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Cigarette smoking is the leading cause of preventable disease and
death in the United States, with more persons dying from nicotine
addiction than any other preventable cause of death. Even though
smoking cessation incurs multiple health benefits, the abstinence
rate remains low with current medications. Here we show that the
AMP-activated protein kinase (AMPK) pathway in the hippocam-
pus is activated following chronic nicotine use, an effect that is
rapidly reversed by nicotine withdrawal. Increasing pAMPK levels
and, consequently, downstream AMPK signaling pharmacologi-
cally attenuate anxiety-like behavior following nicotine with-
drawal. We show that metformin, a known AMPK activator in
the periphery, reduces withdrawal symptoms through a mecha-
nism dependent on the presence of the AMPKα subunits within
the hippocampus. This study provides evidence of a direct effect of
AMPKmodulation on nicotine withdrawal symptoms and suggests
central AMPK activation as a therapeutic target for smoking cessation.
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Cigarette smoking constitutes a major health burden in the
United States, with smoking accounting for more than

500,000 deaths annually nationwide (1). Despite the more than
30 reports issued by the Surgeon General and multiple public
health campaigns addressing the negative impact of smoking on
the health and well-being of Americans, the cessation rate re-
mains modest (1, 2). Multiple obstacles prevent successful ces-
sation, including irritability, anger, depressed mood, anxiety, and
difficulty concentrating. There are currently three Food and
Drug Administration-approved therapies used to target the
symptoms of withdrawal: nicotine replacement therapy, a nico-
tinic acetylcholine receptor (nAChR) partial agonist (vareni-
cline/Chantix), and an antidepressant (bupropion/Zyban) (3).
However, although 70% of smokers express a desire to quit,
current therapies achieve only a 15% success rate (1, 4).
In cigarette smokers, nicotine has been shown to reduce

anxiety. Given the lack of studies on the effects of nicotine in
nonsmokers, it is unclear whether nicotine reduces anxiety in the
absence of withdrawal; however, numerous studies in rodent
models have demonstrated dose-dependent anxiolytic effects of
nicotine in drug-naïve subjects (5, 6). There is considerable ev-
idence that withdrawal-associated anxiety contributes to poor
adherence to smoking cessation treatments (7, 8) as well as re-
lapse rates, with many smokers experiencing anxiety symptoms
during acute abstinence periods (7, 9). A recent functional im-
aging study in smokers correlated affect with aberrant activation
in the hippocampus during smoking cue presentation (10), and
hippocampal volume has been correlated with successful quit
attempts (11). Thus, the hippocampus plays an important role in
the anxiolytic effects of nicotine and nicotine-withdrawal asso-
ciated negative effects in both humans and animal models.
We have previously shown that the transcription factor CREB

is required for nicotine reward (12), and through genomic analyses
have identified the AMPK pathway as a CREB target following
chronic nicotine exposure and withdrawal (13). We discovered

that within the hippocampus, CREB binding is enriched in a
number of pathways (Ingenuity Pathway Analysis; complete gene
list in ref. 13). We found that in the category of “cell-to-cell sig-
naling, carbohydrate metabolism, lipid metabolism,” CREB binds
to the cis-regulatory elements in 12 of 24 members of the energy-
sensory AMP-activated protein kinase (AMPK) pathway, as listed
in the Reactome Database (Table 1). These include several sub-
units of AMPK itself (the genes encoding the β1, β2, γ1, and
γ2 subunits) and the upstream regulator of AMPK, Liver Kinase
B1 (LKB1; also known as Serine/Threonine Kinase 11).
Although the role of AMPK in peripheral tissues is well established,

few studies have focused on its effect within the central nervous system,
and none have examined its relation to nicotine dependence, outside of
the hypothalamus (14). Of importance, recent studies illustrate that
AMPK signaling is functionally linked to behaviors, including
cognition and negative affect (15–17), that contribute to relapse
during nicotine withdrawal. Therefore, we wanted to determine
whether controlling AMPK activity during nicotine withdrawal
could ameliorate the affective symptoms of nicotine withdrawal.

