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Abstract

Objective: To characterize the CSF cytokine profile in chronic inflammatory

demyelinating polyneuropathy (CIDP) patients with IgG4 anti-neurofascin 155

(NF155) antibodies (NF155+ CIDP) or those lacking anti-NF155 antibodies

(NF155� CIDP). Methods: Twenty-eight CSF cytokines/chemokines/growth fac-

tors were measured by multiplexed fluorescent immunoassay in 35 patients

with NF155+ CIDP, 36 with NF155� CIDP, and 28 with non-inflammatory

neurological disease (NIND). Results: CSF CXCL8/IL-8, IL-13, TNF-a, CCL11/
eotaxin, CCL2/MCP-1, and IFN-c were significantly higher, while IL-1b, IL-1ra,
and G-CSF were lower, in NF155+ CIDP than in NIND. Compared with

NF155� CIDP, CXCL8/IL-8 and IL-13 were significantly higher, and IL-1b, IL-
1ra, and IL-6 were lower, in NF155+ CIDP. CXCL8/IL-8, IL-13, CCL11/eotaxin,

CXCL10/IP-10, CCL3/MIP-1a, CCL4/MIP-1b, and TNF-a levels were positively

correlated with markedly elevated CSF protein, while IL-13, CCL11/eotaxin,

and IL-17 levels were positively correlated with increased CSF cell counts. IL-

13, CXCL8/IL-8, CCL4/MIP-1b, CCL3/MIP-1a, and CCL5/RANTES were

decreased by combined immunotherapies in nine NF155+ CIDP patients exam-

ined longitudinally. By contrast, NF155� CIDP had significantly increased IFN-

c compared with NIND, and exhibited positive correlations of IFN-c, CXCL10/
IP-10, and CXCL8/IL-8 with CSF protein. Canonical discriminant analysis of

cytokines/chemokines revealed that NF155+ and NF155� CIDP were separable,

and that IL-4, IL-10, and IL-13 were the three most significant discriminators.

Interpretation: Intrathecal upregulation of type 2 helper T (Th2) cell cytokines

is characteristic of IgG4 NF155+ CIDP, while type 1 helper T cell cytokines are

increased in CIDP regardless of the presence or absence of anti-NF155 antibod-

ies, suggesting that overproduction of Th2 cell cytokines is unique to NF155+

CIDP.

Introduction

Chronic inflammatory demyelinating polyneuropathy

(CIDP) is an acquired immune-mediated disease involv-

ing the peripheral nerves. Both cell-mediated and

humoral immunity are thought to play pathogenic roles

in CIDP.1 However, the precise mechanisms of CIDP

remain to be elucidated, mainly because CIDP encom-

passes etiologically heterogeneous conditions. Recently,

subsets of CIDP patients were reported to harbor
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autoantibodies against paranodal proteins, such as neuro-

fascin 155 (NF155),2–5 contactin-1 (CNTN1),6,7 and con-

tactin-associated protein 1 (CASPR1).8 Each of these

autoantibodies is associated with unique features.2–8 How-

ever, it remains unclear why each paranodal autoantibody

produces a specific manifestation, given that they bind to

the same paranodal complex.

Anti-NF155 antibodies found in a fraction of CIDP

patients mainly belong to the immunoglobulin G (IgG)4

subclass.3 IgG4 anti-NF155 antibody-positive CIDP

(NF155+ CIDP) demonstrates distinctive features, includ-

ing younger age at onset, higher frequencies of drop foot,

sensory ataxia, and tremor, marked prolongation of distal

and F wave latency, extremely high cerebrospinal fluid

(CSF) protein amounts, and marked hypertrophy of nerve

roots on magnetic resonance neurography.2,3,5 However,

biopsied sural nerves from IgG4 NF155+ CIDP patients

lack inflammation and onion bulb formation, with only

subperineurial edema and minimal paranodal demyelina-

tion.3 By electron microscopy, detachment of terminal

myelin loops is characteristic for NF155+ CIDP, but not

for anti-NF155 antibody-negative CIDP (NF155�

CIDP).9,10

IgG4 cannot activate complement because it does not

bind C1q.11 In vivo, IgG4 is monovalent and bispecific

because of half molecular exchange, and does not internal-

ize target antigens.11 Therefore, IgG4 autoantibodies only

block protein–protein interactions,11 which explains why

sural nerve pathology only presents paranodal terminal

loop detachment in the absence of inflammation.9,10

Restoration of nerve conduction by plasma exchange with

decreased anti-NF155 antibody titers is compatible with

the blocking antibody action of IgG4.12 By contrast, exten-

sive proximal nerve hypertrophy and pronounced CSF pro-

tein elevation, suggesting severe inflammation and/or

edema of nerve roots, is unique to this condition,3 but is

difficult to explain solely by IgG4 antibody functions.

