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Abstract
Performing visually guided behavior involves flexible routing of sensory information towards associative areas. We hypothesize that in 
visual cortical areas, this routing is shaped by a gating influence of the local neuronal population on the activity of the same population’s 
single neurons. We analyzed beta frequencies (representing local population activity), high-gamma frequencies (representative of the 
activity of local clusters of neurons), and the firing of single neurons in the medial temporal (MT) area of behaving rhesus monkeys. 
Our results show an influence of beta activity on single neurons, predictive of behavioral performance. Similarly, the temporal 
dependence of high-gamma on beta predicts behavioral performance. These demonstrate a unidirectional influence of network-level 
neural dynamics on single-neuron activity, preferentially routing relevant information. This demonstration of a local top-down 
influence unveils a previously unexplored perspective onto a core feature of cortical information processing: the selective 
transmission of sensory information to downstream areas based on behavioral relevance.
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Significance Statement

Highly evolved nervous systems, such as those of the primate brain consist of complex networks of areas dynamically coordinating 
and routing information flow to meet momentary behavioral demands. A comprehensive understanding of the underlying processes 
needs a mechanistic understanding of the dynamic interaction across neuronal network and single-neuron levels. Here we propose 
that the directional interaction between the activity of single neurons and the neural network they are embedded in determines the 
behavioral output. Analyses of the coupling between different frequencies of oscillatory neural activity (corresponding to different 
spatial extents of information processing) confirm this account, suggesting a key behavioral role of the causal influence of 
network-level activity on the activity of single neurons.
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Introduction
How behavior-relevant information encoded in sensory cortical 

areas is transmitted to high-level associative areas to enable mo

tor responses has been a core question in neuroscience (1–4). 

Information processing relies on a flexible interaction between 

and within neuronal populations. Neuronal populations elicit 

characteristic oscillations in their activities, known to play a crit

ical role in numerous cortical operations, such as stimulus pro

cessing (5–8), memory processing (9, 10), and inter-regional 

interactions (11–14), with the characteristic frequency of the 

oscillations varying depending on their functional role in cortical 
networks (15–18). Recent investigations have shown that the 
oscillatory components of the local field potentials (LFPs) 
provide insight into how neural activities determine behavior. 
Importantly, several studies in visual areas, including the 
medial temporal area (MT), have reported that the power of beta 
(10–30 Hz) (19, 20) and gamma to high-gamma (50–200 Hz) LFPs 
(21, 22) is predictive of the behavioral output on a trial-by-trial ba
sis. Moreover, further investigations have shown that the strength 
of intra-regional (23) and inter-regional (14) gamma synchrony is 
linked to the magnitude of association between neural activity 
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and behavior. How these oscillatory activities harness the activity 
of single neurons to selectively associate the most relevant sen
sory information to behavior remains elusive.

Oscillatory neural activities in different frequencies are not inde
pendent from each other (24), but they have been observed to be 
coupled, a phenomenon known as “cross-frequency coupling” 
(25). This phenomenon, documented across multiple cortical areas 
and different species, is believed to be a fundamental mechanism 
linking activities of different spatial scales (26). Phase-amplitude 
coupling (PAC), the most prominently observed form of cross- 
frequency coupling (27, 28), reflects the power of fast oscillations 
co-occurring with a specific phase of slow oscillations. PAC has 
been suggested to underlie the local coordination of single-neuron 
activity by population activity, as well as the communication be
tween distinct areas (26, 29, 30). Several previous investigations 
have reported that PAC plays a functional role in cortical functions, 
such as attention (29, 31–33), indicative of a potential function of 
PAC in determining the behavior of subjects. However, such func
tion of PAC, especially in sensory areas, has not been explored be
fore. Recent evidence highlights the critical role of beta 
oscillations in information transmission and high-gamma oscilla
tions in local processing within the dorsal visual pathway (2, 16, 
18, 34, 35). We propose that the cross-frequency coupling between 
these oscillatory frequencies may influence the performance of at
tentional and perceptual decisions involving visual motion process
ing. Here, we studied within the extra-striate visual area MT of 
monkeys, if PAC correlates with the speed of behavioral responses.

Our results demonstrate that, before a visual change event, 
the strength of coupling between the phases of beta oscillations 
(10–26 Hz) and the power of high-gamma rhythms (180–220 Hz, 
representative of the activity of local clusters of single neurons) 
predicts the animal’s speed in reporting the upcoming change. 
Importantly, we document that beta phase induces a higher 
causal influence on spike timing during trials the animals respond 
faster. We also observe that the neighboring neural sub- 
populations in MT are more strongly coupled in the beta range 
when animals respond faster. These results indicate a key func
tional role for the unidirectional influence of local population on 
single neurons’ activity. We speculate that this local top-down 
influence of population activity (represented by beta activity) on 

single neurons not only gates information from the level of popu
lation towards the level of single neurons but also facilitates the 
selective routing and biasing of behaviorally relevant information 
onto downstream networks that is a central feature of how atten
tion influences sensory information processing (36–38).

