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Abstract: Nutritional manipulations in the neonatal period are associated with the development of
negative or positive health outcomes later in life. Excessive fructose consumption has been attributed
to the increase in the global prevalence of metabolic syndrome (MetS) and the development of
oxidative stress. Oleanolic acid (OA) has anti-diabetic and anti-obesity effects. We investigated the
protective potential of orally administering OA in the neonatal period, to prevent fructose-induced
oxidative stress, adverse health outcomes and maturation of the gastrointestinal tract (GIT) in suckling
rats. Seven-day old Sprague-Dawley rats (N = 30) were gavaged daily with 10 mL/kg of: distilled
water (DW), oleanolic acid (OA; 60 mg/kg), high fructose solution (HF; 20% w/v), or OAHF for 7 days.
On day 14, tissue samples were collected to determine clinical health profiles, hepatic lipid content,
and activity of anti-oxidant enzymes. Furthermore, biomarkers of oxidative stress and anti-oxidant
capacity in the skeletal muscles were assessed. The gastrointestinal tract (GIT) morphometry was
measured. Rats in all groups grew over the 7-day treatment period. There were no significant
differences in the terminal body masses, GIT morphometry, surrogate markers of general health,
liver lipid content across all treatment groups (p < 0.05). Neonatal fructose administration decreased
the activity of catalase, depleted GSH and increased lipid peroxidation. However, the level of GSH
and catalase activity were improved by neonatal OA treatment. Short-term oral OA administration
during the critical developmental period protects against fructose-induced oxidative stress without
adverse effects on health outcomes associated with MetS or precocious development of the GIT in
suckling male and female rats.
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1. Introduction

Metabolic syndrome (MetS) is a prevalent, multifactorial and complex disease that is associated with
a marked increase in the risk to develop metabolic disorders and major cardiovascular consequences [1,2].
According to the global survey data on 195 countries, there are over 600 million obese adults and
100 million obese children [3]. The rise in the global prevalence of MetS has been attributed to the
adoption of sedentary lifestyles that are characterised by low physical activity or exercise and the
consumption of high-energy diets, especially those that contain fructose [4,5]. The excessive consumption
of fructose causes the development of several negative health outcomes associated with metabolic
dysfunction such as cardiovascular disease, diabetes mellitus and dyslipidaemia [6,7]. Obesity is
regarded as the main causative factor in the development of health outcomes associated with MetS [8].

The accumulation of adipose tissue in obesity causes systemic oxidative stress through the production
of reactive oxygen species (ROS) from the accumulating adipose tissue [9,10]. The overproduction of
ROS by adipocytes contributes to the development of metabolic disorders by decreasing the expression
of anti-oxidant enzymes [11]. Oxidative stress, a result of the inability of the anti-oxidant cellular
defense mechanisms to reduce ROS, also causes dysregulation of adipocytokines, increases the levels
of pro-inflammatory cytokines and oxidative damage by altering mitochondrial bioenergetics [12,13].
Oxidative stress from ROS is also known to cause the development of chronic inflammation by
increasing the levels of pro-inflammatory cytokines such as tumour necrosis factor alpha (TNF-α),
interleukin-6 (IL-6), and interleukin-1 (IL-1) [14]. Studies performed in adult animal experimental models
of metabolic disorders have shown that the activation of cytoprotective anti-oxidant genes can suppress
the development of oxidative stress associated with MetS [8,15]. Therapeutic approaches that reduce
oxidative stress will, therefore, contribute to the improvement of glycaemic control and prevention of
metabolic complications of MetS and T2DM [16].

Rats are an altricial species and consequently the pups are born in a relatively underdeveloped
state compared to precocial species. Thus, significant post-natal development (which would otherwise
occur in utero in preococial species) occurs in altricial species. Consequently, the early neonatal
period (first couple of days) in rats is comparable to the last gestational trimester of in utero human
development [17–19]. This makes the neonatal period of rat development a critical window of
developmental plasticity in which the development of the physiological systems of the pups can be
influenced [20]. Animal and epidemiological studies have shown that dietary and pharmacological
manipulations during the perinatal suckling period have long-lasting and sometimes irreversible
effects in adulthood [21–24]. This means that developmental programming in rats is not only limited
to the in utero environment but continues even in the early postnatal period (lactation) where there is
continuous growth, rapid development and maturation of various physiological systems [25].

