
METHODS
published: 29 November 2016

doi: 10.3389/fphys.2016.00579

Frontiers in Physiology | www.frontiersin.org 1 November 2016 | Volume 7 | Article 579

Edited by:

Ghanshyam Upadhyay,

City College of New York (CUNY), USA

Reviewed by:

Jonathan Jacobs,

University of California, Los Angeles,

USA

Mouad Edderkaoui,

Cedars-Sinai Medical Center, USA

*Correspondence:

Ana Sadio

asadio@ipatimup.pt

Specialty section:

This article was submitted to

Gastrointestinal Sciences,

a section of the journal

Frontiers in Physiology

Received: 01 September 2016

Accepted: 11 November 2016

Published: 29 November 2016

Citation:

Sadio A, Amaral AL, Nunes R,

Ricardo S, Sarmento B, Almeida R,

Tsukamoto H and das Neves J (2016)

A Mouse Intra-Intestinal Infusion

Model and its Application to the Study

of Nanoparticle Distribution.

Front. Physiol. 7:579.

doi: 10.3389/fphys.2016.00579

A Mouse Intra-Intestinal Infusion
Model and its Application to the
Study of Nanoparticle Distribution
Ana Sadio 1, 2, 3, 4, 5*, Ana L. Amaral 1, 2, Rute Nunes 1, 6, 7, Sara Ricardo 1, 2, Bruno Sarmento 1, 6, 8,

Raquel Almeida 1, 2, 3, 9, Hidekazu Tsukamoto 10, 11 and José das Neves 1, 6

1 Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal, 2 Institute of Molecular Pathology

and Immunology of the University of Porto, Porto, Portugal, 3 Faculty of Medicine of the University of Porto, Porto, Portugal,
4Gastroenterology Department, Unidade Local Saúde da Guarda, Guarda, Portugal, 5Gulbenkian Programme for Advanced

Medical Education, Lisbon, Portugal, 6 Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal, 7 Instituto

de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal, 8CESPU - Instituto de Investigação e

Formação Avançada em Ciências e Tecnologias da Saúde, Instituto Universitário de Ciências da Saúde, Gandra, Portugal,
9 Biology Department, Faculty of Sciences of the University of Porto, Porto, Portugal, 10Department of Pathology, Southern

California Research Center for ALPD and Cirrhosis, Keck School of Medicine of the University of Southern California, Los

Angeles, CA, USA, 11Department of Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA

The oral route is the most preferable one when it comes to drug administration. Different

animal models have been used to characterize the fate of potential medicines upon oral

delivery but fail to clarify specific events occurring at localized sites of the gastrointestinal

tract, particularly at the small intestine. We developed a new mouse intra-intestinal

infusion model that enabled the direct administration of substances (such as drugs or

nanoparticle drug carriers) in the small intestine through an implanted catheter, which

can be maintained for prolonged periods of time. The location of catheter insertion can

be previously determined as more proximal or distal, allowing to test specific portions

of the intestine. Since the model is presumably able to maintain normal physiological

characteristics, namely the mucus coating of the intestinal wall, it allowed studying the

distribution of different nanoparticles upon localized intra-intestinal administration. The

hereby proposed mouse model has the potential to be useful in other types of studies,

namely in clarifying localized processes occurring at specific sites of the intestine.

Keywords: mouse intra-intestinal model, small bowel, mucus barrier, mucoadhesive particles, mucus penetrating

particles

INTRODUCTION

The oral intake of medicines is the main form of drug delivery, making the gastrointestinal tract
(GIT) the most important barrier before systemic drug exposure occurs (Mrsny, 2012). Intestinal
absorption is one of the main determinants of drug bioavailability, but this essential step for
the overall pharmacokinetics is governed by the effective amount of drugs that actually reach
the absorptive interface. Indeed, different events occurring between oral intake and intestinal
absorption may be determinant in defining the fate of drugs, namely those involved in the release
and local distribution of a pharmaceutical dosage form or delivery system (Koziolek et al., 2016).
Normal physiological mechanisms (e.g., gastric digestion and emptying, intestinal peristalsis) and
barriers (e.g., the mucus covering the mucosal wall, intestinal villi) play key roles in defining
localized events at different points of the GIT (McConnell et al., 2008; Mudie et al., 2010).
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Understanding how these can affect the behavior of drug and/or
dosage forms or delivery systems is essential in identifying
critical steps that may preclude drug absorption at the intestinal
epithelium.