Results
We trained two rhesus monkeys to perform a visual detection task 
(Fig. 1). In brief, the animals had to covertly attend one (the target) 
of two RDPs, one placed inside and the other outside the receptive 
field (RF) of the recorded neuron. The monkey had to give a speeded 
response to a brief change in RDP direction (monkey H) or direction/ 
color (monkey T). Overall, in 86% (monkey H) and 90.3% (monkey T) 
of those trials where the animals did not break their eye fixation, 
target changes were reported correctly (see (39) for animal H and 
(40) for animal T for more details on the task and behavioral re
sults). We recorded single-unit activity and LFPs from the MT area 
of the two monkeys. To study the dependence of the neural activity 
on the monkey’s behavior, we subdivided the correctly performed 
(hit) trials into fast and slow trials based on the animal’s reaction 
time. To investigate the functional interaction of local neural net
works underlying behavior, we calculated the strength to which 
high frequency oscillatory LFPs are coupled to the phase of low fre
quency oscillations, a measure named “PAC” (41) for different pairs 
of frequencies. PAC strength was calculated for a 1,000 ms time 
window following the stimulus onset’s transient evoked activity 
(see SI Appendix, Extended Methods, and also Fig. S1), and com
pared between the trial types (fast/slow) (Fig. 2A and B). We found 
that in fast trials, the power of high-gamma (180–220 Hz) oscilla
tions is significantly more coupled to the phase of beta oscillations 
(10–26 Hz) compared to slow trials.

Beta-high gamma PAC predicts the speed of 
animal’s response
We measured the PAC strength for fast and slow trials where the 
target stimulus change occurred inside the RF, using a modified 
version of the method previously introduced (41) (see SI 
Appendix, Extended Methods). This measure ranges from 0 to 1. 

Fig. 1. Behavioral paradigm. To start a trial, the monkey pressed a lever bar and maintained their gaze on a fixation point (filled circle or filled square for 
monkey H and T, respectively). Next, a static RDP (moving RDP for monkey T) appeared for 325–500 ms to signal (cue) the position of the target stimulus on 
the screen. After ending the cue exhibition period, two moving RDP stimuli were displayed for a random duration of 500–4250 ms. Next, a quick direction 
change (direction or color change for Monkey T) occurred in one of two RDPs and the monkey was instructed to release the lever bar within a response 
window of 100 to 650 ms. White dashed-circle was not displayed on the real behavioral task, yet it was employed for a representative purpose, to delineate 
the RF location of MT neurons on the monitor screen. The inset numbers implicate the behavioral task sequences.
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It is 0 when there is no systematic relation between the phase of 
the low frequency and the power of the high frequency compo
nent, and it equals 1 when the power of the high frequency com
ponent is fully aligned with the phase of the low frequency 
component. To calculate PAC for the fast and slow trials, we fil
tered the LFPs into different low and high frequency bands. For 
the low frequencies, LFPs were filtered using nonoverlapping 
band-pass filters with the width of 2 Hz, ranging between 1–30 Hz 
and for high frequencies, LFPs were filtered using 10 Hz wide band- 
pass filters overlapping by 5 Hz within the range of 35–255 Hz. 
Next, the instantaneous phases of the low frequency compo
nents were calculated by applying a Hilbert transform on the fil
tered signals and the instantaneous power of the high frequency 
components were estimated by calculating the envelope of the fil
tered signals (see SI Appendix, Extended Methods). This procedure 
provided 15 and 43 time-series for the instantaneous phases and 
powers, respectively for each trial’s LFP. We next calculated the 
PAC strength for all pairs of low and high frequency components. 
This yielded a 2D matrix with 43 × 15 PAC elements for each trial’s 
LFP. Figures 2A and B shows the difference between the average 
PAC maps for fast and slow trials (see also Fig. S2 for the PAC of 
trials with moderate RTs). The X- and Y-axes represent the value 
at the center of each frequency band and colors indicate the levels 
of difference in PACs (fast–slow). Our data clearly show that the 
coupling of high-gamma power (∼180–220 Hz) to beta phase 
(∼10–26 Hz) is higher in fast compared to slow trials (using two- 
sided Wilcoxon rank sum test with FDR correction for multiple 
testing; ρ < 0.0039 and ρ < 0.0042 for monkeys H and T). To avoid 
the side-effect of LFP power on the accuracy of PAC’s calculation, 
for Fig. 2A and B, we selected the fast and slow trials with no sig
nificant difference between their beta power (15–25 Hz) (monkey 
H: ρ = 1, Monkey T; ρ = 0.996 using two-sided Wilcoxon rank sum 
test), using a histogram-based method (see SI Appendix, 
Extended Methods). We also conducted a similar measurement 
of PAC for trials where the target change occurred outside the 
RF. This showed no significant difference within the frequency 
ranges depicted in Fig. 2A and B (see Fig. S3, ρ > 0.05 using a two- 
sided Wilcoxon rank sum test, corrected for multiple comparisons 
using FDR), suggesting that the increase of PAC strength in fast tri
als is not due to differences in neuronal excitability levels or po
tential changes in the monkey’s arousal level. We also observed 
that the PAC difference predicted the trial type more strongly 
(monkey T) or as strongly as (monkey H) the spike rates do 
(Fig. S4). We also ensured that the PAC difference within the beta- 
high gamma (HG) pairs was not due to a systematic difference be
tween HG powers; the average strength of high-gamma power 
(180–220 Hz) was either significantly stronger in the selected 
slow compared to fast trials or did not have any significant differ
ence (monkey H: ρ < 10−10 two-sided Wilcoxon rank sum test, 
monkey T: ρ > 0.4 two-sided Wilcoxon rank sum test). The PAC dif
ferences also were not subject to a potentially significant depend
ency on the target stimulus’s preferred or antipreferred direction 
of motion (see Fig. S5 for more details). It should be noted that the 
strength of the high-gamma power is dissociated from the spec
tral leakage of spike into LFP (see Refs (2, 34, 42)). We further 
showed that the high-gamma power has a significant negative 
correlation with the animal’s RT (monkey H: r = −0.05, ρ < 0.01, 
monkey T: r = −0.1, ρ = 0.05, Spearman correlation, two-sided 
Wilcoxon signed rank test, see Fig. S6 for more details). To visual
ize beta-HG coupling, we calculated the normalized power of 
high-gamma at different beta phases for fast and slow trials, 
pooled across the two animals (Fig. 2C) (see SI Appendix, 
Extended Methods). The result clearly shows that for fast trials, 