Results
First, we evaluated the effects of chronic nicotine and 24-h
withdrawal on AMPK pathway activation in the brain. Nicotine
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treatment caused a significant activation of this pathway in the
hippocampus, as shown by the elevated pAMPK/AMPK ratio
and the increased phosphorylation of the AMPK target acetyl-
CoA carboxylase (ACC) (Fig. 1 A and B). Of interest, this is the
sole brain region examined that shows this pattern of pAMPK
activity (Fig. S1). Next, we determined whether pharmacologic
activation of the AMPK pathway could ameliorate nicotine
withdrawal symptoms. To this end, we treated mice with 5-
aminoimidazole-4-carboxamide ribonucleotide (AICAR), an al-
losteric activator of AMPK (18). AICAR caused a significant
activation of the AMPK pathway in the hippocampus, indicating
that it crosses the blood-brain barrier (Fig. 1C). Nicotine with-
drawal causes anxiety-like behaviors in mice, which can be
evaluated using two behavioral tests: novelty-induced hypophagia

(NIH) and marble-burying (MB). A reduction in anxiety-like be-
havior was demonstrated by a reduced latency to feed in the NIH
test and a reduced number of marbles buried in the MB test. In
both assays, AICAR treatment completely abolished the effects of
nicotine withdrawal (Fig. 1 D and E).
Next, we used the Food and Drug Administration-approved

diabetes drug metformin, which targets AMPK activation in the
liver (19, 20). One week of systemic metformin pretreatment
resulted in activation of the AMPK pathway following nicotine
withdrawal compared with saline-pretreated animals (Fig. 2 A–
C). Strikingly, systemic metformin also completely prevented
anxiety-like behaviors caused by nicotine withdrawal (Fig. 2 D
and E) at a dose that did not impact body weight, food con-
sumption, or glucose levels under both fed and fasted conditions
(Fig. S2). Of note, both AICAR (Fig. 1D) and metformin (Fig.
2D) reduced the latency to feed in the NIH test in naïve mice,
suggesting that activation of AMPK may provide a novel target
for general anxiolytic activity as well as anxiety induced from
nicotine withdrawal.
Metformin is known to have multiple peripheral targets, in-

cluding liver and skeletal muscle, and activation of the AMPK
pathway in these organs might indirectly contribute to behaviors
observed following withdrawal from nicotine. To determine
whether metformin acts centrally to improve nicotine withdrawal
symptoms or whether peripheral effects contribute, we implanted
mice with osmotic minipumps connected to intracerebroventricular
(i.c.v.) guide cannulas to centrally deliver either metformin (50
μg/d) or saline for 1 wk before withdrawal. This dose of i.c.v.
metformin was chosen because it does not alter peripheral glu-
cose metabolism (21) (Fig. S2). As expected, 7 d of i.c.v. met-
formin caused AMPK activation in the hippocampus, but not in
the liver (Fig. 3 A and B). Importantly, centrally administered

Table 1. Genes of the AMPK pathway bound by CREB in the
mouse hippocampus

Gene symbol Gene name

Acacb Acetyl-CoA carboxylase beta
Acsl1 Acyl-CoA synthetase
Cab39L Calcium-binding protein 39
Ppm1a Protein phosphatase 1A
Prkab1 AMPK, beta 1 subunit
Prkab2 AMPK, beta 2 subunit
Prkag1 AMPK, gamma 1 subunit
Prkag2 AMPK, gamma 2 subunit
Rheb Ras homolog enriched in brain
Rptor Raptor, regulator of MTO
Stk11 Serine/threonine kinase 11
Tsc1 Tuberous sclerosis 1