The effect of diet and nutrition, during the neonatal period, on neonatal growth and physiology
is important not only because this is a critical stage of developmental plasticity, but also because it
potentially has long-lasting positive or negative effects on health in adulthood. Any ingested dietary
material contacts the gastrointestinal tract (GIT) first, for digestion and absorption. The GIT is a
source of several peptides and hormones that are involved in regulating GIT function and general
metabolism [26,27]. Dietary or nutritional manipulations during the neonatal period may therefore
cause long-term irreversible positive or negative effects on the development of the GIT and its
metabolic function. Some studies in which bioactive phytochemicals in medicinal plant extracts
were administered during the suckling period have shown that phytochemicals had a trophic effect on
the GIT and caused precocious maturation of the GIT [28]. Due to the limited data from epidemiological
and human interventional trials in early life, the role of dietary manipulations on the development
of the neonatal GIT using neonatal animal models holds the key to understanding the nutritional
interaction during this important developmental period. Due to the rapid growth, development and
sensitivity of the GIT during the neonatal period, the neonatal suckling rat is an important experimental
model for studying GIT development in early life.
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Existing management protocols for the components of MetS involve changes in lifestyle
and the use of pharmaceutical and dietary phytochemical agents that target specific biochemical
pathways involved in the metabolism of nutrients [29,30]. Phytochemicals have been used alone
as nutraceuticals or in combination with standard treatments in the management of MetS [31].
For this study, we selected oleanolic acid (OA), a bioactive triterpenoid phytochemical, due to its
proven beneficial pharmacological properties such as anti-diabetic [31,32], hypoglycaemic [33] and
anti-oxidant activities [34,35]. OA is also readily available in foodstuffs such as virgin olive oil, fruits
and some commonly used medicinal plants [36–38]. The anti-diabetic effects of OA observed in adult
animal studies has been attributed to its ability to preserve β-cell functionality, improving insulin
sensitivity and attenuating fructose-induced hyperglycaemia [39,40]. OA has been shown to exhibit
its anti-oxidant properties through enhancing the expression and activity of anti-oxidant enzymes
such as glutathione peroxidase (GPx1) and superoxide dismutase (SOD2) [41,42]. An increase in
the activity of the anti-oxidant enzymes reduces free radicals and lipid peroxidation [37]. A study
conducted in insulin-resistant adult rats showed that OA administration prevented mitochondrial
oxidative stress via the activation of nuclear factor (erythroid-derived 2)-like 2-glutamate cysteine
ligase (Nrf2-GCLC) signal [37,43]. The anti-oxidant effect of OA is therefore beneficial in the treatment
and prevention of metabolic disorders induced by oxidative stress, especially when it is administered
in the neonatal period. Previous studies on the beneficial pharmacological effects of OA on MetS have
mainly been performed in adult rats and not in suckling rats, especially in the early post-natal period,
which is considered as a critical phase of development during which epigenetic changes are likely to
cause metabolic changes that exert lifelong effects into adulthood. Moreover, despite the widespread
beneficial properties of OA, there seems to be limited knowledge on whether its administration in the
neonatal period could protect against oxidative stress, the development of negative health outcomes
and precocious maturation of the GIT induced by the administration of fructose in the neonatal period.
The current study sought to investigate the potential protective effect of neonatal oral administration
of OA against fructose-induced oxidative damage, the development of adverse health outcomes and
precocious maturation of the GIT in suckling male and female pups.

2. Results

2.1. The Effect of Neonatal Oral Administration of Oleanolic Acid on Growth Performance in Suckling Male
and Female Rats

The rat pups in all treatment groups exhibited a significant increase (p < 0.05; Figure 1a) in body
mass over the seven day treatment period (PD7 to PD14). There were no significant differences in
the induction and terminal body masses across all the treatment groups (p > 0.05; Figure 1b) or in the
linear growth parameters such as femoral and tibial bone masses, lengths and bone densities, across
the different treatment groups (p > 0.05; Table 1).
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with 10 mL/kg body mass of oleanolic acid (60 mg/kg) in the neonatal phase (n = 8); HF = gavaged 
daily with 10 mL/kg of 20% (w/v) fructose solution in the neonatal phase (n = 7); OAHF = gavaged 
daily with 10 mL/kg body mass of oleanolic acid (60 mg/kg) and 20% (w/v) fructose solution in the 
neonatal period (n = 7). 

Table 1. The effect of neonatal oral administration of oleanolic acid on tibial and femoral masses, 
lengths and Seedor indices in suckling male and female pups. 

Parameter DW OA  HF OAHF 
Tibia      

Mass (mg) 38.50 ± 1.4 35.9 ± 2.0 37.6 ± 1.1 34 ± 2.8 
Length (mm) 15.2 ± 0.7 15 ± 0.8 17.1 ± 0.9 14.8 ± 0.9 

¥ Seedor index (mg/mm) 2.5 ± 0.1 2.4 ± 0.1 2.2 ± 0.1 2.30 ± 0.1 
Femur     

Mass (mg) 37.8 ± 5.8 33.5 ± 4.5 37.6 ± 8.5 34.1 ± 5.5 
Length (mm) 11.4 ± 0.9 11.6 ± 0.7 11.9 ± 1.7 11.1 ± 1.5 

Seedor index (mg/mm) 3.3 ± 0.5 2.9 ± 0.3 3.2 ± 0.4 3.1 ± 0.4 
Data presented as mean ± standard deviation. DW = gavaged daily with 10 mL/kg body mass of 
distilled water with 0.5% (v/v) dimethyl sulphoxide in the neonatal phase (n = 8); OA = gavaged daily 
with 10 mL/kg body mass of oleanolic acid (60 mg/kg) in the neonatal phase (n = 8); HF = gavaged 
daily with 10 mL/kg of 20% (w/v) fructose solution in the neonatal phase (n = 7); OAHF = gavaged 
daily with 10 mL/kg body mass of oleanolic acid (60 mg/kg) and 20% (w/v) fructose solution in the 
neonatal period (n = 7). ¥ Seedor index = bone density in mg/mm. 
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Figure 1. The effect of neonatal oral administration of oleanolic acid on the growth rates (a) and the
induction (postnatal day 7) and terminal (postnatal day 14) (b) of suckling male and female pups.
Data presented as mean ± standard deviation. * Significant increase in body mass from induction to
termination for all treatment groups (p < 0.05). DW = gavaged daily with 10 mL/kg body mass of
distilled water with 0.5% (v/v) dimethyl sulphoxide in the neonatal phase (n = 8); OA = gavaged daily
with 10 mL/kg body mass of oleanolic acid (60 mg/kg) in the neonatal phase (n = 8); HF = gavaged
daily with 10 mL/kg of 20% (w/v) fructose solution in the neonatal phase (n = 7); OAHF = gavaged
daily with 10 mL/kg body mass of oleanolic acid (60 mg/kg) and 20% (w/v) fructose solution in the
neonatal period (n = 7).

Table 1. The effect of neonatal oral administration of oleanolic acid on tibial and femoral masses,
lengths and Seedor indices in suckling male and female pups.