high-gamma power is distributed nonuniformly across beta 
phases for both monkeys, while this nonuniform dependence is 
clearly smaller for the slow group. This suggests that the local 
neural activity reflected by HG more strongly follows the beta 
phase in fast compared to slow trials, presumably for the sensory 
activities to be more organized in time. We further measured the 
beta-coupling of neighboring sites recorded simultaneously, for 
the two behavioral conditions. Figure 2D shows the aggregated 
phase locking values (PLVs) for both monkeys for the fast and 
slow trials, suggesting that the phase synchronization among 
neighboring neurons is significantly larger for faster responses 
(ρ < 0.00098using two-sided Wilcoxon rank sum test). To confirm 
this, we examined the synchrony among pairs of neurons by 
measuring the cross-correlogram between the spiking activities 
of neurons recorded simultaneously from two different electrodes 
(Fig. S7). These results indicate that neighboring neurons fire sig
nificantly more synchronously within beta frequencies during 
fast rather than slow responses (ρ < 0.005, permutation test). We 
further calculated the circular histograms of the spike-triggered 
“beta phase” for the fast and slow trials (Fig. S8). The results 
indicate that neurons fire selectively within a certain phase range 
in fast trials, while this selectivity is absent in slow trials 
(ρ < 0.00021, fast trials; ρ > 0.13, slow trials; Rayleigh test). 
Furthermore, an analysis of power spectral density shows a spec
tral peak relative to the aperiodic components in the beta fre
quency range for both monkeys (Fig. S9 C and D). These sets of 
evidence suggest that not only the neural activity confined to local 
circuitries is more coupled to beta, but neighboring neural circuits 
are also more strongly coupled via beta, in fast trials. This argues 
that the beta rhythm may be crucial for the efficient transmission 
of information towards downstream areas involved in generating 
the behavioral output. To examine the argument, we compared 
the high-gamma power between the peaks and troughs of the 
beta rhythms. To this end, the time-frequency spectrogram 
was computed for the high-gamma frequency range (160–250 
Hz) using raw LFPs time-locked to the maximum beta (17–21 Hz) 
peak (see SI Appendix, Extended Methods). It is visually evident 
that the high-gamma power is stronger at the troughs compared 
to the peaks (Figs. 2E and S10). To quantify this difference, 
we calculated the high-gamma modulation index (MHGp): 
MHGp = (Ppeak − Ptrough)/(Ppeak + Ptrough), where Ppeak and Ptrough re
present the HG power at the peak and trough of the beta rhythm, 
respectively (see SI Appendix, Extended Methods). The result 
demonstrated that the strength of high-gamma power in beta 
troughs is significantly larger than in beta peaks on a trial-by-trial 
basis (MHGp = 0.25, ρ < 0.0001, permutation test).

Different dynamics of PAC in fast and slow trials 
reflect network delay in routing information
We documented that high-gamma fluctuations are more strongly 
coupled to the phase of the beta oscillations when an animal re
sponds faster. To study the temporal dynamics of this coupling, 
PAC was further calculated for different time windows relative 
to the target change. To this end, we focused on the LFPs within 
the 1,000 ms window before the target change and calculated 
the strength of beta-HG PAC (for frequency pairs with PAC shown 
to be significantly linked to reaction time—marked by white lines 
in Fig. 2A and B). We used a 400 ms-wide window sliding with steps 
of 10 ms, to calculate the time-resolved PAC for the fast and slow 
trials (see SI Appendix, Extended Methods) (Fig. 3). X-axes re
present the value at the center of the sliding window in each 
step, and Y-axes indicate the PAC strength averaged across the 
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Fig. 2. Strength of PAC differs between fast and slow behavioral responses. A, B) Maps of differences between PAC strengths are calculated for 15(phase 
providing)*43(power providing) pairs of frequency bands calculated from nonoverlapping 2 Hz pass-band windows (changing between 1 and 30 Hz) and 10 Hz 
pass-band windows overlapping with 5 Hz bounds (changing between 35 and 255 Hz), respectively. The heat maps show the average PAC strength of slow 
trials subtracted from that of fast trials. X-/Y-axes indicate the lower bound of phase-providing/power-providing frequency bands. Black outlines 
demonstrate frequency pairs with a significant PAC difference between the fast and slow trials (ρ = 0.0039 and ρ = 0.0042 for monkeys H and T, 
respectively; two-sided Wilcoxon rank sum test with FDR correction for multiple comparisons). The phase-providing and power-providing frequency 
ranges with a significant behavioral modulation are indicated by white lines for each animal C, Normalized average of high-gamma power (160–250 Hz) 
within different phases of the beta band (19 nonoverlapping phase segments) averaged across animals. The beta frequency band was selected between 
13–23 Hz/12–26 Hz for monkey H/T (frequencies with a significant PAC modulation-according to maps A/B). X values represent the middle of the phase 
segments and error bars show the SEM. D, The boxplot illustrates the phase locking value (PLV) of the oscillations within the beta band between pairs of 
sites (averaged across beta sub-bands, see SI Appendix, Extended Methods), recorded simultaneously for the two animals. The PLV indicates an average 
difference of instantaneous phases between two neighboring electrodes. PLV was significantly different between the fast and slow trials (ρ = 0.00098 
two-sided Wilcoxon rank sum test). E) Beta peak-triggered spectrogram for high-gamma. The spectrogram was calculated using short-time Fourier 
transform with 7 ms time windows of 1 ms overlaps. Both fast and the slow trials are pooled together here across both animals. Color bar scales between 
the minimum and maximum of the normalized powers across high-gamma frequencies. The bottom curve shows the beta-filtered LFPs (17–21 Hz) 
averaged across trials after aligning to their highest-amplitude peak.
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significantly modulated frequency pairs (marked by white lines in 
Fig. 2A and B). These results indicate that the PAC strength starts 
to be significantly different between fast and slow trials long before 
the target change and remains apart until at the latest 400 ms before 
the change onset (monkey H: ρ < 0.0039 and monkey T: ρ < 0.0294; 
two-sided Wilcoxon rank sum test, corrected for multiple compari
sons using FDR). Although we observed a difference of target change 
latency between fast and slow trials in one of the animals (fast >  
slow for monkey H, ρ < 2 × 10−4; [ρ > 0.33 for monkey T]; two-sided 
Wilcoxon rank sum), the PAC difference before change onset is not 
due to such a difference in the target change latency (see Fig. S11
for details). This indicates that the PAC differences may not be due 
to different adaptation levels. These results suggest that the poten
tial influence of beta-HG coupling on the efficiency of sensory pro
cessing may involve multisynaptic, rather than mono-synaptic 
circuits. This indicates that it may be the transmission of visuo- 
motor information (as a cross-areal, rather than a within-area pro
cess), that is influenced by the strength of PAC. One possibility could 
be that PAC causes an improvement of inter-areal communication 
channel with downstream areas (30, 42).

