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Abstract

Biomolecular condensates form through a process termed phase separation and play diverse roles 

throughout the cell. Proteins that undergo phase separation often have disordered regions that can 

engage in weak, multivalent interactions; however, our understanding of the sequence grammar 

that defines which proteins phase separate is far from complete. Here, we show that proteins that 

display a high density of charged tracts within intrinsically disordered regions are likely to be 

constituents of electrostatically organized biomolecular condensates. We scored the human 

proteome using an algorithm termed ABTdensity that quantifies the density of charged tracts and 

observed that proteins with more charged tracts are enriched in particular Gene Ontology 

annotations and, based upon analysis of interaction networks, cluster into distinct biomolecular 

condensates. These results suggest that electrostatically-driven, multivalent interactions involving 

charged tracts within disordered regions serve to organize certain biomolecular condensates 

through phase separation.
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1. Introduction

Biological liquid-liquid phase separation is a process through which biomolecules demix 

from their cellular environment, creating dense liquid- or gel-like condensates.1,2 Analogous 

to how oil forms droplets in water, phase separation results in intracellular biomolecular 

condensates, often containing myriad protein and nucleic acid components, with unique 

chemical properties. One role for these compositionally complex condensates is to create 

microenvironments that facilitate and organize the biochemical reactions needed to sustain 

life.1 For this reason, many biomolecular condensates are also referred to as “membraneless 

organelles.” Different condensates can serve different purposes: stress granules, for example, 

are cytoplasmic bodies that sequester mRNA during cellular stress; nuclear speckles serve as 

RNA processing centers; and nucleoli mediate ribosome biogenesis and cellular stress 

sensing.1 While much is understood, there are many condensates whose functions is still 

incompletely defined.

Proteins undergo phase separation when self-interactions are energetically more favorable 

than interaction with solvent molecules. However, the formation of two separate phases 

(e.g., solvent-rich light phase and protein-rich dense phase) reduces the entropy of the 

system. This decrease in entropy is counter-balanced by favorable enthalpic interactions in 

the two phase system.2 Phase separation is driven by weak and transient, multivalent 

interactions within the dense phase which enable each individual component to transiently 

interact with several other component molecules simultaneously. Multivalency gives rise to 

networks of intermolecular contacts that organize the dense phase of condensates. These 

networks of non-covalently inter-linked molecules within liquid-like condensates create 

microenvironments that mediate a wide range of cellular processes.1

The multivalent interactions associated with phase separation can involve folded domains,3 

residues within intrinsically disordered protein regions (IDRs),1,4 or a combination of the 

two types of interactions. Folded domains in proteins known to phase separate often bind to 

short linear motifs (SLiMs) within the IDRs of other proteins. Multivalent display of these 

folded domains and of the disordered motifs enables phase separation.3 In addition to 

participating in interactions, folded domains commonly mediate oligomerization, which 

enhances the multivalency of the protein’s other domains and IDRs.5 Interactions between 

IDRs can be the primary drivers of protein phase separation, or they can contribute to 

multifarious interactions between IDRs and folded domains that, in combination, form 

intermolecular networks that underlie phase separation.1 As noted above, the interactions 

mediated by IDRs can involve SLiM/folded domain interactions,3 but are also known to 

involve pi electron-containing6 and charged amino acids.7 Pi electron-containing amino 

acids (e.g., tyrosine, phenylalanine, arginine, glutamine, and glutamine) experience pi-pi and 

pi-cation interactions and, if enriched within an IDR, can drive multivalent interactions and 

phase separation. In addition, electrostatic interactions between clustered blocks, or tracts, of 

oppositely charged amino acids (e.g., arginine and lysine, and glutamic acid and aspartic 

acid) within IDRs promote phase separation (Figure 1a and 1b).7 Termed complex 

coacervation,8 this mechanism of phase separation can occur between tracts of oppositely 

charged residues in different biomolecules (termed heterotypic phase separation; e.g., the 

polycationic C-terminal IDR of histone H1 and DNA9) or within the same polypeptide 
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[termed homotypic phase separation; e.g., acidic and basic tracts within the central IDR of 