Recently, a strong association of certain human leukocyte

antigen (HLA) class II alleles with NF155+ CIDP was

reported in a European series,13 suggesting HLA class II-re-

stricted T-cell involvement. These observations prompted

us to clarify the CSF cytokine profile in patients with IgG4

NF155+ CIDP to elucidate the mechanism.

Subjects and Methods

Subjects

Thirty-five consecutive IgG4 NF155+ CIDP and 36

NF155� CIDP patients were enrolled in the present study.

None of the NF155+ or NF155� CIDP patients had anti-

NF186 or anti-CNTN1 antibodies in sera. Among these

patients, 44 were thoroughly examined in the Department

of Neurology at Kyushu University Hospital between 01

January 2001 and 31 May 2018, while the other patients

were referred to our department for an anti-NF155 anti-

body assay between 1 November 2014 and 31 March

2018. All CIDP patients fulfilled the definite electrodiag-

nostic criteria of the European Federation of Neurological

Societies/Peripheral Nerve Society for the diagnosis of

CIDP,14 except for one NF155+ CIDP patient who

showed no evoked potentials on nerve conduction stud-

ies. Clinical features of 11 NF155+ CIDP patients and

biopsied sural nerve pathologies of 3 NF155+ CIDP

patients showing subperineurial edema without inflamma-

tory cell infiltrates were previously reported elsewhere.3,10

Hughes functional grading15 was used to evaluate clinical

severity. Twenty-two IgG4 NF155+ CIDP and 23 NF155�

CIDP patients had received no treatment at the time of

lumbar puncture (LP). Furthermore, two or more CSF

samples at different time points were available in nine

NF155+ CIDP patients. For controls, 28 other non-in-

flammatory neurological disease (NIND) patients were

enrolled, including 12 with amyotrophic lateral sclerosis,

five with spondylosis, four with normal pressure hydro-

cephalus, three with spinocerebellar ataxia, and one each

with metabolic neuropathy, hyperthyroidism, psychoso-

matic disorder, or cerebral venous malformations. The

research protocols for the study were approved by the

Kyushu University Ethics Committee. An opt-out recruit-

ment method was adopted.

Sample collection

CSF samples were obtained by non-traumatic LP. None

of the subjects for CSF analysis had any ongoing recent

infection at the time of LP. The periods (disease dura-

tions) from onset of symptoms to CSF sample collection

were comparable between NF155+ and NF155� CIDP

patients (Table 1). CSF samples were immediately cen-

trifuged at 800 rpm (100g) at 4°C for 5 min, and the

supernatants were stored at �80°C until analysis.

Anti-NF155, anti-NF186, and anti-CNTN1
antibodies and IgG subclass analysis

IgG and IgG4 anti-NF155 antibodies as well as anti-

NF186 and anti-CNTN1 antibodies in sera were measured

by flow cytometry using human embryonic kidney 293

cell lines stably expressing human NF155, NF186, or

CNTN1 as described previously.3,7

Multiplexed fluorescent immunoassay

The concentrations of the following 28 cytokines/

chemokines/growth factors (Table S1) in the liquid phase
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of CSF were measured by multiplexed fluorescent bead-

based immunoassay as described previously:16–19 pleio-

tropic cytokines, interleukin (IL)-1b, IL-6, tumor necro-

sis factor (TNF)-a, and IL-7; type 1 helper T cell

(Th1)-related cytokines, IL-2, IL-12 (p70), IL-15, and

interferon (IFN)-c; type 2 helper T cell (Th2)-related

cytokines, IL-4, IL-5, IL-9, IL-10, and IL-13; type 17

helper T cell (Th17)-related cytokine, IL-17; follicular

helper T (Tfh)-related cytokine, IL-21; chemokines, C-

X-C motif ligand (CXCL)8/IL-8, CCL11/eotaxin,

CXCL10/interferon gamma-inducible protein (IP)-10,

CCL2/monocyte chemoattractant protein (MCP)-1,

CCL3/macrophage inflammatory protein (MIP)-1a,
CCL4/MIP-1b, and CCL5/regulated upon activation,

normal T cell expressed and secreted (RANTES);

growth factors, granulocyte colony-stimulating factor

(G-CSF), granulocyte-macrophage colony-stimulating

factor (GM-CSF), platelet-derived growth factor

(PDGF)-BB, basic fibroblast growth factor (bFGF), and

vascular endothelial growth factor (VEGF); and anti-in-

flammatory cytokine, IL-1 receptor antagonist (IL-1ra).