Parameter DW OA HF OAHF

Tibia
Mass (mg) 38.50 ± 1.4 35.9 ± 2.0 37.6 ± 1.1 34 ± 2.8

Length (mm) 15.2 ± 0.7 15 ± 0.8 17.1 ± 0.9 14.8 ± 0.9
¥ Seedor index (mg/mm) 2.5 ± 0.1 2.4 ± 0.1 2.2 ± 0.1 2.30 ± 0.1

Femur
Mass (mg) 37.8 ± 5.8 33.5 ± 4.5 37.6 ± 8.5 34.1 ± 5.5

Length (mm) 11.4 ± 0.9 11.6 ± 0.7 11.9 ± 1.7 11.1 ± 1.5
Seedor index (mg/mm) 3.3 ± 0.5 2.9 ± 0.3 3.2 ± 0.4 3.1 ± 0.4

Data presented as mean ± standard deviation. DW = gavaged daily with 10 mL/kg body mass of distilled water
with 0.5% (v/v) dimethyl sulphoxide in the neonatal phase (n = 8); OA = gavaged daily with 10 mL/kg body mass of
oleanolic acid (60 mg/kg) in the neonatal phase (n = 8); HF = gavaged daily with 10 mL/kg of 20% (w/v) fructose
solution in the neonatal phase (n = 7); OAHF = gavaged daily with 10 mL/kg body mass of oleanolic acid (60 mg/kg)
and 20% (w/v) fructose solution in the neonatal period (n = 7). ¥ Seedor index = bone density in mg/mm.

2.2. Effect of Neonatal Oral Administration of Oleanolic Acid on the Gastrointestinal Tract (GIT) and Viscera
Organ Morphometry in Suckling Male and Female Pups

There were no significant differences in the lengths and relative masses of the small and large
intestines, as well as the absolute and relative masses of the caecum, stomach and kidneys across the
different treatment groups (p > 0.05; Table 2).

Table 2. The effect of neonatal oral administration of oleanolic acid on the lengths, absolute and relative
weights of visceral organs in suckling male and female pups.

Parameter DW OA HF OAHF

SI (cm) 54.44 ± 9.23 46.75 ± 16.48 52.24 ± 5.06 53.34 ± 8.59
SI (g) 0.74 ± 0.19 0.74 ± 0.22 0.84 ± 0.27 0.93 ± 0.32

SI ¥ rTL 0.49 ± 0.14 0.45 ± 0.15 0.49 ± 0.14 0.62 ± 0.19
LI (cm) 7.09 ± 0.79 6.63 ± 2.72 7.64 ± 0.56 7.47 ± 0.55
LI (g) 0.12 ± 0.01 0.13 ± 0.02 0.13 ± 0.02 0.13 ± 0.03
LI rTL 0.08 ± 0.01 0.08 ± 0.02 0.08 ± 0.00 0.09 ± 0.01

Liver (g) 0.90 ± 0.17 0.94 ± 0.17 0.94 ± 0.16 1.01 ± 0.21
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Table 2. Cont.

Parameter DW OA HF OAHF

Liver rTL 0.60 ± 0.13 0.63 ± 0.13 0.55 ± 0.10 0.68 ± 0.13
Caecum (g) 0.08 ± 0.02 0.06 ± 0.03 0.07 ± 0.01 0.07 ± 0.02
Caecum rTL 0.04 ± 0.02 0.04 ± 0.02 0.04 ± 0.00 0.05 ± 0.01
Stomach (g) 0.21 ± 0.02 0.21 ± 0.05 0.20 ± 0.03 0.20 ± 0.01
Stomach rTL 0.14 ± 0.02 0.14 ± 0.03 0.12 ± 0.02 0.13 ± 0.01
Kidneys (g) 0.38 ± 0.04 0.27 ± 0.04 0.38 ± 0.03 0.32 ± 0.14
Kidneys rTL 0.25 ± 0.03 0.27 ± 0.04 0.23 ± 0.03 0.22 ± 0.10

Data presented as mean ± standard deviation. DW = gavaged daily with 10 mL/kg body mass of distilled water
with 0.5% (v/v) dimethyl sulphoxide in the neonatal phase (n = 8); OA = gavaged daily with 10 mL/kg body
mass of oleanolic acid (60 mg/kg) in the neonatal phase (n = 8); HF = gavaged daily with 10 mL/kg of 20% (w/v)
fructose solution in the neonatal phase (n = 7); OAHF = gavaged daily with 10 mL/kg body mass of oleanolic acid
(60 mg/kg) and 20% (w/v) fructose solution in the neonatal period (n = 7); LI = large intestine; SI = small intestine;
¥ rTL = organ masses expressed relative to tibial length (g/cm).

2.3. The Effect of Neonatal Oral Administration of Oleanolic Acid on the General Clinical Health Profiles in
Suckling Male and Female Pups

There were no significant differences (p > 0.05; Table 3) in the activities/concentrations of surrogate
markers of hepatic function (alanine amino transaminase and non-tissue specific alkaline phosphatase),
hepatic lipid content, the surrogate markers of renal function (blood urea nitrogen and creatinine).
There were also no significant differences in the general clinical biochemistry (phosphate, calcium, total
protein, albumin, globulin, glucose and cholesterol) and the concentrations of circulating metabolic
substrates (cholesterol and glucose), across all the treatment groups (p > 0.05; Table 3).

Table 3. The effects of neonatal oral administration of oleanolic acid on biomarkers of renal and hepatic
function, hepatic lipid storage, general clinical biochemistry and the concentrations of circulating
metabolic substrates in suckling male and female pups.

Parameter DW OA HF OAHF

BUN (mmol/L) 4.6 ± 0.7 4.2 ± 0.9 5.2 ± 0.6 4.3 ± 0.5
CREA (µmol/L) 16.9 ± 3.2 18 ± 0 10.3 ± 3.4 14.4 ± 7.1
TBIL (µmol/L) 4 ± 2.7 5.5 ± 3.3 8 ± 3.8 4.12 ± 2.1

PHOS (mmol/L) 2.8 ± 0.2 3.17 ± 0.5 2.9 ± 0.3 3.2 ± 0.3
CAL (mmol/L) 2.7 ± 0.4 2.0 ± 0.9 2.3 ± 0.6 2.5 ± 0.7
TPROT (g/L) 38.1 ± 4.1 41.3 ± 3.7 41.4 ± 5.2 40 ± 3.0