Fig. 1. The AMPK activator AICAR eliminates anxiety-like behaviors following nicotine withdrawal. (A and B) Nicotine causes activation of the AMPK
pathway in the hippocampus, as indicated by representative Western blot analyses of AMPK and pAMPK (n = 9) and ACC and pACC tissue (n = 3). *P < 0.05;
***P < 0.001. (C–E) Chronic AICAR administration increases pAMPK level in the hippocampus and reduces anxiety-like behavior at 24 h after cessation of
nicotine. (C) Systemic AICAR treatment results in significant activation of the AMPK pathway in the hippocampus, indicating that the drug crosses the blood-
brain barrier (n = 4; P < 0.05). (D and E) Anxiety-like behavior precipitated by nicotine withdrawal is reduced by AICAR. (D) NIH was tested at 24 h after
nicotine withdrawal. AICAR before nicotine withdrawal prevented the increase in latency to feed observed in saline-treated mice undergoing 24-h with-
drawal. Bars represent mean latency ± SEM (n = 7–13). *P < 0.05; **P < 0.01. (E) The MB test was performed at 48 h after nicotine withdrawal. Data represent
the mean ± SEM number of marbles buried over 15 min (n = 7–8). **P < 0.01.
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metformin completely prevented nicotine withdrawal-induced
anxiety behaviors, as shown by a reduced latency to consume
novel food (Fig. 3C). These data strongly support the notion that
central, not peripheral, actions of metformin ameliorate nicotine
withdrawal symptoms.
Metformin has been shown to activate a variety of cellular

targets in addition to AMPK (19, 20, 22–24). To confirm that
AMPK is the relevant target of metformin-mediated reduction
of anxiety-like behaviors following nicotine withdrawal, we used
Ampkα1loxP/loxP;Ampkα2loxP/loxP mice harboring conditional al-
leles for both α-subunits of AMPK (AMPKαloxP/loxP hereinafter).
An adeno-associated virus (AAV) encoding Cre recombinase
(AAV-Cre) was microinjected directly into the dorsal and ventral

hippocampi of AMPKαloxP/loxP mice, generating site-specific de-
letion of AMPKα (Fig. 4A). To assess the anatomic and tem-
poral resolution of our injection coordinates, AAV-GFP (green
fluorescence protein) was injected into the hippocampi of
AMPKαloxP/loxP mice, and its presence in the expected location
was confirmed 8 wk later through GFP immunohistochemistry
(Fig. 4A). Western blot analysis confirmed that total levels of
AMPKα were decreased in the hippocampi at 8 wk after AAV-
Cre injection in AMPKαloxP/loxP mice, but remained unchanged in
other brain regions, such as the cortex (Fig. 4B). Furthermore,
levels of phospho-acetyl CoA carboxylase (pACC) were also
reduced in the hippocampi, demonstrating a functional reduction
in the pathway (Fig. 4B).

Fig. 2. Systemically administered metformin increases hippocampal pAMPK and reduces anxiety-like behavior during nicotine withdrawal. (A–C) Western
blot analysis of hippocampal AMPK, pAMPK, ACC, and pACC levels at 24 h after nicotine withdrawal in the presence and absence of i.p. metformin (n = 6–7).
**P < 0.01; ***P < 0.001. (D) Mice chronically treated with nicotine exhibited a reduced latency to approach a palatable food in a novel environment
compared with mice at 24 h after nicotine withdrawal. Metformin reverses the increase in anxiety-like behavior caused by nicotine withdrawal. Bars represent
mean latency ± SEM (n = 13–15). *P < 0.05; **P < 0.01. (E) Metformin treatment reduced anxiety-like behavior as measured by the number of marbles buried.
Data represent the mean ± SEM number of marbles buried over 15 min (n = 7–16). *P < 0.05.