The Bio-plex cytokine assay system (Bio-Rad, Hercules,

CA) was used according to the manufacturer’s

instructions. The same lots of reagents were used

throughout the experiments, and the interassay and

intraassay variabilities were reported to be <10%.16–19

All samples were diluted fourfold and analyzed in

duplicate. Cytokine/chemokine/growth factor concentra-

tions were calculated by reference to a standard curve

for each molecule derived using various concentrations

of the standard assayed in the same manner as the CSF

samples. The detection limit for each molecule was

determined by the recovery of the corresponding stan-

dard and the lowest value with >70% recovery was set

as the lower detection limit.16–19 No samples were

beyond the upper detection limits, while some samples

were below the lower detection limits. Each cytokine/

chemokine and growth factor showed different detection

rates (Table S1).

Statistical analysis

Cytokines/chemokines/growth factors with detection rates

<30% were excluded from analysis as previously

reported.16–19 The chi-square test was performed to evalu-

ate the statistical significance of detection rates of

Table 1. Demographic characteristics of the CIDP and NIND patients.

NF155+ (n = 35) NF155� (n = 36) NIND (n = 28)

P-value*

NF155+vs.

NF155�
NF155+ vs.

NIND

NF155� vs.

NIND

Female:Male 1:2.5 (28.6%) 1:2.3 (30.6%) 1:1.8 (35.7%) NS NS NS

Age at sample collection,

median (range), y

30 (14–66) 56.5 (11–81) 61.5 (32�81) <0.0001 <0.0001 NS

Age at onset, median (range), y 25 (13–64) 46 (10–76) NA 0.0001 NA NA

Disease duration at sample collection,

median (range), m

9 (3–456) 14 (0–414) NA NS NA NA

Hughes functional grade at sample

collection, median (range)

2 (1–4) NA NA NA NA NA

Therapeutic status at sample collection n/N (%) n/N (%) n/N (%)

Without treatment 22/35 (62.9%) 23/36 (63.9%) NA NS NA NA

With treatmentType of treatment 13/35 (37.1%) 13/36 (36.1%) NA NS NA NA

Plasma exchange 2/13 (15.4%) 3/13 (23.1%) NA NS NA NA

Steroid pulse 11/13 (84.6%) 6/13 (46.2%) NA NS NA NA

Oral steroid 10/13 (76.9%) 8/13 (61.5%) NA NS NA NA

IVIg 12/13 (92.3%) 9/13 (69.2%) NA NS NA NA

Other immunotherapies 2/13 (15.4%) 6/13 (46.2%) NA NS NA NA

Clinical phenotype n/N (%) n/N (%) n/N (%)

Typical 20/35 (57.1%) 24/36 (66.7%) NA NS NA NA

DADS 13/35 (37.1%) 2/36 (5.6%) NA 0.0013 NA NA

MADSAM 1/35 (2.9%) 5/36 (13.9%) NA NS NA NA

Others 1/35 (2.9%) 5/36 (13.9%) NA NS NA NA

CIDP, chronic inflammatory demyelinating polyneuropathy; DADS, distal acquired demyelinating symmetric neuropathy; IVIg, intravenous

immunoglobulin; m, month; MADSAM, multifocal acquired demyelinating sensory and motor neuropathy; NA, not applicable; NF155, neurofascin

155; NF155+, immunoglobulin G4 anti-neurofascin 155 antibody-positive CIDP; NF155�, anti-NF155 antibody-negative CIDP; n/N, positive patient

number/ total examined patient number; NS, not significant; NIND, other non-inflammatory neurological disease; y, year.

*P < 0.05 = significant difference.
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cytokines/chemokines/growth factors among NF155+

CIDP, NF155� CIDP, and NIND patients. If the

P < 0.05, Fisher’s exact probability test was used for com-

parisons between any two groups, followed by Bonfer-

roni–Dunn’s correction. The Kruskal–Wallis test was

performed to compare the levels of cytokines/chemoki-

nes/growth factors between three groups. If the P < 0.05,

the Mann–Whitney U-test was used for comparisons

between any two groups, followed by Bonferroni–Dunn’s
correction. The Wilcoxon signed-rank test was performed

to evaluate the longitudinal analysis according to treat-

ment status. Spearman’s rank correlation coefficient was

used for statistical analyses between cytokines/chemoki-

nes/growth factors and CSF protein amounts or cell

counts. All of the above statistical analyses were per-

formed with GraphPad Prism ver. 5.0 software

(GraphPad, San Diego, CA). To separately analyze the

correlations of CSF cytokines/chemokines in patients with

NF155+ CIDP and NF155� CIDP, heatmaps were gener-

ated by the “gplots” package in R on the basis of Spear-

man’s rank correlation coefficient and cluster analysis. A

canonical discriminant analysis (CDA) was performed by

JMP Pro software (ver. 13.0.0; SAS Institute, Cary, NC).

Results

Clinical findings

The demographic features of the 35 IgG4 NF155+ CIDP,

36 NF155� CIDP, and 28 NIND patients are summarized

in Table 1. Age at onset was younger in NF155+ CIDP

patients than in NF155� CIDP patients (P = 0.0001).