High-gamma activity correlates with spikes 
on a trial-by-trial basis
Our observation of the link between beta-HG coupling and behav
ior, is in line with previous reports highlighting the role of PAC in 
information transmission between cortical areas; suggesting that 
area MT transmits sensory information using the high frequency 
oscillatory activity, HG oscillations, after synchronizing with 
downstream areas in the beta band (29, 30). This implies that 
the HG oscillatory activity should be correlated with the spiking 
activity. To test this, we pooled the fast and slow trials and meas
ured the correlation between spike rate and high-gamma power 
(180–220 Hz) across trials (monkey H; r = 0.12, ρ = 1.1 × 10-5 and 
monkey T; r = 0.37, ρ = 2.7 × 10-27, Spearman rank method, see 
Fig. 4A) (see SI Appendix, Extended Methods). To rule out a po
tential effect of sample size (i.e. large number of trials) on the 
correlation results, we also examined the relationship between 
the high-gamma power and the spike rate at the level of single 
neurons (see Fig. S12A and B for details). The correlations 

remained significant over single neurons’ activities recorded 
from each animal (monkey H; r = 0.25, ρ = 2.6 × 10-13 and monkey 
T; r = 0.6, ρ = 5.3 × 10-6, Spearman correlation, two-sided 
Wilcoxon signed rank test). This positive correlation (not attributed 
to the spike leakage on LFP (2, 34, 42) also see Fig. S12C), is in line with 
previous studies (26) suggesting that high-gamma may temporally 
influence the spike rate of individual neurons and consequently 
the inter-neuronal synchrony. This spike rate-HG link further sug
gests that the enhancement of beta-HG coupling at faster reaction 
speeds (Fig. 2C) causes individual neurons to fire more intermit
tently and coupled to the beta phase and consequently more syn
chronously relative to the beta phase (Fig. 4B vs. Fig. 4C).

An enhanced orchestration of single neurons 
by the surrounding network in fast trials
We next asked if the relative causal influence of beta oscillations 
on the spikes (rather than the influence of spikes on the phase) is 
stronger in fast, compared to slow trials. One previously intro
duced approach to theoretically measure the directional inter
action between an oscillatory signal and a point process (as on 
LFPs and spikes, respectively) is to compute the across-trial simi
larity of the oscillatory signal’s instantaneous phase surrounding 
the point process (43); a larger causal influence of the oscillatory 
activity on spikes would be reflected by a larger phase similarity 
preceding the spikes, compared to after spikes. Similar to a previ
ous study (44), we employed this technique to measure the direc
tional interaction between the beta phase and spikes (see SI 
Appendix, Extended Methods, and Fig. S13). We computed the dif
ference between the post-spike and prespike phase similarity in 
beta to quantify the degree to which spikes influence the beta os
cillations, or vice versa, a measure named “directional inter
action.” To examine if this directional interaction varied as a 
function of response time, we subtracted the directional inter
action in fast trials from that of slow trials (Fig. 5 and see SI 
Appendix, Extended Methods). Correspondingly, positive values 
(y-axis) indicate a stronger relative influence of the phase on 
spikes in fast trials compared to slow trials, while negative values 
reflect a higher relative influence in slow trials. The positive value 
across all times surrounding the spike event time (p < 0.5 for times 

Fig. 3. Time-resolved changes of PAC strength within the 1,000 ms before the direction change. 400 ms sliding time windows, lagged by 10 ms were used 
for calculating the PAC strength within those frequencies, with their PACs significantly differentiated across reaction times (as shown in Fig. 2A and B). X 
values represent the middle of the analysis time windows. The black line marks time windows with a significant difference in PAC between fast and slow 
trials (monkey H: ρ = 0.0039 and monkey T: ρ = 0.0294; two-sided Wilcoxon rank sum test, corrected for multiple comparisons using FDR).