Fig. 3. Intracerebroventricular (i.c.v.) metformin activates hippocampal AMPK levels and reduces nicotine withdrawal symptoms. (A and B) Western blot
analysis demonstrates increased hippocampal (A) but not hepatic (B) pAMPK levels following 1 wk of i.c.v. administration of metformin compared with mice
given i.c.v. saline following nicotine withdrawal (n = 4). *P < 0.05. (C) Metformin given i.c.v. prevents anxiety-like withdrawal symptoms precipitated by
nicotine withdrawal as determined by the NIH test, as demonstrated by a reduced latency to feed at 24 h after withdrawal compared with mice administered
saline. Bars represent mean latency ± SEM (n = 7–8), *P < 0.05; ***P < 0.001.
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To assess anxiety-like behaviors, mice were trained in the NIH
paradigm at 4 wk after intrahippocampal injection of AAV-Cre
and tested at 8 wk after viral injection to ensure full AMPK ab-
lation (Fig. 4C). Mice were treated with nicotine and metformin
for 1 wk, followed by 24 h of nicotine withdrawal before behav-
ioral testing. As shown in Fig. 4D, the AMPK-deficient mice
treated with metformin showed a dramatic and significant in-
crease in the latency to feed on the novel food compared with the
nicotine-treated mice, indicating that the positive effects of met-
formin on nicotine withdrawal-induced anxiety are mediated, at
least in large part, by the presence of AMPK in the hippocampus.

Discussion
Multiple preclinical and clinical studies have explored the in-
fluence of targeting nicotinic acetylcholine receptors (nAChRs)
for smoking cessation therapies. However, the limited success
and adverse side effects of these aids call for investigation be-
yond targeting nAChRs to abrogate nicotine withdrawal symp-
toms, such as negative affect. Here we have used pharmacologic,
behavioral, and genetic approaches to identify central AMPK
activation as a potential novel therapeutic approach for nicotine
cessation therapy.
Withdrawal from nicotine produces physiological, affective, and

cognitive effects (25, 26). The negative affect experienced during
withdrawal is directly associated with early smoking relapse, with
successful quitters exhibiting a greater positive affect compared
with those who relapse (27). Smokers also report that one of their
top concerns when considering the consequences of abstinence is
the loss of nicotine as a tool to cope with negative affect (28).
To mechanistically examine the anxiogenic effect of nicotine

withdrawal in preclinical models, we used behavioral paradigms
that reliably demonstrate the anxiety impairments observed in
humans following withdrawal. The NIH and MB tests are two
validated tests for evaluating anxiety-like behavior in rodents.
Chronic nicotine use reduces anxiety-like behavior, as measured by
a decreased latency to eat a palatable food in a novel environment
in the NIH test. In contrast, latency is significantly increased fol-
lowing nicotine withdrawal (13, 29, 30). Similarly, chronic nicotine

use decreases anxiety-like behavior as measured by a reduction in
the number of marbles buried in the MB test, while withdrawal
increases the number of marbles buried in this test (6, 29).
Based on our findings demonstrating the preclinical efficacy of

metformin in alleviating anxiety-like behavior following nicotine
withdrawal, we propose that AMPK activation in the brain via
metformin can be repurposed as a novel pharmacotherapy for
nicotine cessation. The proven preclinical efficacy of metformin in
alleviating withdrawal symptoms along with its well-established
safety profile for diabetes treatment should encourage investiga-
tors to translate these findings into future clinical trials for higher
continuous abstinence rates in smokers, with the added benefit of
normalizing glycemic control.

Materials and Methods
Study Design. The aim of this study was to examine the impact of AMPK
activation on mediating anxiety-like behavior and cognition in preclinical
models of nicotine withdrawal. To this end, mouse studies were conducted in
which mice received treatment with an osmotic minipump containing saline
or nicotine (18 mg/kg/d) for 2 wk. Spontaneous withdrawal from nicotine
occurred following physical removal of the minipump. All behavioral re-
sponses were measured at 24–48 h after nicotine withdrawal, because the
first 2 d of withdrawal are associated with the highest rate of relapse in
humans (31) and with peak affective withdrawal symptoms in mice (32).
AMPK activators (AICAR and metformin) were chronically administered be-
fore nicotine cessation, and behavioral outcomes were evaluated using two
behavioral paradigms, the NIH and MB tests. Experimenters blind to treat-
ment group assignment assessed two behavioral endpoints: latency to
consume (NIH) and number of marbles buried (MB). Western blot analysis
was used to quantify protein levels of AMPK within hippocampal tissue
following AICAR or metformin administration. Finally, we used an AAV
vector to deliver Cre recombinase into AMPKαloxP/loxP mice harboring a con-
ditional allele for AMPK to determine whether AMPK is necessary for medi-
ating the anxiolytic effects of metformin during withdrawal from nicotine.