NF155+ CIDP patients showed a higher frequency of dis-

tal acquired demyelinating symmetric neuropathy

(DADS) than NF155� CIDP patients (P = 0.0013),

although more than half of NF155+ CIDP patients

(57.1%) had typical CIDP. CSF protein amounts and cell

counts were higher in NF155+ CIDP patients than in

NF155� CIDP and NIND patients (protein amounts,

P < 0.0001 for both; cell counts, P = 0.0072 and

P = 0.0069, respectively) (Fig. 1A). CSF protein amounts

were also higher in NF155� CIDP patients than in NIND

patients (P = 0.0006).

Concentrations of CSF cytokines/
chemokines/growth factors

The detection rates of cytokines/chemokines/growth fac-

tors in CSF are shown in Table S1. IL-2, IL-12, IL-15, IL-

21, bFGF, GM-CSF, and VEGF were excluded from fur-

ther statistical analysis because of their low detection

rates. NF155+ CIDP patients had higher levels of CXCL8/

IL-8 (P < 0.0001), IL-13 (P < 0.0003), CCL11/eotaxin

(P = 0.0210), CCL2/MCP-1 (P = 0.0120), TNF-a
(P = 0.0042), and IFN-c (P < 0.0001) compared with

NIND patients (Fig. 1B). CXCL8/IL-8 and IL-13 levels

were even significantly higher in NF155+ CIDP patients

compared with NF155� CIDP patients (P < 0.0001 and

P = 0.0096, respectively). IFN-c levels were also increased

in NF155� CIDP patients compared with NIND patients

(P = 0.0024). By contrast, NF155+ CIDP patients had

lower levels of IL-1b and IL-1ra than NF155� CIDP and

NIND patients (IL-1b, P < 0.0001 for both; IL-1ra,

P = 0.0150 and P < 0.0001, respectively). NF155+ CIDP

patients had lower G-CSF levels than NIND patients

(P < 0.0001) and lower IL-6 levels than NF155� CIDP

patients (P = 0.0291). IL-1ra and IL-4 levels were lower

in NF155� CIDP patients than in NIND patients

(P = 0.0009 and P = 0.0153, respectively). Even when

only the pretreatment samples were evaluated, similar

results were found (Fig. S1).

Correlations of CSF cytokine/
chemokine/growth factor levels with clinical
parameters

When the correlations of CSF cytokine/chemokine/growth

factor levels with clinical severity were examined in

NF155+ CIDP patients, only CCL3/MIP-1a levels showed

a weak positive correlation with Hughes functional grade

scores (r = 0.3528, P = 0.0376), although CXCL8/IL-8

levels tended toward a positive correlation with the scores

(r = 0.2911, P = 0.0898) (Fig. 2A). Levels of CXCL8/IL-8,

IL-13, CCL11/eotaxin, CXCL10/IP-10, CCL3/MIP-1a,
CCL4/MIP-1b, and TNF-a showed positive correlations

with CSF protein concentrations in NF155+ CIDP patients

(CXCL8/IL-8, r = 0.4860, P = 0.031; IL-13, r = 0.5455,

Figure 1. CSF protein amounts, cell counts, and cytokine/chemokine/growth factor levels. (A) CSF protein amounts and cell counts from all

enrolled subjects. (B) Levels of CSF cytokines/chemokines and growth factors showing significant differences between immunoglobulin G (IgG)4

anti-neurofascin 155 (NF155) antibody-positive CIDP (NF155+), anti-NF155 antibody-negative CIDP (NF155�), and other non-inflammatory

neurological disease (NIND) patients. Samples from untreated patients are indicated by open circles. The cytokines that showed significant

changes are indicated by p values while other cytokines did not show any significant changes when compared among groups. CCL = C-C motif

ligand; CIDP = chronic inflammatory demyelinating polyneuropathy; CSF = cerebrospinal fluid; CXCL = C-X-C motif ligand; G-CSF = granulocyte-

colony stimulating factor; IFN = interferon; IL = interleukin; IL-1ra = interleukin-1 receptor antagonist; MCP-1 = monocyte chemoattractant

protein-1; TNF-a = tumor necrosis factor-a.
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P = 0.0007; CCL11/eotaxin, r = 0.6347, P < 0.0001;

CXCL10/IP-10, r = 0.6003, P = 0.0001; CCL3/MIP-1a,
r = 0.4486, P = 0.0069; CCL4/MIP-1b, r = 0.4132,