Nucleophosmin (NPM1)7 ]. However, while the contributions of pi-pi and pi-cation 

interactions to the phase separation of proteins with IDRs have been extensively discussed,6 

the contributions of electrostatic interactions between oppositely charged tracts of amino 

acids have not been systematically evaluated. Experimental studies with charged residue 

scramble mutants of Ddx4 showed that the mere presence of charged residues is not 

sufficient to drive phase separation,10 and theoretical studies confirmed that rearranging 

Ddx4’s charged residues so that they are no longer in contiguous tracts disrupts electrostatic 

interactions driving phase separation.11 Accordingly, efforts to quantify the patterning of 

charged residues have introduced several sequence feature parameters such as the kappa 
parameter in the context of IDR ensembles 12 and the sequence charge decoration parameter 

in the context of phase separation.13 However, these parameters do not explicitly examine 

the occurrence of charged tracts, and their evaluation is from a physical rather than 

informatics perspective. Thus, using NPM1 as a model, we developed a novel sequence 

analysis algorithm, termed ABTscore, that quantifies the occurrence of tracts of acidic and 

basic residues in IDRs. Here we report the results of analysis of the human proteome using 

the ABTscore algorithm, Gene Ontology annotations, and protein interaction data. 

Ultimately, our results suggest that the density of charged tracts within IDRs can distinguish 

biomolecular condensates organized through electrostatic interactions. Proteins with a high 

density of charged tracts are enriched in particular gene ontology annotations, many of 

which already have ties to phase separation. Finally, an interaction network analysis revealed 

increased physical and genetic interactions amongst proteins with higher ABTdensity 

values. Clustering of these networks showed groups of proteins that appear to represent 

specific condensates. That these groups appear for proteins with a range of ABTvalues 

suggests the involvement of a client-scaffold model14 in the organization of electrostatically 

driven condensates.

2. Methods

2.1. ABTscore Algorithm

The ABTscore quantifies the presence of contiguous stretches of either acidic or basic 

residues, termed tracts, within IDRs. We focus on IDRs because the charged residues in a 

structured domain may or may not be available for intermolecular interaction and because 

IDRs have known roles in protein phase separation. We used IUPRED15 to calculate the per-

residue disorder score, which was smoothed by calculating the rolling average over a 

window of seven residues in length. IDRs for further analysis were selected as those 

stretches where the smoothened disorder propensity was continuously greater than 0.45. 

However, IDRs within seven residues of each other were combined and analyzed together. 

Finally, IDRs that were shorter than 30 residues were excluded from further analysis. While 

these parameters were not rigorously optimized, they were selected to ensure that disordered 

regions in two proteins experimentally known to undergo phase separation, NPM15 and 

NUP98,16 were identified by our algorithm to be disordered. Using these parameters, the 

occurrence of ~8 residues predicted to be structured would interrupt a predicted IDR.
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Within each IDR, we calculated an average net-charge-per-residue (NCPR) value for each 

residue using a window five residues in length, a window length used previously in analyses 

of electrostatic interactions using Flory-Huggins theory.12 Using the NCPR values, we 

identified charged tracts as stretches of residues wherein the averaged NCPR value was 

positive or negative without interruption. Within each IDR, the sum of the area (area = 

number of residues × average NCPR) of charge blocks with an area greater than 1 was 

calculated. This sum was multiplied by (0.6 + kappa)2. The kappa parameter was used to 

quantify the extent of separation between acidic and basic residues within IDRs. When 

acidic and basic residues are well mixed (e.g., DKDKDKDK), the kappa value is low; when 

the acidic and basic residues are separated (e.g., DDDDKKKK), the kappa value is high.12 

The rationale for this is that contiguous stretches of charged residues, as observed in NPM1, 

for example, are more likely to contribute to phase separation than stretches in which 

charged residues are dispersed. This procedure was repeated for each region of predicted 

disorder within a protein, and the ABTscore value was calculated as the sum of the score for 

each region. Finally, the ABTscore was normalized by the number of residues within a 

region of predicted disorder to calculate the ABTdensity (Figure 1c). The computational 

pipeline used to compute ABTscore and ABTdensity values for proteins was written in 

Python 3.7. Scripts are available upon request. All external modules except localcider17 are 

included in the Anaconda distribution, a standard library of python extensions 

(anaconda.com). IUPRED15 disorder information was computed locally using scripts 

reported in the publication.