ALB (g/L) 21.1 ± 2.9 19.5 ± 2.4 20.17 ± 2.7 19.3 ± 1.6
GLOB (g/L) 17 ± 4.5 21.7 ± 2.0 21.3 ± 1.2 20.4 ± 2.9
ALT (U/L) 35 ± 5.9 45 ± 14.1 51.8 ± 15.5 43.9 ± 7.2
ALP (U/L) 299.1 ± 63.8 309.3 ± 58.5 394.3 ± 70.3 269.4 ± 62.7

* Hepatic lipid content (%) 2.8 ± 0.0 2.7 ± 0.0 3.2 ± 0.0 3.2 ± 0.0
Glucose (mmol/L) 7.8 ± 1.3 7.6 ± 1.0 8.1 ± 0.3 8.5 ± 1.7

Cholesterol (mmol/L) 4.3 ± 0.4 4.3 ± 0.5 4.3 ± 0.5 4.4 ± 0.8

Data presented as mean ± standard deviation. DW = gavaged daily with 10 mL/kg body mass of distilled water
with 0.5% (v/v) dimethyl sulphoxide in the neonatal phase (n = 8); OA = gavaged daily with 10 mL/kg body
mass of oleanolic acid (60 mg/kg) in the neonatal phase (n = 8); HF = gavaged daily with 10 mL/kg of 20% (w/v)
fructose solution in the neonatal phase (n = 7); OAHF = gavaged daily with 10 mL/kg body mass of oleanolic acid
(60 mg/kg) and 20% (w/v) fructose solution in the neonatal period (n = 7). BUN = blood urea nitrogen; TBIL = total
bilirubin; ALB = albumin; CREA = creatinine; PHOS = phosphate; CAL = calcium; TPROT = total protein; GLOB =
globulin; ALT = alanine amino transaminase; ALP = alkaline phosphatase; * Hepatic lipid content expressed as a
percentage of liver mass.

2.4. The Effect of Neonatal Oral Administration of Oleanolic Acid on Anti-Oxidant Enzyme Activity in the
Skeletal Muscles of Suckling Male and Female Pups

The administration of high fructose solution in the neonatal period significantly increased
the activities of GPx and SOD when compared with the control groups (DW) while treatment of
fructose-fed rats with OA did not show significant differences in both GPx and SOD (Table 4). There
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was a decreased activity of CAT in HF group when compared with the control group (DW). Neonatal
treatment with OA prevented fructose-induced decrease in the activity of CAT (p < 0.05; Table 4).

Table 4. The effects of neonatal oral administration of oleanolic acid on the activities of antioxidant
enzymes in the skeletal muscles of suckling male and female pups.

Parameter DW OA HF OAHF

GPx (µM/mg protein) 308.5 ± 19.4 a 627.5 ± 45.7 b 555.3 ± 29.3 b 533.2 ± 31.1 b

SOD activity (% tissue inhibition rate) 78.2 ± 3.6 a 93.4 ± 0.9 b 96.6 ± 0.4 b 94.1 ± 1.2 b

CAT activity (kU/L) in tissue 1.1 ± 0.0 a 1.4 ± 0.1 b 0.5 ± 0.0 c 1.0 ± 0.0 ad

Data presented as mean ± standard deviation. Identical letters indicate no significant differences while different
letters indicate significant differences at p < 0.05 across all groups. DW = gavaged daily with 10 mL/kg body mass
of distilled water with 0.5% (v/v) dimethyl sulphoxide in the neonatal phase (n = 8); OA = gavaged daily with
10 mL/kg body mass of oleanolic acid (60 mg/kg) in the neonatal phase (n = 8); HF = gavaged daily with 10 mL/kg
of 20% (w/v) fructose solution in the neonatal phase (n = 7); OAHF = gavaged daily with 10 mL/kg body mass
of oleanolic acid (60 mg/kg) and 20% (w/v) fructose solution in the neonatal period (n = 6). GPx = Glutathione
peroxidase, SOD = Superoxide dismutase, CAT = Catalase. Data in the same row with different superscripts is
significantly different (p < 0.05).

2.5. The Effect of Neonatal Oral Administration of Oleanolic Acid on Antioxidant Capacity in the Skeletal
Muscles of Suckling Male and Female Pups

The anti-oxidant capacity as measured by the Ferric Reducing Antioxidant Power (FRAP) and
Trolox Equivalent Antioxidant Capacity (TEAC) is shown in Table 5.

Table 5. The effects of neonatal oral administration of oleanolic acid on the antioxidant capacity in the
skeletal muscles of suckling male and female pups.

DW OA HF OAHF

TEAC µM/mL) 356.4 ± 13.4 a 392.8 ± 5.79 a 469.3 ± 11.9 b 393.9 ± 12.4 a

FRAP (µM/mL) 36.98 ± 5.24 a 30.16 ± 2.54 a 30.22 ± 1.68 a 36.95 ± 4.56 a

Data presented as mean ± standard deviation. Similar letters indicate no significant differences while different
letters indicate significant differences at p < 0.05 across all groups. DW = gavaged daily with 10 mL/kg body mass
of distilled water with 0.5% (v/v) dimethyl sulphoxide in the neonatal phase (n = 8); OA = gavaged daily with
10 mL/kg body mass of oleanolic acid (60 mg/kg) in the neonatal phase (n = 8); HF = gavaged daily with 10 mL/kg
of 20% (w/v) fructose solution in the neonatal phase (n = 7); OAHF = gavaged daily with 10 mL/kg body mass of
oleanolic acid (60 mg/kg) and 20% (w/v) fructose solution in the neonatal period (n = 6). TEAC = Trolox equivalent
anti-oxidant capacity; FRAP = Ferric reducing anti-oxidant power. Data in the same row with different superscripts
is significantly different (p < 0.05).

In this study, there was a significant increase in TEAC value in HF group when compared with
the control group (DW) while treatment of fructose-fed rats with OA did not show any significant
difference. There were no significant differences in the FRAP values across all groups.