P = 0.0136; TNF-a, r = 0.3741, P = 0.0268) (Fig. 2B),

while IL-1ra showed a negative correlation with CSF pro-

tein amounts (r = �0.4278, P < 0.0104). Levels of IL-13,

CCL11/eotaxin, and IL-17 also demonstrated positive cor-

relations with CSF cell counts in NF155+ CIDP (IL-13,

r = 0.3426, P = 0.0473; CCL11/eotaxin, r = 0.3719,

P = 0.0303, IL-17, r = 0.3608, P < 0.0361) (Fig. 2C). In

NF155� CIDP, IFN-c, CXCL10/IP-10, and CXCL8/IL-8

levels showed positive correlations with CSF protein

amounts (IFN-c, r = 0.4803, P = 0.0030; CXCL10/IP-10,

r = 0.5179, P = 0.0012; CXCL8/IL-8, r = 0.5976,

P = 0.0001) (Fig. 2D) and IL-1b showed a negative corre-

lation with CSF protein amounts (r = �0.7503,

P < 0.0001), while the CXCL10/IP-10, CXCL8/IL-8, and

IL-1b levels did not differ between NF155� CIDP and

NIND. Even when only the pretreatment samples were

used, similar results were obtained (Fig. S2).

Effects of immunotherapies on CSF
cytokine/chemokine/growth factor levels

Longitudinal analyses of CSF cytokine/chemokine/growth

levels in 9 patients with CSF samples repeatedly obtained

before and after immunotherapy revealed that CXCL8/IL-

8, IL-13, CCL4/MIP-1b, CCL3/MIP-1a, and CCL5/

RANTES were decreased after treatment (P = 0.0078,

P = 0.0343, P = 0.0117, P = 0.0438, and P = 0.0234,

respectively) (Fig. 3). A similar tendency was observed for

CCL2/MCP-1 (P = 0.0547). Five patients (Patients 3–7 in

Fig. 3) treated with combined immunotherapies such as

intravenous immunoglobulin (IVIg), corticosteroids,

plasma exchanges, and immunosuppressants, showed

improvement in Hughes functional grade scores together

with deceases in most of these cytokines. By contrast, a

patient treated with IVIg alone (Patient 2 in Fig. 3)

showed increases in some of these cytokines and no clini-

cal improvement. Subsequently, CSF cytokine/chemokine/

growth factor levels were compared between 22 untreated

and 13 treated samples from 35 NF155+ CIDP patients

and between 23 untreated and 13 treated samples from

36 NF155� CIDP patients, in which one treated or

untreated sample was evaluated per patient. CXCL8/IL-8

and CCL2/MCP-1 levels were lower and IL-1ra levels were

higher in treated samples than in untreated samples from

NF155+ CIDP patients (P = 0.0043, P = 0.0077, and

P = 0.0241, respectively) (Fig. S3A). In NF155� CIDP,

IFN-c levels were significantly lower in treated samples

than in untreated samples (P = 0.0442) (Fig. S3B).

Cluster analyses of CSF cytokines/
chemokines/growth factors

Cluster analyses in NF155+ CIDP showed three major clus-

ters (Fig. 4A). Cluster 1 comprised TNF-a, IFN-c, IL-17,
IL-7, IL-9, G-CSF, IL-5, IL-4, IL-1b, PDGF-BB, and IL-10,

cluster 2 consisted of CCL5/RANTES, IL-6, and IL-1ra, and

cluster 3 contained CCL4/MIP-1b, CCL3/MIP-1a, CCL11/
eotaxin, CCL2/MCP-1, IL-13, CXCL8/IL-8, and CXCL10/

IP-10. Distances between the cytokines in cluster 2 were

greater than those in the other clusters, suggesting that this

cluster was less meaningful than the other two clusters. By

contrast, there were 2 clusters in NF155� CIDP, which

showed a different pattern of results from NF155+ CIDP.

One large cluster comprised most of the cytokines/

chemokines examined, with universal positive correlations

among the cytokines, while the other cluster included IL-

1ra, IL-1b, IL-4, and IL-7. Furthermore, CDA using the

measured cytokine/chemokine/growth factor levels showed

that NF155+ CIDP was clearly separated from NF155�

CIDP on the canonical 1 axis, wherein NF155+ CIDP was

highly associated with IL-13, IL-4, and IL-10 (Fig. 4B), sug-

gesting that these cytokine levels are major discriminants

between the two conditions.

Subgroup analysis of NF155� CIDP

Finally, we classified NF155� CIDP patients into two sub-

groups by IL-1b levels: those with median (1.06 mg/dl)

or higher IL-1b levels and those with lower than median

Figure 2. Correlations of cytokine/chemokine levels with clinical severity and protein amounts and cell counts in CSF. (A) Correlations between

CSF cytokine/chemokine levels and Hughes functional scale grade scores in NF155+ CIDP. When the outliner showing the extremely high CCL3/

MIP-1a level was excluded, the CCL3/MIP-1a levels still showed a tendency to be positively associated with Hughes functional grade scores

(r = 0.2984, P = 0.0865). (B, C) CSF cytokines and chemokines showing correlations with CSF protein amounts (B) and cell counts (C) in NF155+

CIDP patients. (D) CSF cytokines and chemokines showing correlations with CSF protein amounts in NF155� CIDP patients. Even when the two

outliers showing the highest and second-highest CXCL8/IL-8 levels were excluded, the correlation remained statistically significant (r = 0.5216,

P < 0.0016). Samples from untreated patients are indicated by open circles. Spearman’s rank correlation coefficient was used for this analysis.