2.2. Gene Ontology Enrichment Analysis

We determined ABTscore and ABTdensity values for all proteins in the non-redundant, 

reviewed human proteome [obtained from Uni-Prot (uniport.org)], accessed 7–11-2019). 

This analysis identified 10,946 proteins with regions of predicted disorder >30 residues, 

which were stratified according to ABTdensity values, as follows: Group 1 contained 

proteins with the top 5% of ABTdensity values; Group 2, those with scores ≤5% and >15%; 

Group 3, those with scores ≤15% and >30%; and Group 4, the remainder (Supplemental 

Data 1). Each protein Group was analyzed with respect to Gene Ontology18,19 process, 

function, and component enrichment using the PANTHER webtool.20 The results of 

enrichment analyses for proteins within each of the four Groups were obtained through 

comparison with the complete starting pool of disordered proteins (Groups 1–4). Fold 

enrichment, p-values and false discovery rates were reported by PANTHER20 according to 

the default settings. Data for each Gene Ontology term, enriched or not, was recorded. We 

considered terms with a 2-fold enrichment between the test Group and the complete 

disordered protein pool (Groups 1–4) at p ≤ 0.05 as enriched. To eliminate rare Gene 

Ontology terms, we prioritized annotations used more than 50 times in the disordered 

protein pool; other terms were excluded from analysis. If a large number of frequently used 

Gene Ontology terms were shown to be enriched in Group 1, the least indispensable terms 

according to the REVIGO web tool21 were selected for presentation in Figures. Input for 

REVIGO21 was the list of frequently used, enriched terms along with their fold enrichment. 

The full lists of terms and the enrichment results are found in Supplemental Data 2.
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2.3. Interaction Network Analysis

We used the string-db webserver (string-db.org) to conduct an analysis of genetic and 

physical interactions on the proteins in each Group 1–3 (Supplemental Data 1). Group 4 was 

excluded because its size (n=7673) was larger than that allowed by the string-db webserver. 

Uniprot accession codes were used in the multiple protein mode to generate network graphs 

of each Group. We evaluated the network connectivity for each Group by comparing the 

number of observed interactions to the number of expected interactions within the same 

number of random proteins. We then used the built-in k-means algorithm to group proteins 

into 5 clusters. We evaluated the four smaller clusters with respect to the enriched Gene 

Ontology18,19 processes, function and component annotations. The fifth, largest cluster was 

excluded because it appeared to group proteins only on the basis of their exclusion from 

other clusters rather than on enhanced interactions. Fold enrichment compared to the human 

proteome and false discovery rates were calculated through the PATHER webserver.20 The 

full lists of terms and enrichment data are found in Supplemental Data 3. The fold 

enrichment was compared to the human proteome here instead of the proteins with IDRs 

because the interaction enrichment analysis was performed with the human proteome as the 

background. In the case of process and component analyses, we only analyzed terms with 

more than 50 usages in the human proteome. Terms with the highest-fold enrichment and 

highest usages within a cluster informed the identification of a cluster to a potential phase 

separated condensate. However, this identification was not possible in every case.

3. Results

To understand the prevalence and distribution of tracts of charged residues within IDRs, we 

calculated ABTscore and ABTdensity values for the human proteome. Approximately 45% 

(9,470 of 20,416 proteins) of the proteins analyzed lacked a disordered region >30 residues 

in length, consistent with past observations.22 Among those proteins with at least one region 

of predicted disorder >30 residues in length, most had low ABTscores as described below in 

Table 1. However, because the ABTscore is a cumulative value, the set of proteins with the 

largest ABTscore values displayed very long regions of disorder (Figure 2a). Thus, we 

reconsidered the proteome in terms of ABTscore values normalized by the number of 

residues within the disordered regions that were analyzed, giving the ABTdensity value. The 

ABTdensity values followed a similar distribution to the ABTscore where most proteins had 

low scores.