2.6. The Effect of Neonatal Oral Administration of Oleanolic Acid on Oxidative Stress Biomarkers in the
Skeletal Muscles of Suckling Male and Female Pups

Administration of high fructose solution in the neonatal period resulted in a significant increase
in the level of malondialdehyde (MDA) when compared to the control group (p < 0.05; Figure 2a).
There was no significant difference in lipid peroxidation in the HF group when compared with OAHF.
Treatment with OA alone also significantly increased (p < 0.05) lipid peroxidation when compared
with the control group (DW), but this increase was significantly lower than in the HF groups (p < 0.05).
The levels of glutathione in high fructose-fed rats were significantly lower in HF group when compared
with the other groups (DW, OA and OAHF). (p < 0.05; Figure 2b). The decrease in total glutathione
levels due to high fructose administration was attenuated by the neonatal administration of OA
(p < 0.05). There were no significant differences in the nitrite levels across all the treatment groups
(p > 0.05; Figure 2c).
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Figure 2. The effect of neonatal oral administration of oleanolic acid on the level of oxidative stress
biomarkers in the skeletal muscles of suckling male and female pups (a) total glutathione (GSH) level
(b) and nitrite concentration (c) in suckling male and female pups. Data presented as mean ± standard
deviation. Bars having same alphabets indicate no significant differences while bars with different
alphabets indicate significant differences at p < 0.05 across all groups. DW = gavaged daily with
10 mL/kg body mass of distilled water with 0.5% (v/v) dimethyl sulphoxide in the neonatal phase
(n = 8); OA = gavaged daily with 10 mL/kg body mass of oleanolic acid (60 mg/kg) in the neonatal
phase (n = 8); HF = gavaged daily with 10 mL/kg of 20% (w/v) fructose solution in the neonatal phase
(n = 7); OAHF = gavaged daily with 10 mL/kg body mass of oleanolic acid (60 mg/kg) and 20% (w/v)
fructose solution in the neonatal period (n = 6). Data in the same row with different superscripts is
significantly different (p < 0.05).

3. Discussion

This study was designed to investigate the potential protective effect of neonatal (7 days) oral
administration oleanolic acid against fructose-induced oxidative stress in the skeletal muscles as well
as the development of negative health outcomes and precocious maturation of the GIT in suckling
male and female pups. We showed that short-term neonatal administration of OA protected against
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fructose-induced oxidative stress, had no adverse effects on health and did not cause precocious
growth of the GIT in suckling male and female rats.

3.1. The Effect of Neonatal Oral Administration of Oleanolic Acid on Growth Performance in Suckling Male
and Female Pups

Findings from this study showed that administering OA neonatally via orogastric gavage did
not have negative effects on the growth of male and female suckling rats over the 7-day experimental
treatment period. Although not statistically significant, high fructose diet (HF) had a moderate growth
promoting effect over the same treatment period. Several studies have shown that nutritional [44] and
pharmacological [45] manipulation during the early neonatal phase of development has an effect on
growth rate and pattern of rats. The growth performance in neonatal animals can have a bearing on
physiological systems in adulthood [46,47]. Low birth weight in humans and poor nutrition during the
neonatal period affects growth performance and has been associated with the development of chronic
illnesses such as hypertension, type 2 diabetes mellitus (T2DM), and obesity later in adult life [48,49].

Body mass changes have previously been used as a measure of growth in rodent studies, but due
to fluctuations in factors such as the hydration status of animals and food intake, body mass is deemed
to be an unreliable index of growth [50]. Consequently, the use of tibial length as a reliable indicator
of linear growth is recommended [51]. Tibiae from rat pups treated with OA and HF had similar
lengths compared to the rest of the treatment groups, including the control. This finding further
confirms (as shown by the body masses) the non-toxic effects of OA on linear growth in male and
female suckling pups. To further assess growth performance, plasma samples could have been used to
measure insulin-like growth factor-1 (IGF-1), a hormone that plays an important role in coordinating
balanced growth among multiple tissues and organs [52]. However, due to the size of the animals at
termination, the volume of blood samples collected were inadequate to perform hormonal assays in
addition to the blood for biochemical assays which were undertaken.

3.2. The Effect of Neonatal Oral Administration of Oleanolic Acid on the Gross Morphometry of the Abdominal
Viscera in Male and Female Suckling Pups

Our results also show that neonatal oral administration of OA did not have any apparent effects
on the morphometry of the GIT and accessory structures of the GIT, suggesting that administration of
OA does not induce precocious development of the GIT and may not have adverse effects on gut health
in neonates. Determination of the morphological characteristics of the developing GIT in neonates
has been used as reliable criteria for assessing the effects of dietary treatments on the physiology of
neonatal animals [53]. The first port of call for all ingested food is the gastrointestinal tract (GIT),
an organ system whose primary function is to digest, produce metabolic regulatory hormones and
peptides, extract and absorb nutrients from ingested food among other functions. The GIT is also
under direct exposure to the food that we ingest, as such any variations in dietary intake may affect
its functionality [54]. Ingested food triggers the release of regulatory hormones and peptides from
enteroendocrine cells of the GIT resulting in the modification of GIT function. Unlike the precocious
GIT of man which is normally functional at birth, the altricial rat GIT is relatively undeveloped at
birth and all of the functional development occurs in the early postnatal period [55]. The GIT of the
rat is functionally immature for the first 2 weeks of life, this is followed by rapid development and
extensive changes in week 3 [56]. Maturation of the rat GIT occurs by the replacement of cells rather
than modification of existing cells and the mucosal mass of the rat becomes fairly constant after about
40 days [57]. Previous studies have shown that the phytochemical consumption during the neonatal
period promote the increase in the growth of the GIT [58] and the caecum [28].

As a result dietary changes introduced during suckling, a period of developmental plasticity,
could be a potential cause of several diseases, dysfunction of the GIT or positive health outcomes later
in adult life [59]. In fact, research has indicated that the alteration in the dietary composition in the early
post-natal period has a causal role in metabolic and digestive development in the intestines [60–62].
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The ingestion of fructose during suckling has been shown to increase body weight and fatty acid
uptake into skeletal muscle in adult rats [63].