CCL = C-C motif ligand; CIDP = chronic inflammatory demyelinating polyneuropathy; CSF = cerebrospinal fluid; CXCL = C-X-C motif ligand; G-

CSF = granulocyte colony-stimulating factor; IFN = interferon; IL = interleukin; IP-10 = interferon-c gamma-inducible protein-10;

MIP = macrophage inflammatory protein; NF155 = neurofascin 155; NF155+ = IgG4 anti-NF155 antibody-positive; NF155� = anti-NF155

antibody-negative; TNF-a = tumor necrosis factor-a.
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IL-1b levels. As a result, we found that the frequencies of

typical CIDP and CSF protein levels were significantly

higher in the low IL-1b group than in the high IL-1b
group (P = 0.0063 and P < 0.0001, respectively)

(Table S2). Sex ratio, CSF cell counts, and age at onset

were comparable between the two subgroups.

Discussion

In this study, the characteristic features of IgG4 NF155+

CIDP were marked elevations of Th2- and Th1-related

cytokines. By contrast, NF155� CIDP showed a significant

increase in IFN-c only and positive correlations of IFN-c

Color
No. of 
patient

Hughes FG 
CXCL8/IL-8

(pg/ml)
IL-13

(pg/ml)
CCL4/MIP-1β

(pg/ml)
CCL3/MIP-1α

(pg/ml)
RANTES
(pg/ml))

CCL2/MCP-1 
(pg/ml)

Treatments which had been 
administered between two CSF 

collections

Pre Post Pre Post Pre Post Pre Post Pre Post Pre Post Pre Post

Pt.1 4 4 465 357 4.1 3.6 4.9 2.5 1.73 1.21 11.5 8.8 462 341 IVMP, Oral PSL (50 mg/day)

Pt.2 2 2 272 288 3.6 3.6 8.6 9.1 0.82 0.90 14.4 12.2 484 475 IVIg

Pt.3 3 2 754 78 5.1 4.0 11.5 4.7 1.17 0.38 27.0 10.0 447 247
IVMP, IVIg, PE, 

Other immunotherapies

Pt.4 2 1 427 233 5.7 6.0 8.1 5.9 1.29 0.67 10.0 8.2 481 233 IVMP, Oral PSL (75 mg/day), IVIg

Pt.5 2 1 307 220 3.2 3.2 3.4 2.8 0.82 0.62 7.44 8.7 322 256
IVMP, Oral PSL (50 mg/day), IVIg, 
CyA (200 mg/day), AZA (50 mg/dl)

Pt.6 4 2 142 114 6.4 4.7 9.3 7.2 1.29 0.67 8.6 8.6 334 489 IVMP, Oral PSL (40 mg/day), IVIg, PE

Pt.7 3 2 239 113 5.0 3.9 9.2 4.6 1.34 0.90 10.2 9.2 453 193
IVMP, Oral PSL (60 mg/day), IVIg, 
CyA (250 mg/day)

Pt.8 2 2 594 160 4.3 3.8 12.9 4.9 2.18 0.15 12.8 8.4 459 407 IVMP, Oral PSL (20 mg/day), IVIg, PE

Pt.9 2 3 398 85 4.7 3.0 8.9 8.5 0.82 1.31 9.5 8.1 452 379
IVMP, Oral PSL (60 mg/day), IVIg, 
PE, AZA (50 mg/dl)
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Figure 3. Changes in cytokine/chemokine levels after treatment in identical patients with IgG4 anti-NF155 antibody-positive CIDP. The Hughes

FG system was used to evaluate clinical status (grade 0: normal; grade 1: minimal symptoms and signs, able to run; grade 2: able to walk 5 m

independently; grade 3: able to walk 5 m with use of aids; grade 4: wheelchair user or bedbound; grade 5: requires assisted ventilation; grade 6:

dead). Maximum doses of oral immunosuppressants are shown in parentheses. Unchanged or increased values in Hughes FG and cytokine/

chemokine levels after treatment are indicated by bold red characters. AZA = azathioprine; CCL = C-C motif ligand; CIDP = chronic inflammatory

demyelinating polyneuropathy; CSF = cerebrospinal fluid; CyA = cyclosporine A; CXCL = C-X-C motif ligand; G-CSF = granulocyte colony-

stimulating factor; Hughes FG = Hughes functional grade; IFN = interferon; IL = interleukin; IVIg = intravenous immunoglobulin;

IVMP = intravenous methylprednisolone pulse therapy (1,000 mg/day for 3 consecutive days); MCP-1 = monocyte chemoattractant protein-1;