Khamechian et al. | 5

http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgae288#supplementary-data
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgae288#supplementary-data
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgae288#supplementary-data
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgae288#supplementary-data
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgae288#supplementary-data
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgae288#supplementary-data
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgae288#supplementary-data
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgae288#supplementary-data


beyond 10 ms from the spike event, permutation test, see SI 
Appendix, Extended Methods) is consistent with a more strongly 
pronounced role of the visuo-motor neural network (mediated 
by beta oscillations) when generating spikes for faster, compared 
to slower behavioral responses. This suggests that beta reverbra
tion outflowed from the visuo-motor network influences the tim
ing of MT neurons’ responses significantly more strongly in fast 
trials, compared to slow trials.

Behavioral enhancement of PAC and neural 
discrimination are independent
Previous studies have shown that visual attention influences 
information processing via at least two basic strategies: 
(i) enhancing neural discriminability via increasing signal-to-noise 

ratio of neural responses (45–48); (ii) enhancing the inter-areal 
neural communication to route the most relevant behavioral infor
mation (11, 49, 50). It is unclear whether attention deploys the 
beta-HG coupling observed here to enhance the neural discrimin
ation, or to improve the inter-areal communication. To answer 
this, we next asked the two following questions: (i) How does neural 
discriminability differ between fast and slow trials in our data? (ii) 
Is the modulation of beta-HG coupling involved in such potential 
neural discrimination changes? 

1. To this end, we determined the single-unit activity for fast 
and slow trials within the same time window the PAC effect 
was observed. We next calculated the separability of spike 
rates between the preferred and antipreferred direction for 

Fig. 4. Correlation between high-gamma power (180–220 Hz) and spike rate. A) Each data point represents the normalized high-gamma power (Y-axis) as 
a function of the associated spike rate (X axis), calculated for each trial. The high-gamma power is significantly correlated with the spike rate across trials 
(monkey H; r = 0.12, ρ = 1.1 × 10-5 and monkey T; r = 0.37, ρ = 2.7 × 10-27, Spearman correlation). Trials with a spike rate or high-gamma power exceeding 
mean ± 2×standard deviation were removed from this analysis. B and C) Cartoon rendition showing how a difference in the strength of beta-HG coupling 
causes spikes to be coupled (B) or de-coupled (C) from the beta phase.
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individual neurons for each trial type, using an ROC analysis 
(see SI Appendix, Extended Methods) (Fig. 6A). The area under 
the ROC curve (AUC) analysis and permutation hypothesis 
testing between the preferred and antipreferred stimuli 
showed that the neural discriminability is significantly larger 
in fast, compared to slow trials (ρ = 0.027 and ρ = 0.008 in 
monkeys H and T). The difference in the neural discriminabil
ity is not due to disparities between the fast and the slow tri
als in the stimulus-evoked transient activity (see Fig. S1). This 
suggests that the sensory information is encoded more effect
ively when the animal responds faster, presumably due to a 
higher level of attention (49, 51, 52) (see Fig. 6B for a schematic 
of the data).

2. We investigated the potential interaction of beta with HG PAC 
and neuronal discrimination on a trial-by-trial basis for two 
random trial groups with the same average reaction time. 
To this end, we randomly partitioned all trials into two sub
sets, which were not significantly different in their average re
action time (ρ = 0.79and ρ = 0.99 for monkey H and T 
respectively, two-sided Wilcoxon rank sum test), while they 
were significantly different in their beta-HG PAC strength 

(ρ = 1.1 × 10-3and ρ = 1.7 × 10-4 for monkey H and T, respect
ively, two-sided Wilcoxon rank sum test) (see SI Appendix, 
Extended Methods). Next, we calculated the neural discrim
ination between the preferred and antipreferred direction 
for each trial group using the ROC approach. The corre
sponding ROC curves and the probability density of high- 
gamma amplitude relative to beta phases for the two chosen 
subsets (high-PAC trials vs. low-PAC trials) are shown in 
Fig. 6C and D. Our AUC analysis and the permutation 
hypothesis testing between the preferred and antipreferred 
directions of motion demonstrate that the neural discrimin
ation is not significantly different between the high-PAC and 
low-PAC trial groups (ρ = 0.72 and ρ = 0.30 for monkeys H 
and T, AUC values: [0.97, 0.973] and [0.98, 0.964] for 
[high-PAC, low-PAC trials] for monkeys H and T, respectively). 
This suggests that PAC and neural discrimination are 
independent predictors of behavior, indicating that they 

incorporate different neural mechanisms to influence the 
visuo-motor performance.

Computational model confirms the role of PAC in 
inter-areal connectivity
To further validate our experimental findings, we designed a mod
eling framework to elucidate how upstream cortical areas (e.g. 
MT) could communicate effectively with downstream associative 
areas (e.g. LIP), through beta-high-gamma PAC. Assuming a con
stant beta phase locking between the downstream and upstream 
areas, we asked if different PAC strengths in the upstream area 
lead to different levels of functional connectivity with the down
stream area. To this end, we generated synthetic signals with dif
ferent PAC strengths representing the LFP in the upstream area, 
and calculated the temporal correlation (Pearson’s method) of 
the high-gamma power with that of the downstream area (which 
had a constant PAC across conditions; 100%, see SI Appendix, 
Extended Methods) (Fig. 7A). Results show an increased high- 
gamma power correlation between the upstream and down
stream area at stronger PACs. This also holds true for different 
noise levels in the upstream area. These suggest that a stronger 
PAC may provide two areas with an enhanced overlap between 
their windows of local activity (reflected by high-gamma), consist
ent with a previously suggested role of PAC in inter-areal commu
nication (30).