Animals. Male 129SvEv; C57BL/6J F1 hybrid mice age 6–8 wk were obtained
from The Jackson Laboratory and used in the behavioral paradigm tests,
i.c.v. drug experiments, and molecular studies. All AAV-Cre experiments
were conducted in previously derived and described AMPKαloxP/loxP mice
(AMPKα1loxP/loxP mice previously crossed with AMPKα2loxP/loxP mice) (23, 33)

Fig. 4. Anxiolytic effects of metformin during nicotine withdrawal are dependent on hippocampal AMPKα. (A) Representative GFP expression in the hip-
pocampus at 10× magnification. From left to right: GFP, DAPI, merge. (B) Western blot analysis of AMPKα and pACC in the hippocampus and cortex of AAV-
Cre–treated AMPKαloxP/loxP mice indicating the specificity of gene ablation. (C) Overview of the experimental paradigm for the NIH test. Here 2-mo-old
AMPKαloxP/loxP mice were injected stereotactically with AAV-Cre. Four weeks later, the mice were trained for the NIH test and treated with chronic nicotine,
and NIH behavior was examined at 24 h after withdrawal from nicotine. (D) Chronic metformin treatment does not reduce anxiety in AMPKαloxP/loxP mice
injected with AAV-Cre, as evidenced by an increased latency to consume a palatable food in a novel environment at 24 h after withdrawal compared with
nicotine-treated AMPKαloxP/loxP mice injected with AAV-Cre. Bars represent mean latency ± SEM (n = 6–7). **P < 0.01.
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from the Viollet laboratory (Institut Cochin, INSERM). All mice were
maintained on a standard light cycle (lights on between 0600 and
1800 h) and had free access to food and water. All experimental pro-
cedures were approved by the University of Pennsylvania’s Animal Care
and Use Committee and were conducted in compliance with the Na-
tional Institute of Health’s Guide for the Care and Use of Laboratory
Animals (34).

Nicotine Delivery, Dose, and Withdrawal. Mice were anesthetized with an
isoflurane/oxygenmixture (1–3%), and osmotic minipumps (model 1002; Alzet)
were placed s.c. using aseptic surgery techniques. (−)-Nicotine hydrogen tar-
trate salt (MP Biomedicals) was dissolved in sterile 0.85% saline and adminis-
tered via the osmotic minipumps at a dose of 18 mg/kg/d (dose expressed as
freebase weight) for 2 wk. Control (saline-treated) mice received osmotic
minipumps filled with 0.85% saline. Following treatment, the minipumps were
surgically removed from one-half of the mice receiving saline and the mice
treated chronically with nicotine to initiate spontaneous withdrawal.

In Vivo Drug Treatments. Metformin (Spectrum) was dissolved in saline and
administered at 250 mg/kg by i.p. injection. AICAR (Toronto Research
Chemicals) was dissolved in saline and administered at 500 mg/kg by i.p.
injection. Vehicle was 0.85% saline administered by i.p. injection. All injec-
tions were started at 7 d before withdrawal from nicotine and were given
once daily between 0900 and 1000 hours.

Intracerebroventricular Administration of Metformin. Osmotic minipumps
(model 1002; Alzet) for i.c.v. delivery were filled with either 0.85% saline or
metformin (50 μg/d), connected to silicone tubing (CT24SR; PlasticsOne), push-fit
into guide cannula (3300/SP; PlasticsOne), and allowed to equilibrate to 37 °C
overnight. One week after mice were implanted with nicotine minipumps, mice
were again anesthetized with vaporized isoflurane. The minipump was inserted
contralateral to the nicotine minipump, and the guide cannula was placed above
the right lateral ventricle (anteroposterior, −0.8 mm; mediolateral, +1.5 mm) and
fixed with dental cement. The nicotine minipumps were removed at 6 d after the
surgery, and behavioral testing was performed at 24 h after withdrawal.