Next, we narrowed our focus from the entire proteome to proteins within specific phase 

separated bodies. We hypothesized that membraneless organelles formed through 

electrostatic interactions would be enriched in proteins with high ABTscore and ABTdensity 

values. Compared to the ABTscore value distribution for the entire proteome, nucleolar 

proteins23 exhibited an enrichment in ABTscore (median=22) (Figure 2a) and ABTdensity 

values (median=0.14) (Figure 2b). However, proteins from other bodies known to be formed 

by phase separation driven by hydrophobic interactions, such as stress granules,24 exhibited 

a slight enrichment of ABTscore (median=14, p = 0.06) but not ABTdensity (median=0.07, 

p=0.25) values (Figure 2a and 2b). Similarly, proteins that interact with Nucleoporin 98 

(NUP98) [interactome from BioGRID (thebiogrid.org)], accessed 7–12-2019), a component 
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of the phase separated permeability barrier in the nuclear pore,25 may have been slightly 

enriched in their ABTscore (median=15, p=0.16) but not their ABTdensity (median=0.07, 

p=0.09) values (Figure 2b and 2c). NUP98 and other components of the nuclear pore’s 

permeability barrier condense through hydrophobic interactions driven by an FG-repeat-rich 

IDRs.25 The nucleolus, on the other hand, is the center for production of ribosomal RNA 

(rRNA) and, through phase separation with NPM1 (Figure 1a) and other proteins displaying 

tracts of charged residues (Figure 1b), ribosomal proteins (rProteins) are sequestered within 

the nucleolus for assembly with rRNA to form ribosomal subunits. The ribosomal 

components, rRNA and rProteins, are highly charged and are present at high density within 

the nucleolus. The enrichment of tracts of charged residues in other, non-ribosomal 

nucleolar proteins may afford electrostatic compatibility to the ribosomal components and 

promote formation of the nucleolus through liquid-liquid phase separation.

We hypothesized that, if the ABTdensity value is an indicator of electrostatically driven 

phase separation, proteins with high ABTdensity should be enriched for particular functions 

because they would be localized within similar types of condensates. To test this hypothesis, 

we performed a Gene Ontology18,19 enrichment analysis20 and found that within the top 5% 

of proteins ranked by their ABTdensity value (Group 1), 176 process annotations are 

enriched more than two-fold with p ≤ 0.05 (Supplemental Data 2). Of these, 40 were 

frequently used terms. Many of the enriched terms relate to ribosome biogenesis, RNA 

processing, DNA organization, transcription, and its regulation (Figure 3). Enrichment for 

many terms is proportional to ABTdensity. For example, proteins in Group 1 are 5.2-fold 

enriched in ribosome biogenesis annotations. Proteins in Group 2 exhibited a 3.1-fold 

enrichment and those in Group 4 were deficient in ribosome biogenesis annotations (Figure 

3). Enrichment analysis in terms of function and component annotations leads to 71 and 43 

enriched terms, respectively, for proteins in Group 1 (Supplemental Data 2); 18 and 13, 

respectively, of these enriched annotations are frequently used terms. Many of the enriched 

functional terms are associated with RNA and nucleosome binding (Supplemental Figure 

1a) while many enriched component terms relate to the nucleosome, RNA polymerase 

complex, and preribosome (Supplemental Figure 1b).

We additionally hypothesized that proteins with high ABTdensity values should have 

enriched physical and genetic interactions amongst themselves because they might function 

together within specific condensates. To test this idea, we generated interaction network 

graphs for Groups 1–3 where proteins are represented as nodes and interactions as edges 

(Figure 4, Supplemental Figure 2a and 2b). We found that proteins in each Group have 

enriched interactions as shown below in Table 2. Interestingly, the fold enrichment of 

interactions for each group is approximately proportional to mean ABTdensity value (Table 

1).