We next examined if different PAC strengths cause differential 
levels of spike rate-based neural discrimination. Based on our ob
servation of a significant correlation between high-gamma power 
and spike rate, we generated spike trains corresponding to the 
synthetically generated signals with different PACs (see SI 
Appendix, Extended Methods). Shannon entropy was computed 
next for these spike trains as a proxy for spikes’ information cap
acity under different PAC strengths. Results show no significant 
dependence of entropy on PAC strength (Fig. 7B), consistent with 
our experimental data indicating independent mechanisms 
underlying the spike rate-based neural discrimination and inter- 
areal functional connectivity. Our evidence is therefore in line 
with the account that PAC is involved in inter-areal communica
tion within the brain (7, 31, 53), with higher PACs leading to faster 
behavioral responses.

Discussion
Neural processing of sensory information relies on flexible rout
ing via intra- and inter-areal interactions of neuronal popula
tions. Here, we show evidence suggesting that key to this 
mechanism, is the gating influence of the local population activ
ity on the activity at the level of single neurons. We studied the 
impact of neural oscillatory activities (representative of local 
neuronal activity) on the neuronal activity at the level of local 
neuronal clusters and examined the behavioral role of these os
cillations within the visual cortex of monkeys. Our data and com
putational modeling results show that (i) the amplitude of 
high-gamma activity (180–220 Hz) is coupled to the phase of os
cillatory neuronal activity within the beta range (10–26 Hz), in 
visual cortical area MT; (ii) this coupling predicts the animal’s be
havioral reaction times, i.e. the magnitude of attentional engage
ment; (iii) the strength of phase synchrony between neighboring 
sub-populations within the beta range predicts upcoming reac
tion time; (iv) fast behavioral responses entail a stronger relative 
causal influence of beta oscillations on spike timing; (v) this net
work single-neuron interaction could play a preparatory role, 

Fig. 5. Beta phase’s directional interaction with spikes differs between 
fast and slow trials. We computed the relative directional interaction of 
the beta phase and the spikes computed within different time frames 
from the spike event. The y-axis represents the relative directional 
interaction in fast trials subtracted by the relative directional interaction 
in slow trials. Error bars reflect the standard deviation (SD) estimated by 
repeatedly shuffling the trial labels (fast/slow) (N = 1,000).
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enabling the visual cortex to more efficiently transmit behavior
ally relevant information to downstream cortical areas; (6) neur
al discrimination of sensory stimuli is predictive of the upcoming 
behavioral reaction time; and (vii) neural discrimination and 
beta-HG coupling involve independent mechanisms to enhance 
behavior under attention.

Our observation that the neural discrimination was predict
ive of the upcoming behavioral reaction time is in line with the 
hypothesis that attention may improve behavior via improving 
the neural encoding mechanisms in the fast, rather than slow 
trials. This effect may itself stem from the increase of neuronal 
discharges in fast vs. slow trials which is difficult to examine 
here, given our data size. The non-normal distribution of reac
tion times (Fig. S14) allows for the possibility that fast and 
slow reaction times (i.e. the two tails of the distributions) re
present two independent processes; fast responses may reflect 
fast sensorimotor transformation, while slow responses may in
dicate more complex and higher level cognitive processes (54). 
Our results further show that the influence of PAC vs. neural dis
crimination on behavior use independent mechanisms. This 
suggests that there are at least two distinct neural processes 
underlying the attentional enhancement of behavior, one via 
enhancing the neural discrimination and the other through im
proving the local top-down modulatory signal (by increasing the 
beta-HG PAC). These two mechanisms may also underlie the 

behavioral component of other cognitive functions, such as 
memory and perceptual decision making, a question left to fu
ture studies.

Beta as a top-down regulator of visuo-motor 
behavior
Our observations of (i) a higher beta phase locking, (ii) a higher 
beta-HG coupling, and (iii) stronger relative causality of beta 
phase on the spike timing for fast compared to slow responses, 
suggest that beta oscillations sourcing from the fronto-parietal 
attention-control network (18, 55, 56) adaptively drive the bottom- 
up signals of MT neurons to more effectively guide behavior de
pending on the focus of spatial attention (Fig. 7C). This is in line 
with previous studies in sensory areas including MT showing the 
influence of beta rhythms on the efficacy of feed-forward projec
tions (16–18, 55, 57).

Beta-HG coupling as a control parameter of 
predictive coding
It has been shown before that the feed-forward and feed-back sig
nal projections relay sensory predictions and prediction errors, re
spectively, so called “predictive coding” (16, 58). This elucidates 
that high-level cortical areas continually generate predictions 
based on the incoming activity and the prior evidence, projecting 
these predictions to the sensory cortical areas. Sensory areas 