PE = plasma exchange; PSL = prednisolone.
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Figure 4. Cluster analysis of CSF cytokines/chemokines/growth factors in IgG4 anti-NF155 antibody-positive and -negative CIDP. (A) Clustering of

correlations between each CSF cytokine level in patients with NF155+ (left panel) and NF155� (right panel) CIDP, respectively. Among the

cytokines/chemokines/growth factors analyzed, the distance of each pair of cytokines/chemokines/growth factors based on Spearman’s correlation

coefficient is shown as a heatmap. In NF155+ CIDP patients, there were three major clusters (clusters 1, 2, and 3). In NF155� CIDP patients, there

were two major clusters (clusters 1 and 2). The numbers on each heatmap (1, 2, and 3) indicate the cut-off position for each cluster. Dotted line:

cut-off level. (B) Canonical plot for 35 NF155+ (red) and 36 NF155� (green) CIDP patients. CIDP = chronic inflammatory demyelinating

polyneuropathy; CSF = cerebrospinal fluid; CCL = C-C motif ligand; CXCL = C-X-C motif ligand; G-CSF: granulocyte colony-stimulating factor;

IFN = interferon; IL = interleukin; IP-10 = interferon-c-inducible protein-10; MCP-1 = monocyte chemoattractant protein-1; NF155 = neurofascin
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and CXCL10/IP-10 (chemokine downstream of IFN-c)
with CSF protein amounts, suggesting a Th1 shift. Cluster

analyses further supported distinct cytokine profiles

between NF155+ and NF155� CIDP. Upregulation of

cluster 3 cytokines, including IL-13, CCL11/eotaxin,

CCL2/MCP-1, CCL3/MIP-1a, CCL4/MIP-1b, CXCL8/IL-
8, and CXCL10/IP-10, was characteristic of NF155+ CIDP.

Thus, we consider that co-upregulation of Th2 and Th1

cytokines is a unique feature of NF155+ CIDP. An

intrathecal Th1 shift has been proposed in CIDP, based

on elevated levels of Th1-related cytokines including IL-

12 and CXCL10/IP10 together with increased IFN-c+IL-
4�CD4+ T (Th1) cell percentages in CSF cells,20 although

no reports have described CIDP subtype-specific CSF

cytokine profiles. Because NF155+ CIDP comprises only a

minority of total CIDP, the cytokine profile of total CIDP

patients may have not reflected Th2 cytokine upregulation

in NF155+ CIDP patients in previous studies.20–24

IgG4 usually arises after chronic exposure to antigenic

stimuli, and its physiological role is to compete with IgE

and block its pathogenic effects in allergic responses.25

The class switch to IgG4 is facilitated in the presence of

Th2 cytokines including IL-13, IL-4, and IL-10.26 Intrigu-

ingly, CDA revealed that IL-13, IL-4, and IL-10 levels

were the major discriminants between NF155+ and

NF155� CIDP, suggesting a key role for these Th2 cytoki-

nes in NF155+ CIDP. Furthermore, the positive correla-

tions of Th2 cytokines (IL-13 and CCL11/eotaxin) with

CSF cell counts and protein amounts and reduction of

IL-13 levels during longitudinal follow-up after

immunotherapy in NF155+ CIDP suggested the involve-

ment of Th2 cells in spinal root inflammation, in addi-

tion to the induction of IgG4 autoantibodies. In Th2

inflammation, IL-13 is a major effector cytokine, while

CCL11/eotaxin exhibits potent chemotactic activity.27,28

The decreases in CXCL8/IL-8, CCL2/MCP-1, CCL3/

MIP-1a, and CCL4/MIP-1b, as downstream chemokines

stimulated by IL-13,29,30 after immunotherapy in parallel

with some clinical improvement reflected in Hughes func-

tional grade scores suggest a direct involvement of these

chemokines in NF155+ CIDP. The tendency toward posi-

tive correlations of CCL3/MIP-1a and CXCL8/IL-8 with

Hughes functional grade scores may support an involve-

ment of these chemokines in nerve damage, although fur-

ther prospective evaluation of neurological impairment is

required to confirm the correlations between CSF cyto-

kine levels and disability. CXCL8/IL-8 is secreted by a

variety of cells including blood monocytes, fibroblasts,

endothelial cells, and epithelial cells upon stimulation by

various cytokines, leading to 10–100-fold upregulation of

CXCL8/IL-8 expression.31 As the changes in levels of

downstream cytokines, such as CXCL8/IL-8, are much

more amplified than those of upstream cytokines, the

reduction in CXCL8/IL-8 levels by immunotherapy could

be more prominent than those in IL-13 and CCL11/eo-

taxin levels, suggesting that these downstream chemokines

may be potential biomarkers that can reflect disease activ-

ity. In addition, IFN-c was significantly increased in

NF155+ CIDP patients compared with NIND patients,

also suggesting the potential involvement of Th1 cells.