Finally, we determined whether proteins associated with specific condensates or 

membraneless organelles could be identified within these networks by clustering proteins 

within each of the Groups. Based on the Gene Ontology terms for the clusters in Group 1 

(Table 3), we propose that the 4 clusters (Figure 4) arise due to phase separation of proteins 

with high ABTdensity values within particular biomolecular condensates, including the 

nucleolus, nucleosomes or heterochromatin, transcription bodies, and protein degradation 
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(Figure 4 and Table 3). A similar analysis of the clusters from Group 2 led to suggestions of 

the associated biomolecular condensates but these associations were more ambiguous than 

observed with Group 1. Results for Group 3 were similarly ambiguous (Supplemental Table 

1 and Supplemental Figure 2). This trend that several clusters associated with proteins in 

Groups 1–3 appear to represent phase separated condensates suggests that a client-scaffold14 

model organizes electrostatically driven condensates where the proteins with high 

ABTdensity values drive phase separation and others associate with their lesser charge tract 

features.

4. Discussion

IDRs contribute many of the weak, multivalent interactions needed to drive protein phase 

separation;4 however, the role of electrostatic interactions has not been broadly explored. 

Our results show that the density of charged tracts within IDRs correlates with phase 

separation and, combined with proteomic data, can distinguish distinct condensates within 

the human proteome. An important further implication is that electrostatic forces may be 

important in the phase separation of proteins associated with the processes and condensates 

described in Figure 3.

Using ABTdensity values to segregate the proteome and perform a Gene Ontology 

enrichment analysis revealed the enrichment of many annotations (Figure 3). While the fact 

that several annotations are enriched supports correlation between ABTdensity values and 

phase separation, many of the enriched annotations are already known to be associated with 

phase separation. The known roles of phase separation in the nucleolus,26 RNA processing,
27 DNA organization,28 and transcription29 further support the conclusion that the Gene 

Ontology enrichments are due to phase separation and not some other mechanism dependent 

on the density of charged tracts. The enrichment of these specific terms also indicates that 

electrostatic interactions might be driving the formation of the condensates that organize 

these processes.

Additionally, that enrichment smoothly decreased across the four protein Groups (Figure 3) 

rather than being discontinuous suggests that there may not be a single cut-off value of the 

ABTdensity that indicates phase separation. Rather, proteins with the highest scores might 

serve as scaffolds that organize condensates while proteins with intermediate ABTdensity 

values associate as clients. Both clients and scaffolds are vital for condensate function, and 

the analysis of ABTdensity values may serve as a method to facilitate identification of 

clients where the known scaffolds already have high ABTdensity values. This client-scaffold 

model14 also explains why interaction fold enrichment was decreasing but still statistically 

enriched across Groups 1–3 (Table 2) and why clusters across Groups 1–3 can be recognized 

as biomolecular condensates, though with varying clarity (Table 3, Figure 4, Supplemental 

Figure 2 Supplemental Table 1).

We recognize that electrostatic forces are not the only contributing factor to the phase 

separation of IDRs within proteins. Studies showing that arginine to lysine mutations 

decrease phase separation propensity demonstrate that, even amongst charged residues, 

additional interactions, such as pi contacts, may be relevant to phase separation.6 Comparing 
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the results of Gene Ontology enrichment as a function of ABTdensity (Figure 3) to a similar 

analysis conducted based upon analysis of pi-contact based phase separation (using PScore 

values)6 reveals some overlapping but many distinct terms. Both scores show an enrichment 

for chromatin annotations and terms related to RNA processing. However, high PScore 

proteins show an enrichment in cytoskeleton terms while proteins with high ABTscores are 

deficient in these terms. Likewise, enriched terms related to ribosome biogenesis and DNA 

organization in proteins with high ABTscores were not reported as enriched for proteins 

with high PScores. These overlaps and distinctions suggest that while some phase separated 

bodies depend on both electrostatic and pi contacts, many phase separated bodies have a 

dominating mechanism.

Fin ally, the ABTdensity value is a sequence-based parameter, but its correlation to phase 

separation has roots in the physical chemistry of polypeptide chains. Computational studies 

have shown that the distribution of charged residues within a peptide influences its 

conformational properties. When charges are well mixed (no tracts, low ABTdensity value), 

peptides have larger radii of gyration. As charged residues are segregated into tracts (high 

ABTscore), the peptides become more compact as a result of intramolecular, electrostatic 

interactions.12 Links between intra- and inter-molecular interactions suggest that a similar 

compaction should allow proteins with a high ABTdensity value to form condensates. But, 

because the ABTdensity does not account for a balance between positive and negative 

charge tracts, it may be more useful for identifying proteins likely to be involved with a 

biomolecular condensate rather than individual proteins that can homotypically phase 

separate in vitro. While this study directly shows that the density of charged tracts in a 

disordered protein region correlates with its function, the mechanistic relationship between 

this correlation and phase separation can only inferred from bioinformatic studies. 