Many animal species and models are currently used for
characterizing the overall performance of orally delivered drugs,
namely bioavailability, but most fail to characterize focal events
at the intestinal mucosa (Musther et al., 2014). The lack of
appropriate mechanistic understanding of fundamental steps
occurring at pre-absorption stages may limit the ability to
effectively modulate the amount of drugs reaching the epithelial
surface. This introduces significant bias as to the appropriate
measures required for enhancing the bioavailability of molecules
of interest andmay impair fast and reliable product development,
with financial losses thereof.

The mucus layer, in particular, must be taken into
account when studying drug bioavailability, since electrostatic
interactions, as well as those of hydrophobic nature, between
mucins and chemical compounds or dosage forms/delivery
systems are of critical importance at the pre-absorption stage
(Boegh and Nielsen, 2015).

One of the classical strategies to improve the bioavailability
of poorly absorbed drugs or nucleic acids comprises the
use of polymer micro- or nano-particles (NPs) as carriers
(Gomez-Orellana, 2005). Mucoadhesion due to electrostatic,
hydrophobic or van der Walls interactions or inter-polymer
chain interpenetration is believed to increase bioavailability in
the GIT due to the improvement of the residence time of
the particles (Sosnik et al., 2014). Nevertheless, current trend
suggests that the effectiveness of these mucoadhesive particles
may be limited by the impairment of diffusion across mucus
toward the epithelium, followed by the relatively rapid clearance
of the superficial luminal mucus (Ensign et al., 2012). Indeed,
mucus is considered as a highly effective barrier for the diffusion
of large molecules and nanocarriers (Cone, 2009) and may,
ultimately, limit absorption. Various in vitro and ex vivomethods
have been developed for studying interactions with mucus but
abbreviate many of the features governing in vivo events and,
thus, lack overall physiological relevance (das Neves et al., 2011;
Sigurdsson et al., 2013). Moreover, in vivo imaging techniques
used for characterizing mucoadhesive properties are unable to
provide detailed insights as to the interactions with mucus
(Weitschies and Wilson, 2011).

Animal models that allow studying the behavior of
nanoparticulate systems at specific sites of the GIT would
be welcome in order to overcome the above mentioned
limitations. In particular, one that enables the direct instillation
of delivery systems at precise locations within the intestine. A
mouse intragastric infusion model was previously described by
the group of one of the authors of the present study (Ueno et al.,
2012), in which a gastrostomy catheter was implanted, allowing
for the direct delivery of specific diets or various substances into
the stomach. However, and to the best of our knowledge, there
are no comparable models that allow the delivery of substances
directly into the small bowel. In this article we describe a new
mouse model for direct intra-intestinal infusion in order to
administer, in a precise way, drugs or delivery systems into
specific regions. The feasibility of the model for studying the

distribution of different drug nanocarrier surrogates, namely
polystyrene (PS)-based mucoadhesive particles (MAP) or mucus
penetrating particles (MPP), upon direct administration in the
intestinal lumen was also assessed.

MATERIALS AND METHODS

Materials
Silicone tubing (SILASTIC R©, i.d. 0.30 mm × o.d. 0.64 mm or
i.d. 0.51 mm× o.d. 0.94 mm) was purchased from Dow Corning
(Auburn, MI, USA), BTPE-25 and BTPE-10 polyethylene tubing
(i.d. 0.46 mm × o.d. 0.91mm and i.d. 0.28 mm × o.d. 0.60 mm)
and PinPortTM 25 ga with injector from Instech Laboratories
(Plymouth Meeting, PA, USA), Dacron R© felt (0.635 mm in
thickness) from PEI (Munhall, PA, USA), silicone rubber from
Axton (Axton, VA, USA), and RTV catalyst no. 4 from Ellsworth
(Germantown, WI, USA). Poloxamer 407 (Kolliphor R© P 407,
MW 14,600 g/mol) was kindly provided by BASF Corporation
(Ludwigshafen, Germany). Red fluorescent carboxylate-modified

PS particles (FluoSpheres R©) with nominal diameter of 0.2 µm
were purchased from Molecular Probes (Eugene, OR, USA). All
other materials were of analytical grade or equivalent.