Because we found a small but significant increase in CSF

cells in pretreated NF155+ CIDP patients, a more detailed

analysis of CSF cytology, including helper T cells and

eosinophils, is required to elucidate the effector mecha-

nism of root inflammation.

IL-1b and IL-1ra were significantly decreased in

NF155+ CIDP patients compared with NF155� CIDP and

NIND patients. Th2 cytokines such as IL-13 were

reported to decrease IL-1b production,32 suggesting the

suppression of these cytokines by activated Th2 cells in

NF155+ CIDP. Macrophage-mediated demyelination,

which is often seen in biopsied sural nerves of NF155�

CIDP patients,9,33 was not observed in those of NF155+

CIDP patients.9,33 Because IL-1b activates macrophages,34

the pronounced suppression of IL-1b in NF155+ CIDP

may be related to the absence of macrophage-mediated

demyelination. Even in NF155� CIDP patients, the low

IL-b subgroup showed higher frequencies of typical CIDP

(nearly 90%) and higher CSF protein levels than the high

IL-b subgroup. Thus, in the low IL-b subgroup preferen-

tially presenting typical CIDP, a mechanism other than

macrophage-mediated demyelination could be operative.

By contrast, a macrophage-mediated mechanism may be

operative in the high IL-b subgroup. Although a decrease

in IL-1ra was common in both NF155+ and NF155�

CIDP, the decrease was most marked in NF155+ CIDP.

IL-1ra is a representative anti-inflammatory cytokine,34

and thus the pronounced decrease in IL-1ra levels in

NF155+ CIDP patients may also contribute to severe

spinal root inflammation.

Biopsied sural nerves showed marked subperineurial

edema, suggesting disruption of the blood–nerve barrier

(BNB), although no onion bulb formation was

observed.3,10 Therefore, distal nerve edema may be a

manifestation of widespread BNB breakdown including

the nerve roots. However, it is difficult to explain the

mechanism for how IgG4 anti-NF155 antibodies targeting

the paranodal structure without activating complement

can induce disruption of the BNB. Because proinflamma-

tory cytokines/chemokines, such as IL-13, CCL-11/eo-

taxin, and CXCL8/IL-8, were increased in NF155+ CIDP

patients including three biopsied cases and showed signif-

icant positive correlations with CSF protein levels in our

study, these cytokines/chemokines and the immunocytes

producing them may be directly or indirectly involved in

BNB disruption.35,36
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Poor responsiveness of NF155+ CIDP to IVIg has

repeatedly been reported by us and others.2–4 Plausible

mechanisms of action for IVIg in inflammatory neu-

ropathies include inhibition of the complement pathway,

modulation of Fc receptors on macrophages, anti-idiotype

antibody production, inhibition of cell migration by mod-

ulation of adhesion molecules, and promotion of remyeli-

nation.37 Poor responses to IVIg in NF155+ CIDP may be

explained by the lack of complement-mediated inflamma-

tory cascade and macrophage-mediated demyelination in

NF155+ CIDP, as shown by pathological studies of biop-

sied sural nerves.9,10 This notion is also supported by the

unique feature of IgG4, namely the inability to activate

complement.11 Efficacy of B-cell depletion therapy using

rituximab, a chimeric anti-CD20 antibody, on NF155+

CIDP was recently reported in a small case series.38,39 B

cells produce antibodies, present antigens to T cells

together with costimulatory signals, and secrete proin-

flammatory cytokines.40 Although the exact mechanism

for B-cell depletion therapy in CIDP remains to be eluci-

dated, attenuation of B-T cell interactions may be partly

responsible for the amelioration of disease activity given

the marked elevations of CSF Th2 and Th1 cytokines in

NF155+ CIDP. Indeed, combined immunotherapies, but

not IVIg alone, decreased the concentrations of proin-

flammatory cytokines/chemokines, such as CXCL8/IL-8,

IL-13, CCL3/MIP-1a, and CCL4/MIP-1b in CSF together

with clinical improvement in our preliminary follow-up

study, suggesting that downregulation of intrathecal

proinflammatory cytokines/chemokines is critical.

This study had some limitations. First, we did not mea-

sure anti-CASPR1 antibodies in our patients. However,

because only one CIDP case with anti-CASPR1 antibodies

has been reported in the literature,8 we believe that this

issue would not severely distort the present results. Sec-

ond, because IgG4 NF155+ CIDP is a rare disease, the

present cases were collected from all over Japan. Thus,

data and sample collection may not be uniform among

the participating institutions, and only post-treatment

samples were available in some cases. Nevertheless, IgG4

NF155+ CIDP patients demonstrated relatively similar

study results, and thus our preliminary CSF findings pro-

vide insights into its mechanism.
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