Western Blot Analysis. Protein analysis was performed as described previously
(35, 36). In brief, tissue was lysed in 50 mM Tris (pH 7.4), 150 mM NaCl, 1%
Triton X-100, 15% glycerol, Phosphatase Inhibitor Mixtures 2 and 3 (Sigma-
Aldrich), and Protease Inhibitor Mixtures 1 and 2 (Roche). Equal amounts of
protein were run on NuPage 4–12% Bis-Tris gels (Invitrogen). Following SDS/
PAGE and blocking, membranes were incubated overnight at 4 °C with one
of the following antibodies: AMPK, phospho-AMPKα, ACC, phospho-ACC, or
GAPDH (Cell Signaling Technology). Anti-rabbit Ig horseradish peroxidase-
conjugated secondary antibody (Jackson ImmunoResearch Laboratories) and
SuperSignal West Pico chemiluminescence reagent (Thermo Fisher Scientific)
were used for detection. Protein quantification was performed using ImageJ
software according to the provided protocol. Densities were calculated for
each sample and analyzed across conditions.

Viruses and Microinjections. The packaging, purification, and determination of
vector titers for the AAVs AAV9.CMV.PI.eGFp.WPRE.bGH and AAV9.CMV.PI.-
CRE.rB were performed at the University of Pennsylvania Vector Core. Injection
titers and stereotaxic coordinateswere determined as described previously (37).
AAV-Cre or AAV-GFP virus was stereotaxically microinjected into the dorsal
and ventral hippocampi (anteroposterior −2.1, lateral ± 1.4, dorsoventral −2.0
and anteroposterior −2.9, lateral ± 3.0, dorsoventral −3.8, respectively) at a
final titer of 6.534 × 1010 gc/μL over 20 min using a pressure-injection system
(KD Scientific) at 0.1 μL/min, 5 min per coordinate. Behavioral testing began at
8 wk after surgery to allow time for recovery and viral expression.

Marble Burying. The MB test was conducted as described previously (6). After
1 h of acclimation in the room in which MB testing was performed, the mice
were placed in a small cage (26 × 20 × 14 cm) with 5-cm deep bedding, on
top of which were placed 20 equally distributed marbles. The mice were left
undisturbed for 15 min. After 15 min, an investigator blinded to the treat-
ment group returned the mouse to its home cage and counted the number
of marbles that were buried in bedding (3/4 or more coverage).

Novelty-Induced Hypophagia. The NIH test was conducted as described pre-
viously (13) with mice housed in groups of two. The mice were placed in a
testing room with dividers separating their home cages and allowed to ac-
climate for 1 h before presentation of a palatable food (peanut butter chips;
Nestle). Training was repeated over 10 d with latency to consume the food
measured on days 4–10. Following training, mice were randomly assigned to
a treatment group, and the osmotic minipumps were implanted. Following
treatment, latency to consume peanut butter chips over a 15-min period was
measured in the home cage as a baseline, and then measured again 24 h
later in a novel environment. The novel environment consisted of a standard
cage with no bedding placed within a white box with bright light (ap-
proximately 2,150 Lux) and a novel smell (1:10 Pine Sol).

Statistical Analysis. All statistical analyses were performed using GraphPad
Prism 5.0 (GraphPad Software), and all data are presented as mean ± SEM.
Comparisons between two groups (e.g., Western blot quantification) were
done using Student’s t test. Comparisons among multiple groups at one time
point (e.g., MB test) were done using one-way ANOVA. Finally, comparisons
between multiple groups at different time points (e.g., NIH test) were per-
formed using repeated-measures two-way ANOVA to determine significant
differences, with time (home day, novel day) as the within, repeated-mea-
sures independent factor and drug treatment as the dependent variable.
The threshold for statistical significance was set at P < 0.05, and Bonferroni’s
multiple-comparison test was used for all post hoc analyses.
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