3.3. The Effect of Neonatal Oral Administration of Oleanolic Acid on the General Clinical Health Profiles in
Suckling Male and Female Pups

3.3.1. Surrogate Markers of Liver Function

Findings from the current study show that neonatal fructose and OA administration did not
affect circulating serum level of the biomarkers of liver function and possibly did not cause adverse
hepatocellular changes. Previous studies in adult rats have shown that OA ameliorates hepatic
injury and lowers the levels of liver function enzymes after feeding fructose in a dose-dependent
manner [64,65]. The liver plays an important role in the metabolism of nutrients such as carbohydrates,
lipids and proteins [66–68]. The liver also detoxifies harmful chemicals and drugs [68]. Excessive
exposure of the liver to dietary and pharmacologic toxic substances may cause hepatocellular damage,
particularly the structural integrity of the parenchymal hepatocytes which may affect the hepatic
physiology [69]. It is possible that the failure to develop impaired hepatic function following
neonatal administration of high fructose solution may be attributed to the absence of GLUT5 fructose
transporters whose expression increases post-weaning [70].

In the absence of terminal histology of liver samples, as was the case in this study due to the
lack of adequate samples, it is recommended to measure serum or plasma concentration of surrogate
biomarkers of liver function for animal experimental research [71]. Surrogate biomarkers of liver
function include TP, ALP, AST, ALT and TBIL among others [71]. Total protein gives an estimate of
both ALB and GLOB and can also be used to interpret the functional integrity of the liver. Serum ALB
indicates the nutritional status and the liver’s synthetic ability, as such any changes in ALB may reflect
hepatobiliary irregularities [72].

The commonly measured biomarker of hepatocellular damage which was measured in this
study was ALT [73]. ALT is a cytosolic enzyme that is released into the blood after the damage to
hepatocytes [74]. Unlike ALP, a non-tissue specific enzyme which is produced by several sources such
as bone metabolism and uterus [75], ALT is a reliable measure of the extent of liver damage and the
potential hepatotoxicity of pharmaceutical drugs or dietary components [76]. The lack of significant
increases in the circulating levels of ALT in suckling rats that received OA suggests that OA had no
marked hepatotoxic effects on liver function. Therefore, it is safe to use in the neonatal period.

3.3.2. Renal Function and General Clinical Biochemistry

We also assessed renal function in the pups by measuring the serum concentrations of
creatinine, BUN, phosphate, calcium and albumin. Our results showed that short-term neonatal
oral administration of OA neither altered renal function nor affected the general clinical health of the
suckling male and female pups. Kidneys are important in the homeostatic regulation of body fluids
osmolarity, acid-base balance and blood pressure. They also work together with the liver to detoxify
and excrete metabolic waste by-products. Creatinine and urea are the most reliable clinical estimates of
glomerular filtration rate (GFR), a standard index of renal function [77]. Increased serum concentration
of urea and creatinine reflect considerable damage to the kidneys particularly renal tubular function
and filtration at the glomerular filtration membrane [78]. The lack of significant changes in plasma
urea and creatinine in OA-treated rat pups suggest that neonatal oral administration of OA has no
adverse effects on renal function.

3.3.3. Hepatic Lipid Storage and Biomarkers of Metabolic Function

There were no differences observed in hepatic lipid content in male and female suckling pups
administered with OA, suggesting that neonatal OA administration had no apparent effects on hepatic
lipid content in the suckling rats. In addition to detoxifying xenobiotic substances, the liver plays a
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major role in the metabolism of various nutrients [79]. The liver is the primary organ in lipogenesis,
gluconeogenesis and cholesterol metabolism [80,81]. Metabolic syndrome induces a change in hepatic
lipid and carbohydrate metabolism which ultimately causes accumulation and storage of lipids in
the liver [79]. This leads to hepatocellular changes associated with non-alcoholic liver disease [82].
The lipids that are stored in the liver come from circulating free fatty acids that are derived from
the dysregulation of peripheral lipolysis [80]. The non-fasting plasma glucose and cholesterol levels
following the 7-day treatment period were not different across all the treatment groups. This possibly
suggests that short-term administration of OA did not negatively affect hepatic glucose and cholesterol
metabolism. The rat pups were also not fasted at the time of tissue sampling and this may have affected
the findings in our study.

3.4. The Effect of Neonatal Oral Administration of Oleanolic Acid on the Activities of Anti-Oxidant Enzymes
and Oxidative Stress Biomarkers in the Skeletal Muscles of Suckling Male and Female Pups

We showed that neonatal administration of fructose decreases the activity of CAT, and causes a
significant increase in the activities of SOD and GPx in the skeletal muscles. The increase in SOD and
GPx activities could be due to more induction of these antioxidant enzymes in helping to scavenge
the excessive ROS produced by fructose consumption. The results also showed that OA neonatal
supplementation was able to improve the activity of the catalase. It has been reported that fructose
causes a significant decrease in the GPx, SOD and CAT activities which in turn accelerates ROS
production and potential cellular oxidative oxidative damage [83]. Oxidative stress contributes to
the development of metabolic disorders and the damage of macromolecules such as DNA, proteins
and lipids ([84]. The activity of anti-oxidant enzymes such as GPx, SOD and CAT is important in
the protection of cells against ROS-induced cellular damage [85]. Lipid peroxidation which is caused
as a result of the effects of free radicals on lipids having unsaturated fatty acids with more than
one double bond could impair the biological membranes’ structure and function in tissues such as
skeletal muscles, kidney and liver [86]. The results showed a significant increase in lipid peroxidation
(Figure 2a) in the HF group than control, OA and OA + HF treated groups. This indicates that the
level of lipid peroxidation; a biomarker of oxidative stress expressed as the degree of accumulation of
malondialdehyde (MDA) was significantly increased presumably due to oxidative stress. However,
there was no significant effect on lipid peroxidation in the HF group with OA treatment. Although
OA treatment alone increased the lipid peroxidation it was less than the impact of HF. The biological
significance therefore may be minimal.