Animals
Male and female C57BL/6 mice with 8–12 weeks of age obtained
from our animal facility were used. Experiments were approved
by the ethics committee of the Faculty of Medicine of University
of Porto andDireção-Geral de Alimentação e Veterinária (DAGV
0421/000/000/2015). All procedures were conducted according to
the European Directive 2010/63/EU on the protection of animals
used for scientific purposes and FELASA guidelines.

Establishment of the Animal Model
Catheter preparation (Figure 1)
A polyethylene tubing (i.d. 0.28 × o.d. 0.60 mm) was cut to a
length of 10 mm. A silastic tube (i.d. 0.30 mm × o.d 0.64 mm)
was cut to a length of 15 mm, immersed in chloroform in a fume
hood for some minutes, to expand the silicone, and slid on one
end of the polyethylene tubing.

A polyethylene tubing (i.d. 0.46 × o.d. 0.91 mm) was cut to a
length of 10mm; a silastic tube (i.d. 0.51mm× o.d. 0.94mm)was
cut to a length of 40 mm, immersed on chloroform, one of the
ends was slid on the remaining end of the thinner polyethylene
tube and the other end on the thicker polyethylene tube.

A portion of Dacron felt was cut to a pear shape (8× 16 mm)
and another one to a round shape (6 mm) and a hole was made
at the center of each. The catheter was passed through the hole

FIGURE 1 | Preparation of the catheter for intra-intestinal placement.

(A) Catheter components. (B) Catheter fully assembled.
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in the pear shaped Dacron and glued with silicone rubber near
the connection of the silastic tubes. Then, it passed through the
round-shaped Dacron and glued at a distance 10 mm proximal to
the tip of the catheter.

Surgical technique (Figure 2)
Mice were anesthetized with intraperitoneal ketamine (80–100
mg/kg) and xylazine (10 mg/kg). Hair from the dorsal neck
(Figure 2A) and mid-abdomen was shaved and hairless areas

were swabbed with povidone-iodine solution. Ointment was
applied inmouse’s eyes and the tongue was pulled out. Themouse
was placed onto a heating pad covered with a sterile surgical towel
on ventral decubitus, to avoid hypothermia, and the areas of the
body not prepared were covered with sterile gauze.

An incision was made in the skin of the dorsum (around
10 mm) in the interscapular region (Figure 2B) and we used
a scissor to separate the skin and the muscle tissue from the
incision site to the right flank, in order to create a subcutaneous

FIGURE 2 | Surgical procedure used for establishing the proposed mouse model. (A) Remove hair and swab the dorsum with iodine solution. (B) Dorsal

midline incision. (C) Open/enlarge the lateral plans. (D) Ventral incision. (E) Insert the curved hemostat through the ventral incision till the dorsal one. (F) Hold the

catheter in the Dacron disk area. (G) Pull out the catheter through the ventral incision. (H) Open the visceral peritoneum. (I) Make a hole in the peritoneum, pressing a

hemostat against the wall in the direction of the right flank. (J) Pass the catheter through the hole into the abdominal cavity. (K) Expose the small bowel and choose

the location to introduce the catheter. (L) Puncture the small bowel. (M) Insert the catheter tip in the intestine. (N) Suture the Dacron disk to the intestine. (O) Suture

the peritoneum. (P) Close the abdominal skin incision. (Q) Suture the Dacron to the dorsal muscles. (R) Suture the dorsal skin incision. (S) Put the PinPortTM, 25 ga,

at the tip of the catheter. (T) Adapt the injector to the PinPortTM.
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tunnel (Figure 2C). The mouse was placed in dorsal decubitus
and an incision was made in the midline of the abdomen (around
15 mm), beneath the xiphoid cartilage (Figure 2D), and a scissor
was used to separate the skin from the muscle, moving it to the
right flank, in order to complete the subcutaneous tunnel started
in the dorsum.

The mouse was placed on its left side and a curved
hemostat was inserted from the abdominal incision through
the subcutaneous tunnel till the dorsal incision (Figure 2E), the
catheter grasped with the hemostat (Figure 2F) and the tip pulled
to the abdominal incision (Figure 2G). The mouse was then put
in dorsal decubitus and a longitudinal incision was made in the
linea alba in order to open the peritoneal cavity (Figure 2H).
A curved hemostat was put into the abdominal cavity, the tip
pressed against the abdominal wall approximately 15 mm toward
the right flank and an aperture was made (Figure 2I). The
catheter tip was grasped and pulled into the abdominal cavity,
using the hemostat (Figure 2J).