Fig. 6. Neural discrimination and PAC modulate behavior, independently. A) Bars indicate the AUC for the discrimination of preferred and antipreferred 
direction of motion based on spike rates (separately performed for fast and slow trials). To evaluate the significance of differences between the AUCs of 
fast and slow trials, permutation hypothesis testing was performed (ρ = 0.027 and ρ = 0.008 for monkeys H and T—see Materials and methods section for 
details). B) Cartoon representation of the spike probability distribution in fast (right panel) and slow (left panel) trials when the stimulus moves in the 
preferred (red) or antipreferred (blue) direction. X-values represent the spike rate and Y-values indicate the probability of a given spike rate across neural 
population. C) ROC curves (for the discrimination of preferred vs. antipreferred direction of motion) and probability density of high-gamma relative to the 
beta phase for fast and slow trials (corresponding AUCs were shown in Fig. 6A). D) Neural discrimination of the two subsets of trials with a maximum 
difference between their average PAC strength and a minimum difference in their average reaction times. The two subsets were found to not have a 
significant difference in their average reaction time (two-sided Wilcoxon rank sum test, ρ = 0.79 and ρ = 0.99 for monkeys H and T, respectively), while 
they were significantly different in their average PAC strength (two-sided Wilcoxon rank sum test, ρ = 1.1 × 10−3 and ρ = 1.7 × 10−4 for monkeys H and T, 
respectively). AUCs and a permutation test show that the neural discrimination is not significantly different between the high-PAC and low-PAC trials 
(ρ = 0.72 and ρ = 0.30 for monkeys H and T, respectively). The AUC analysis for high-PAC trials and low-PAC trials resulted in AUCs of (0.970 [high PAC], 
0.973 [low PAC]) and (0.980 [high PAC], 0.964 [low PAC]) in monkeys H and T, respectively.
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then estimate the prediction error by subtracting predictions 
from the current sensory information, and forward it to the 
downstream high-level area. Functionally, since predictions are 
updated within a longer interval, compared to the error’s compu
tation, they are suggested to involve neural activities within a 
lower frequency, while the transmission of prediction errors in
volves oscillations of higher frequencies (17, 59). Our finding of 
a higher beta-HG coupling in faster responses, is consistent 
with the predictive coding model, further suggesting that a high
er temporal coordination of beta (corresponding to the top-down 
signal) and HG (corresponding to the bottom-up signal) may 

contribute to the integration of the prediction and the prediction 
error.

Local interneuron co-activation mediates 
bottom-up routing of visuo-motor information
Recent studies in rodents and humans have documented that in
trinsic properties of interneurons underlie high-gamma brain 
rhythms (25, 60–63). The network of such co-active interneurons 
then imposes a rhythmic inhibition on excitatory pyramidal 
cells to discharge in phase with the interneuron population’s 

Fig. 7. Beta-HG PAC underlies inter-areal communication, independent of spike rate-based neural discrimination. A) Modeling results for the inter-areal 
high-gamma power correlation as a function of PAC strength; the y-axis shows the correlation of high-gamma power (modulated by the beta phase) 
between upstream (e.g. MT) and downstream (e.g. LIP) cortical areas. Colors illustrate different levels of additive noise magnitude; a larger value reflects a 
higher magnitude of additive noise (see SI Appendix, Extended Methods). B) Information capacity of spiking activity across different strengths of PAC; the 
y-axis shows the average Shannon entropy across 10,000 spike trains (see SI Appendix, Extended Methods). Error bars represent the standard deviation. 
The x-axis in (A) and (B) shows different PAC strengths, with 100% representing the highest possible PAC. C) Schematic description of inter-areal 
communication for transmission of the behaviorally relevant information. The top-down attention signal is believed to be mediated by a beta band 
oscillation generated within the LIP-FEF network. This beta activity (as a feed-back signal) may facilitate the feed-forward signal transmission from MT 
towards LIP, depending on the focus of attention. PAC (between beta and HG) has a facilitative role in routing sensory information across the visuo-motor 
network.
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rhythm (62). Further studies have demonstrated that high-gamma 
activities (e.g. ripple activities), shaped by local cortical circuits 
(27), are involved in high-level cognitive functions, such as plan
ning (64), decision making (65) and memory consolidation (9). 
Specifically, a study using intracranial recordings in the human 
cortex, has identified a widespread synchrony within the high- 
gamma range of 50–125 Hz and frequencies above (>125 Hz) 
across the primary visual cortex, limbic and higher order cortical 
regions, during memory encoding and recalling tasks (10). 
Further, recent investigations in the hippocampus and neocortex 
have indicated that sub-populations of interneurons oscillating 
at faster and slower rhythms can mediate neural coupling at 
distinct frequencies (26).

Our results demonstrate that PAC enables the lower frequency 
beta oscillations to modulate locally active interneurons and syn
chronously hold and release high-gamma activity in the different 
cycles of the slower oscillation. Such beta activities generated by 
high-level cortical areas therefore could harness the sensory-coding 
bottom-up signals, believed to be relayed using HG rhythms (6).

Top-down attention may recruit PAC for 
information transmission between cortical regions
Attention is controlled by a fronto-parietal network in human 
and nonhuman primates (33, 55). Recent studies have shown 
that top-down attention may enhance the cross-areal communi
cation to route the most behaviorally relevant information be
tween brain regions (11, 49, 50, 66). Other studies have revealed 
that PAC could facilitate this neuronal communication (7, 26, 53, 
67). Importantly, electrophysiological studies have shown that 
top-down attention modulates PAC. For instance, the strength of 
coupling between the delta/theta (1–8 Hz) phase and gamma 
(30–120 Hz) power is reduced by attention in both the extra-striate 
and primary visual cortex (31, 32). We suggested that this suppres
sion of delta-gamma PAC is linked to an enhancement of neural 
discrimination, suggestive of a role for PAC in modulating the 
neural representation of visual entities (32). Within the fronto- 
parietal network (rather the sensory areas), however another 
study showed that the coupling of theta phase (3–8 Hz) and beta 
(16–35 Hz)/gamma (>35 Hz) power is increased with the deploy
ment of attention (29); where the authors suggest a role of PAC 
in inter-areal information transmission. In line with this, the 
strength of synchrony between theta (4–12 Hz) oscillations in 
the mice hippocampus and the gamma rhythms (30–70 Hz) in 
the medial prefrontal cortex is associated with behavioral per
formance in a working memory task (68). These studies are in 
line with our observation that PAC (between beta and HG) has a fa
cilitatory role in high-level cognitive functions such as attention, 
presumably via contributing to the inter-areal communication 
(Fig. 7C). Together with our previous study (32), our results indi
cate that PAC may have different mechanistic roles at different 
frequencies; coupling between delta and gamma contributes to 
sensory representation, while coupling between beta and HG 
may improve information transmission.

