actions for foot and mouth disease outbreaks
[21].

Here we formally address these two sources of uncertainty,
using a state-space model to address the problem of incidence
from non-specific surveillance data, and comparing the inference
from an ensemble of proposed models to address the uncertainty
in the underlying dynamics. Our ensemble approach suggests
robust support for some general patterns of rotavirus dynamics.
The peak transmission is well estimated, with a maximum in early
March, with little variation between models. Rainfall, which is a
primary driver of seasonality in the region, peaks in August. Early
March, when urban population density is at its maximum due to
seasonal rural-urban migration, was the peak season for transmis-
sion of measles [3]. Though measles is transmitted through aeroso-
lized droplets, the similarity in the peak seasonality suggests that
higher population density may also facilitate transmission of rota-
virus. However, it is important to note that there are other factors
that could contribute to the seasonality that may affect rotavirus
quite differently when compared to measles. Hence, the compar-
ison to measles above may not be clear-cut. We simply point this
out as an intriguing parallel to measles (and meningitis, in fact)
all of which have different transmission mechanisms, but the same
seasonal pattern.

We find the SEIRS structure in Model C (model with incubation
period) best explains the observed data. In this model, subsequent
infections have decreased levels of infectiousness and lower risk of
infection compared to the initial infection. All models except for
Model A, which offers the worst fit to the data, include this
dynamic. The estimated basic reproductive number is fairly robust
across Models B-E. In particular, point estimates for models B-E
vary from 9.3 to 12.9 in Table 1, though Model A has a much larger
R0.

There is an observed double peak in incidence (Fig. 1) during
the second year of observation which our fitted models do not cap-
ture. However, this may be an anomaly, as the double peak is not
seen strongly during the first and third years. We note that our
models are capable of reproducing this behavior when the seasonal
variation in transmission is stronger than the best fit estimate, via
an interaction between seasonal effects and the high birth rate in
the region. More complex explanations for such double peaks have
been observed elsewhere. In cholera, similar to rotavirus in trans-
mission, local ecological variations were responsible for bimodal
incidence [11].

Our estimate of overall burden of severe RVGE is robust across
Models B-E. In spite of the fact that the full epidemiological pro-
cesses are unknown, we can be fairly sure that the total yearly bur-
den among children under 5 is in the vicinity of 3.1% (Table 1).
Model A predicts a 3-fold greater incidence of severe RGVE; how-
ever, this model has the weakest support and model-averaged bur-
den is similar to Models B-E.

While uncertainty in retrospective dynamics and disease bur-
den can be characterized using different models, additional uncer-
tainty about the efficacy of proposed interventions limits the
ability to predict future dynamics and disease burden. Ref. [1] esti-
mated that rotavirus vaccine could result in 2.46 million childhood
deaths between 2011 and 2030. Of course, uncertainty in the sero-
conversion rate [22] and achievable vaccination coverage means
that the true benefit of these vaccines is unknown. Here, we used
the ensemble prediction to project the potential impact of rota-
virus vaccination in the Niger setting under two scenarios for vac-
cine efficacy; thus integrating both dynamic uncertainty due to
different models and sensitivity to the realized effectiveness of a
vaccine program. Using a vaccine efficacy derived from [22] we
estimate that 70% coverage could result in 39–42% reduction in
severe RVGE in children under 5. Ref. [18] reported a lower efficacy
from a 3-dose schedule in Niger; this would lower the projected
reduction of severe RVGE to 29–32%. Notably, although BMA esti-
mates a total reduction in yearly cases using both the efficacy
reported in [22,18], it also predicts higher peaks where more cases
are observed than pre-vaccination. This short-term difference in
cycle amplitude for these models is a phenomenon anticipated
by [32]. Anticipation of this shift in dynamic regime caused by vac-
cination may be critical to the interpretation of short-term surveil-
lance as the observation of higher peak incidence following the
introduction of vaccination may be wrongly interpreted as a failure
in the vaccination program.

Dynamicmodels are a powerful tool to interpret disease surveil-
lance data and anticipate the potential consequences of interven-
tions. The method we describe here addresses two main sources
of uncertainty: imperfectly observed data and scientific uncertainty
about epidemiological dynamics. Our methods also allow us to
identify key epidemiological interpretations – transmission season-
ality and the proportional impact of vaccination – that are robust to
model choice, and those that are model dependent, that is, R0 and
the annual burden of severe RVGE. By assessing the fit of the
observed surveillance to each model, we find that these latter mea-
sures are robust within the subset of well supported models.
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