Afterwards, the small intestine was gently exposed, starting in
the distal ileum (by identifying the cecum) through the proximal
jejunum (Figure 2K), and the site to make a small opening was
chosen, using a jeweler’s forceps (Figure 2L). The exposed bowel
was hydrated with sterile saline (around 0.5 mL). The tip of
the catheter was inserted into the small bowel and the catheter
was held with a curved forceps (Figure 2M). A 6/0 silk thread
was used to suture the Dacron disk to the intestinal wall (3–4
stitches) (Figure 2N). Twenty-five to fifty micro liter of saline
were infused into the small intestine through the catheter to
exclude any leakage.

The whole intestine was placed in its original position, and the
catheter was gently pulled from the dorsal side. The peritoneal
cavity was closed with 6/0 silk thread in a continuous suture
(Figure 2O) and the abdominal skin with silk thread in an
interrupted suture (Figure 2P).

The mouse was placed in ventral decubitus and the pear-shape
Dacron positioned along themuscle, sutured to it with silk thread
(Figure 2Q) and, finally, the dorsal skin was closed with silk
thread in an interrupted suture (Figure 2R).

The mouse was placed in a cage warmed by an infrared light
lamp and an analgesic (tramadol 20 mg/Kg, IP) was administered
as the animal began to recover from anesthesia. Analgesia
continued during the following 2 days if there was any sign of
pain. A 3-day antibiotic course (enrofloxacin 5 mg/Kg/day, IP)
was also performed starting in the day of surgery.

Finally, the PinPortTM25 ga was adapted to the end of the
catheter (Figure 2S) and the injector was employed to adapt a
syringe to the PinPortTM (Figure 2T).

Preparation and Characterization of
Nanoparticles
Unmodified FluoSpheres R© were used as mucoadhesive particles
(MAP). Mucus penetrating particles (MPP) were obtained by
surface modification (adsorption) of the previous with ∼5.7
kDa poly(ethylene oxide) (PEO). Briefly, FluoSpheres R© were
incubated overnight at a concentration of 0.2% (w/v) in 1% (w/v)
poloxamer 407 aqueous. Obtained PEO-modified NPs were then

filtered by centrifugation at 167 × g using an Amicon R© filter
tube (MWCO = 100 kDa, Millipore Corporation, Bedford, MA,
USA) in order to wash excess poloxamer and concentrate the
particles. The same procedure was used for unmodified NPs (i.e.,
FluoSpheres R© without PEO coating) but ultra-pure water was
used instead of poloxamer 407 solution during incubation.

NPs were characterized regarding hydrodynamic diameter
and size distribution by dynamic light scattering, and zeta
potential by laser Doppler anemometry using a Zetasizer Nano
ZS (Malvern Instruments,Worcestershire, UK). NPs were diluted
at approximately 0.02% (w/v) in 10 mM NaCl solution and all
measurements were performed in triplicate at 25◦C.

Nanoparticle Administration, Intestinal
Tissue Collection and Processing, and
Confocal Microscopy Assessment
Mice were used 1 week after the surgical procedure to allow
reestablishment of the normal physiologic status. Mice were kept
on a liquid diet for 24 h followed by 24 h without any food access
in order to reduce the consistency of stool. Then, the intestinal
lumen was flushed with 50 µL normal saline via the catheter and
mice were allowed to rest for 1 h to reconstitute the mucus layer.

One hundred micrograms of NPs were diluted in 50 µL
of deionized water and administered through the intestinal
catheter. Mice were sacrificed after 1 h and sections of the
jejunum were collected and frozen in O.C.T. Compound
(Shandon CryomatrixTM, Thermo Scientific, Runcorn, Cheshire,
UK). Cross-sectional cuts of 10 µm thickness were performed
using a Leica CM3050 S cryostat (Leica Biosystems, Germany),
mounted in microscope slides, fixed briefly in 10% formalin, air
dried, and mounted using Vectashield R© with 4′, 6-diamidino-
2-phenylindole (DAPI) (Vector Laboratories, Inc, USA). Images
were obtained using a Leica TCS SP5II confocal microscope
(Leica Microsystems, Germany).