The balance between the generation of ROS and the expression/activity antioxidant enzymes is
very vital to the maintenance of muscle homeostasis [87]. The investigation also showed a reduction
in the concentration of GSH (Figure 2b) in HF group as compared to OA, control and OA + HF
groups. Therefore the depletion observed in the HF group was prevented as shown by the significant
increase in GSH when treated with OA. Glutathione which reduces oxides, such as hydrogen peroxide,
thus protects the DNA from oxidative stress during cell division and growth. In a preclinical study,
high fructose diet decrease GSH content in both liver and brain [88]. It can be deduced from this study
that the HF diet depleted GSH content in the pups while supplementation with OA increased the GSH
content. The nitrite concentrations in all the groups were insignificant.

4. Materials and Methods

4.1. Ethical Clearance and Study Site

The study was conducted according to the International Standards of Care and Use of Animals in
Research, and approved by the Animal Ethics Screening Committee (AESC) of the University of the
Witwatersrand, Johannesburg, South Africa (AESC ethical clearance number: 2014/47/D). The in vivo
component of the study was conducted in the multi-purpose animal unit of the Central Animal Services
at the University of the Witwatersrand, South Africa.
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4.2. Experimental Animals and Housing

The experiments were performed on the litters of five nursing Sprague Dawley (Rattus norvegicus)
dams each with between 8–12 (average 10) rat pups, supplied by the Central Animal Services,
University of the Witwatersrand. Each dam and its respective litter were housed in the same acrylic
cages with stainless steel mesh lids. Wood shavings were used as bedding and changed twice a week.
The room temperature was maintained at 25 ± 2 ◦C. Dams and the rat pups were placed on a 12-h
light and dark cycle (with lights on at 07:00 am). There was adequate positive pressure ventilation
of the room at all times. The rat pups were marked on their tails with different colour-codes using
permanent markers containing non-toxic ink for easy identification. The dams did not receive any
experimental treatment but were provided with normal commercial rat chow (Epol®, Johannesburg,
South Africa) and water ad libitum throughout the suckling period. During the 7-day experimental
period, dams were allowed to freely nurse until euthanasia of the rat pups on postnatal day (PD) 14.
The dams were also weighed twice a week as part of the routine health monitoring and were returned
to stock immediately after euthanasia of their rat pups.

4.3. Study Design and Dietary Treatments

The 5-day old rat pups were weighed on the PD5 following parturition and given a day for
acclimatization before receiving treatments. On PD6 the rat pups were randomly allocated into four
treatment groups each consisting of a minimum of seven mixed male and female rat pups. Rat pups in
each litter were assigned to different groups to avoid dam-effect bias. The pups were weighed daily
to adjust treatment dosage per body mass and, received the following treatments: Group 1: Control
(DW)—distilled water with 0.5% (v/v) dimethyl sulphoxide which was used as a vehicle control;
Group 2: Oleanolic acid (OA)—in which oleanolic acid (60 mg/kg body mass) was administered to
investigate the effects of OA alone; Group 3: High fructose solution (HF)—in which rat pups were
administered 20% (w/v) high fructose solution to induce metabolic dysfunction; Group 4: Oleanolic
acid and high fructose diet (OAHF)—in which a combination of oleanolic acid (60 mg/kg body mass)
and 20% (w/v) high fructose solution was administered to investigate the protective effects of the OA.

All treatments were administered once daily in the morning (09:00–10:00), for seven days (PD7 to
PD13), at a volume of 10 mL/kg body mass via orogastric gavage. After administration of treatments,
all the rat pups were monitored for 20 min for unusual behavioural changes and clinical signs of
toxicity throughout the course of the experimental treatments of which no adverse events were
recorded. Rat pups open their eyes at about 14 days postnatally after which in addition to suckling,
they forage on other substances in their vicinity. Thus, the gavaging was restricted to the seven days
prior to them opening their eyes.

4.4. Terminal Procedures

4.4.1. Sample Collection

At the end of the 7-day experimental treatment period (on PD 14), the pups were euthanised by
an intraperitoneal injection of sodium pentobarbital (200 mg/kg body mass; Euthanaze®, Centaur
Laboratories, Johannesburg, South Africa). For ethical reasons and because of their young age, the rat
pups were not fasted prior to termination. The thorax was opened and a 1-mL syringe with a 21-gauge
needle was used to collect blood via cardiac puncture. The blood was placed into heparin-coated tubes.
The tubes were gently inverted for 30 s to mix the anti-coagulant with the blood and then centrifuged
at 3500× g at 4 ◦C for 15 min. The plasma was separated, frozen and stored in microtubes in a freezer
at −20 ◦C for the determination of clinical biochemistry and general health profiles. The triceps muscle
samples were dissected out, snap frozen in liquid nitrogen and stored at −80 ◦C in cryovial tubes until
further molecular analyses.
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4.4.2. Determination of Visceral Organ Morphometry

Following blood sample collection, the abdomen was cut via a midline incision. The stomach,
caeca, liver, kidneys, small and large intestines were carefully dissected out. The luminal contents of
stomach, caeca, small and large intestines were emptied by gently squeezing them out after which
the gastrointestinal viscera were weighed on a digital analytical balance (Presica 310M®; Precision
Instruments, Zurich, Switzerland). Gross morphometric measurements of the small and large intestines
were determined using a ruler with minimum stretching of the tissues on a dissecting board.

4.5. Measurement of Growth Performance

4.5.1. Body Mass Determination

The pups were weighed daily to determine the effects of the different treatments on growth
pattern and the adjustment of the dosage of the treatments over the 7-day period.