Ultimately, computational methods, such as those that use course-grained approaches to 

simulate peptides,13 are needed to test our hypothesis that proteins with higher ABTdensity 

values have increased phase separation propensity. Experimental studies of interest include 

investigating whether proteins with high ABTdensity values actually partition into the 

biomolecular condensates predicted by the clustering analysis (Figure 4 and Table 3) in an 

ABTdensity dependent manner.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Net charge per residue plots of NPM1 (a) and another nuclear protein, SURF6 (b). Regions 

of predicted disorder highlighted in purple. Highlighted charged tracts have area greater than 

1 Process diagram for the calculation of ABTdensity (c).
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Figure 2. 
Scatter plot showing correlation between ABTscore values (blue data points) and 

ABTdensity values (orange data points), and the number of disordered residues in each 

protein with one or more disordered regions (a). Enhanced box plots showing ABTscore (b) 

and ABTdensity (c) distributions for the whole proteome, nucleolar proteome, stress granule 

(SG) proteome, and NUP98 interactors. P values are reported when a protein set’s mean is 

different from the whole proteome’s at a p<0.05.
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Figure 3. 
Heatmap of the Gene Ontology enrichment analysis for processes annotations of proteins in 

Groups 1 through 4. Asterisks indicate significance at p≤0.05.
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Figure 4. 
Interaction network for Group 1. Nodes represent proteins and edges represent physical or 

genetic interactions. Orphan proteins are not shown. Each color represents clusters described 

in Table 3. Yellow, nucleolar proteins; green, proteins associated with nucleosomes and 

heterochromatin; cyan, proteins associated with transcription bodies; and blue, proteins 

associated with protein degradation.
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Table 1.

Table showing the ABTscore and ABTdensity value ranges for different percent ranges of proteins. The 

designated groups and number of proteins (N) are based on ABTdensity.

Protein Percent Range ABTscore Value Range ABTdensity Value Range Mean ABTdensity Value N

Top 5% (Group 1) 64–650 0.21–0.94 0.29 537

≤5% to <15% (Group 2) 36–54 0.12–0.21 0.21 1094

≤15% to < 30% (Group 3) 22–36 0.10–0.14 0.14 1642

Remaining (Group 4) 0–22 0–0.10 0.06 7673
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Table 2.

Table showing the results of the interaction enrichment analysis for each Group 1–3. Enrichment P-value

Group Observed Interactions Expected Interactions Interaction Fold
Enrichment (O/E)

Enrichment
P-value

1 (n=513) 2624 1289 2.04 <10−16

2 (n=1045) 7147 4700 1.52 <10−16

3 (n=1579) 10382 7021 1.22 <10−16
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Table 3.

Table showing Gene Ontology (GO) terms associated with proteins within each cluster from the interaction 

network of Group 1 (see Figure 4) and identification of the potential condensate each cluster represents. N is 

the number of proteins in each cluster.

Cluster N GO Process GO Function GO Component Condensate

Yellow 60 rRNA processing, ribosome 
biogenesis

snoRNA binding, translation 
initiation factor activity, RNA 
helicase activity

Nucleolus, Cajal body Nucleoli

Green 36 Histone, and chromatin 
binding, dimerization activity

Histone, and chromatin binding, 
dimerization activity

Nucleosome, 
heterochromatin, PML body,

Nucleosome and 
heterochromatin

Cyan 34 RNA polymerase activity, 
transcription initiation activity

RNA polymerase activity, 
transcription initiation activity

RNA polymerase complex Transcription bodies

Blue 18 Ubiquitin, ubiquitin-like, 
protein transferase activity

Ubiquitin, ubiquitin-like, protein 
transferase activity

Ubiquitin ligase complex, 
transferase complex

Protein Degradation
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