RESULTS AND DISCUSSION

Although several in vitro, ex vivo or in situmethods for studying
intestinal absorption and other associated phenomena (e.g.
drug carrier transport) are widely used (Sarmento, 2016), data
obtained from these last must be interpreted carefully, since some
of the physiologic conditions of the normal intestine are altered.
Thus, the development of models that more closely mimic the in
vivo situation is desirable. In particular, the mucus layer differs
along the GIT (Atuma et al., 2001; Sadio et al., 2014) and must
be taken into account while studying transport and absorption
processes (Boegh and Nielsen, 2015). However, most non-in
vivo models fail to maintain the integrity or even consider the
presence of mucus. Also, current in vivo animal models can only
measure the outcome of drug absorption, typically translated as
systemic pharmacokinetics monitoring, thus limiting the ability
to fully understand pre-absorption events that are known to play
key roles in the fate of drugs and dosage forms/delivery systems
in the gut (Musther et al., 2014).

In order to address these issues, we modified a previously
reported mouse intragastric infusion model (Ueno et al., 2012)
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and developed a new one in which test substances/materials can
be directly delivered to the small bowel, through a permanently
implanted catheter.

A previously prepared catheter was introduced directly in the
jejunum. Due to the small size of the lumen, the amount of
time required for the procedure was longer than that required
for insertion of the catheter in the stomach (∼ 45–50 min).
Special attention was paid to the direction of the catheter during
insertion, whichmust be pointing toward the cecum (Figure 2K).
So, in order to avoid wrong positioning and consequent intestinal
obstruction, the whole small bowel should be exposed, thus
allowing to identify the cecum and assuring that the catheter is
correctly implanted. Antibiotics were administered for 3 days,
starting at the day of the surgery in order to prevent abdominal
infections. It is required that the animals are isolated in individual
cages to preclude chewing of the catheter by their mates. Mice
resumed normal diet on the day of the surgery and were allowed
to recover for 1 week before any further experiments being
conducted. Flushing with 50 µL of saline was performed every
day to prevent clogging of the catheter lumen. Mice presented
normal behavior upon surgery and the catheter could be kept for
at least 4–6 weeks. Animal death rate was around 10% after the
surgical procedure was fully established. Although all the dead
mice were subjected to necropsy, no apparent anomalies were
macroscopically detected, namely signs of infection.

The proposed animal model may potentially hold several
advantages over the most commonly established in vitro and
ex vivo models, mainly because the intestine is maintained in
normal physiological conditions and tissue integrity is preserved.
Hence, a fully functional intestinal barrier and an intact blood
supply and nervous systems allow complete mimicking of the
normal transit, digestion and absorption dynamics of the gut. The
catheter can be maintained for prolonged periods of time and
allow multiple administrations without the need to sacrifice the
animals. Besides, the rate and mode of administration of food or
drugs/delivery systems can be precisely controlled, both in terms
of timing and amount. Another advantage of this model is the
possibility to choose the place where the catheter will be inserted,
which can be an added value to evaluate intestinal permeability
to drugs or performance of delivery systems at particular foci.
One example of studies where this model could be employed is in
the development of controlled-release systems to target proximal
(jejunum) or distal (ileum) parts of the small bowel. It can also
be used in cases where avoidance of the gastric emptying is
required.

Besides, the possibility to administer low volumes of fluids is
an advantage over the close loop models, whose results can be
inflated due to the high pressure and the disruption of the mucus
barrier (Reineke et al., 2013). The results can also be confusing
depending on the volumes administered by oral gavage (Eyles
et al., 1995).

In the present work, we wanted to show the value of the intra-
intestinal model in studying the behavior of NPs in the intestinal
lumen and provide insights as to the distribution of MAP and
MPP. Previous studies have shown that MAP administered by
oral gavage in high volumes or administered in a close intestinal
loopmodel have a similar distribution, in small intestine, asMPP.

In opposition, when administered in low volumes by oral gavage,
MPP distributed evenly in the tissue, while MAP were clumped
in the lumen (Maisel et al., 2015).