Temporal dynamics of PAC might reflect the 
integration of sensory signals in time
Neurophysiological studies in humans and nonhuman primates 
have demonstrated that the neuronal activity in fronto-parietal 
areas subserves a cumulative process to guide behavior, tempor
ally integrating sensory information arriving from upstream sen
sory areas (68). These studies have identified a signal-dependent 
neural buildup within frontal and parietal areas during the 

sensory-integration process (68–70). Specifically in parietal areas, 
different components of neural signals, including firing-rates 
(71), beta-band oscillations (22–30 Hz) (69), and centroparietal 
potentials (70) have been shown to undergo ramp-like changes 
corresponding to accumulation of the incoming sensory signals. 
The temporal pattern of these signals exhibit a gradual 
build-to-threshold dynamic, which predicts the behavioral re
sponse speed based on the slope of the temporal dynamic 
(69, 70). Some studies suggested that top-down influences such 
as attention can selectively gate inputs from upstream visual areas 
(e.g. MT and V4) (36) onto parietal cortex for underlying integrative 
representation of sensory information (70, 72). Based on previous 
studies documenting a long-range network reverberation in the 
beta band (10–26) (12, 15, 69, 73), our results indicate that the 
bottom-up beta-coupled high-gamma (180–220 Hz) activity is tem
porally regulated between different areas; a regulation that is under 
the influence of fronto-parietal areas, via processes like attention. 
Specifically, our observation that the strength of PAC long before 
the change event, determines the behavioral reaction time, may 
be indicative of a delay where PAC needs to establish a communica
tion channel with downstream areas. In line with our previous ob
servation that LFPs integrate longer in local networks (74), our 
results support the idea that LFP-based PAC might be an aid to allow 
a behaviorally efficient integration of information, by providing a 
sustained communication channel with downstream areas.

In light of recent challenges to the model of flexible routing 
through persistent cortical rhythms, as highlighted by Vinck et al. 
(75), our interpretations of beta and high-gamma oscillations’ roles 
in the dorsal visual pathway merit reconsideration. Vinck et al. sug
gest that mechanisms like resonance and nonlinear integration 
could be crucial for cortical communication. While our data high
light the functional significance of PAC between beta and high- 
gamma oscillations in visuo-motor tasks, we must also consider 
the potential roles of aperiodic activities. Future research should in
vestigate these dynamics comprehensively to enhance our under
standing of neural communication and its implications for 
behavior. This integrated approach will refine our models and 
broaden the scope of our insights into cortical network functions.

Previously, we have suggested that a sensory area may consist 
of at least two distinct sub-networks; with a regulatory neural net
work gating the activity of the network of principal neurons. This 
gating is reflected by a coupling between the activities of the two 
networks (42). Our data confirm such gating influence of the local 
neuronal population activity in cortical areas processing visual in
formation on the activity at the level of single neurons. We find 
that this gating is key to the flexible routing of sensory information 
through the visuo-motor networks and show that the influence 
of the oscillatory population activity (in the beta range) on single 
neurons is predictive of the behavioral performance. Similarly, 
the strength of the PAC between beta and high-gamma frequencies 
predicts behavioral performance. These findings demonstrate a 
unidirectional influence of network-level neural dynamics on the 
activity of single neurons to selectively pass on sensory information 
to downstream areas based on the behavioral need.

Materials and methods
Research with nonhuman primates represents a small but indis
pensable component of neuroscience research. The scientists in 
this study are aware and are committed to the great responsibility 
they have in ensuring the best possible science with the least 
possible harm to any animals used in scientific research (76, 77). 
The animals were group-housed with other macaque monkeys 
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in facilities of the German Primate Center in Goettingen, Germany 
in accordance with all applicable German and European regula
tions, as well as the Ethics Guidelines of the German Primate 
Center. The facility provides the animals with an enriched envir
onment (incl. a multitude of toys and wooden structures (78, 
79)), natural as well as artificial light, exceeding the size require
ments of the European regulations, including access to outdoor 
conditions. We have established a comprehensive set of measures 
to ensure that the severity of our experimental procedures falls 
into the category of mild to moderate, according to the severity 
categorization of Annex VIII of the European Union’s directive 
2010/63/EU on the protection of animals used for scientific purposes 
(80). All animal procedures of this study have been approved by 
the responsible regional government office (Niedersaechsisches 
Landesamt fuer Verbraucherschutz und Lebensmittelsicherheit 
[LAVES]) under the permit numbers 33.42502/08-07.02 and 
33.14.42502-04-064/07. For details of the animals’ welfare and 
surgical procedures, see SI Appendix, Extended Methods. The de
tails of the animal experiments, data analyses and computational 
modeling are provided in SI Appendix, Extended Methods.
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