We used unmodified carboxylate FluoSpheres R© and
PEO-modified counterparts as MAP and MPP, respectively.
PEO-modified fluorescent NPs were obtained by surface
adsorption of the tri-block PEO-PPO-PEO poloxamer 407
as previously described (Tang et al., 2009). The PPO middle
section of the copolymer is hydrophobic and can adsorb to
the PS surface of NPs, while exposing both PEO hydrophilic
arms outwards to the aqueous medium (Shenoy and Amiji,
2005). This reversible modification of the surface confers
a highly hydrophilic, non-charged corona to the particles,
which prevents interactions with mucin fibers and renders
high mobility in mucus as demonstrated in vitro (Wang
et al., 2008; Tang et al., 2009). This behavior has been shown
particularly relevant in providing enhanced distribution
and uniform coating of mucosal surfaces when mucus-
inert NPs were administered to mice by the oral, rectal or
vaginal routes (Cu et al., 2011; Maisel et al., 2015; Xu et al.,
2015).

Main size and surface charge features for both plain and
PEO-modified FluoSpheres R© are presented in Table 1. Values
of hydrodynamic diameter were in range with those reported
by the manufacturer (0.2 µm). A slight increase in size was
observed after PEO-modification, which can be attributed to
the poloxamer coating at the surface of NPs. Both type of
NPs were monodisperse, as assessed by the results for the
polydispersity index (PdI). As anticipated, major differences
were observed for zeta potential. Contrasting with unmodified
particles, which presented markedly negative values for zeta
potential due to the surface presence of carboxyl groups, near
neutral values were obtained for PEO-modified NPs. This
indicates that dense coating with poloxamer was achieved, thus
shielding the surface charge of FluoSpheres R© (Yang et al.,
2011).

In the present study MAP or MPP were administered to the
developed animal model and confocal fluorescence microscopy
of the excised jejunum was performed. Imaging was able to
successfully track the position of NPs within the gut (Figure 3).
In particular, microscopy studies evidenced that MPP were
able to more evenly distribute throughout the jejunum as
compared with MAP. PEO-modified NPs migrated deeply into
intestinal villi thus evidencing their muco-inert nature, while
plain FluoSpheres R© were mainly retained within the central
lumen, presumably due to the strong interaction with mucus.
Although the intention of this work was not to compare

TABLE 1 | Hydrodynamic diameter, polydispersity index (PdI) and zeta

potential of MAP and MPP.

NP type Hydrodynamic

diameter (nm)

PdI Zeta potential (mV)

MAP 182 ± 1 0.028 ± 0.013 −45.0 ± 1.9

MPP 196 ± 1 0.027 ± 0.005 −4.6 ± 0.2

Results are expressed as mean± standard deviation (n = 3).
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FIGURE 3 | Distribution of NPs in the jejunum at 1 h after

administration. Distribution of MAP (A) and MPP (B) in the jejunum after

administration through the intra-intestinal catheter. Red and blue signals are

from particles and cell nucleus (DAPI staining of chromosomic DNA),

respectively. Arrow heads highlight some examples of nanoparticle clusters

deeply embedded in between villi. Scale bar 300 µm. Images are

representative of three mice.

different possibilities for delivery routes of NPs, our results
are parallel to those reported in a previous study where NPs
were administered by oral gavage in low volumes to mice
(Maisel et al., 2015). In particular, data from our model in
tandem with this last study seems to reinforce that the behavior
of PEO-modified NPs is not affected by gastric residence (as
would occur upon gavage), assuming that poloxamer adsorption
is stable enough to withstand the harsh environment of the
stomach. Since the amount of NPs reaching the region of
interest was complete in the case of our model, it seems
plausible to assure that the results previously reported for
PEO-modified particles were not biased by the possibility of
pre-jejunal sorting and retention of a population of adhesive
particles. This information from focal analysis of NP transport
at the jejunum may also be important in cases when poor
performance of delivery systems is indeed affected by gastric
residence.

CONCLUSION

In this work we developed a new mouse intra-intestinal infusion
model and used it successfully for studying the distribution
of different type of NPs upon direct administration into the
jejunum. Results confirmed previous data that MPP are able to
better penetrate intestinal folding in between villi as compared to
MAP. We believe that the proposed model may further be useful
for several other applications, namely in identifying specific
sites for drug absorption, characterizing the intra-intestinal

metabolism of drugs and assess focal toxicity of drugs and
delivery systems, to name a few.
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