4.5.2. Determination of Indices of Linear Bone Growth

The left hind leg was detached from each of the carcasses, cleaned off of all the flesh and then
femora and tibiae were separated. The bones were dried to constant weight in an oven (Salvis®, Salvis
Laboratory, Lucerne, Switzerland) at 50 ◦C for 6 days and then weighed using a balance (Precisa 310M,
Precisa Instruments). The lengths of the femora (measured between the distal femoral articular surface
to the greater trochanter) and tibiae (measured between tibia head medial malleolus) were measured
by a vernier callipers (Hi-impact, Dejuca, South Africa) and were used as indices of linear growth in
the pups. Tibial and femoral bone densities (Seedor index) were calculated as follows [89]:

Seedor index (mg/mm) = mass of bone (mg)/length of bone (mm) (1)

4.6. Determination of Biochemical Health Profile Markers

The effect of the treatments on the general health status of the rat pups was determined using
the plasma samples collected at termination. General biochemical profiles (cholesterol, glucose,
phosphate and calcium) surrogate markers of hepatic function (alanine amino transferase, non-tissue
specific alkaline phosphatase, albumin and total bilirubin), renal function (blood urea nitrogen and
creatinine) and protein profiles (total protein, albumin, and globulin) were measured using a calibrated
automatic biochemical analyser (IDEXX VetTest®, Clinical Chemistry Analyser, IDEXX Laboratories
Inc, Westbrook, ME, USA) as per manufacturer’s instructions. Briefly, stored plasma samples were
thawed at room temperature. The samples were then gently inverted to mix the contents and placed
into the analyser which automatically drew up 150 µL of the plasma. The analyser then loaded 10 µL of
plasma onto each of the 12 pre-loaded disks after which each sample was then analysed and printouts
provided. The results from the measurement of enzyme markers were reported as units per litre (U/L).

4.7. Determination of Hepatic Lipid Content

The liver samples from each of the four different treatment groups were pooled together and
then sent to a South African National Accreditation System-accredited laboratory of the Agricultural
Research Council in Pretoria, where the intra-hepatic lipid content was determined. Briefly, the liver
samples were freeze-dried and ground into a fine powder which was used for lipid extraction by the
Soxhlet method using the Tecator Soxtec System HT 1043 extraction unit (Gemini BV Laboratories,
Apeldoorn, The Nederlands). Hepatic lipid content determination was performed in triplicate for each
treatment group.
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4.8. Determination of the Anti-Oxidant Enzyme Activity

Muscular tissue (triceps) samples from −80 ◦C freezer were collected and kept in ice. They
were weighed (gram) and suspended in a 15 mL falcon tube. Homogenate was done in (10% w/v)
freshly prepared phosphate buffer (50 mM Na-Pi, 0.5% (v/v) Triton x-100, pH 7.5). The samples
were homogenized with a homogenizer (Stuart homogenizer SHM1/382, Vernon Hills, IL, USA).
Homogenate was centrifuged for 30 min 10,000 rpm at 4 ◦C (Thermo Scientific SL 8R GO Cat N0.
75007224, Langenselbold, Germany) and supernatant were collected and aliquoted into labelled cryovial
tubes and stored in a freezer at −80 ◦C for further analysis.

4.8.1. Catalase Assay

Catalase activity was determined using the method described by Sinha [90]. A hundred microliters
(100 µL) of homogenised muscle sample was measured into labeled Falcon tubes for both test/control
test. One hundred microliters (100 µL) of distilled H2O was used as standard/blank. To each of
control test/blank, 1000 µL distilled H2O was added and 1000 µL of hydrogen peroxide (H2O2

(65 mM) in 50 mmol/L sodium, potassium phosphate buffer) was added to each of samples from the
experimental groups and standards. The mixtures were vortexed and incubated at 37 ◦C for 3 min.
One thousand microliters (1000 µL) of dichromate/acetic acid was added to each of the tubes. This was
then placed in a water bath and kept at 100 ◦C for 10 min after which it was left to cool under tap
water, then centrifuged to remove precipitated protein (2500× g for 5 min). The changes in absorbance
were recorded at 570 nm against the reagent blank using spectrophotometry (Thermo ScientificTM

MultiskanTM GO Cat N0. N13133/2015 Model, Ratastie 2, FI-01620 Vantaa, Finland). The equation
below was used to determine catalase enzyme activity:

Catalase activity of test kU = 2.303/t × [log S0/S − M] × Vt/Vs (2)

where: t = time, S0 = Absorbance of standard tube, S = Absorbance of test tube, M = Absorbance of
control test (correction factor), Vt = Total volume of reagents in test tube and Vs = Volume of plasma.

4.8.2. Superoxide Dismutase Assay

The superoxide dismutase (SOD) activity was determined using SOD assay kits-WST
(Sigma-Aldrich®, St. Louis, MO, USA) following manufacturer’s instructions. Twenty microliters
(20 µL) of sample homogenate was measured into each of sample and blank 2 well, and 20 µL of distilled
water (H2O) was measured into blank 1 and blank 3 well. Two hundred microliters (200 µL) of WST
working solution was added to each well and it was mixed. Twenty microliters (20 µL) of dilution buffer
was added to blank 2 and blank 3 and 20 µL of enzyme working solution was added to both sample
and blank 1. These mixtures were then shaken thoroughly to mix. The microplate reader (Thermo
ScientificTM MultiskanTM GO) was incubated at 37 ◦C for 2 min and the absorbance was recorded at
450 nm. The equation below was used to determine the SOD activity:

SOD (inhibition rate %) = {[(Ablank 1 − Ablank 3) − (Asample − Ablank 2)]/
(Ablank 1 − Ablank 3)} × 100

(3)

4.8.3. Glutathione Peroxidase and Glutathione Assay

Glutathione peroxidase activity was determined using the method described by Roctruck et al. [91].
Standard working solution of glutathione (GSH) was prepared (0.0307 g GSH dissolved in 100 mL (0.2 M)
EDTA solution (pH 8)) in 25 µM, 50 µM, 100 µM, 150 µM, and 250 µM concentration. To 500 µL of
phosphate buffer (K2HPO4 and KH2PO4; 100 mM (pH 7.4)) in falcon tubes, 100 µL of sodium azide
(NaNO3; 10 mM) and µL hydrogen peroxide (H2O2; 2.5 mM) were added. Five hundred microliters of
homogenised sample from the different treatment groups was added; followed by the addition of 600 µL
of distilled H2O. The reaction mixture was incubated at 37 ◦C for 3 min after which 500 µL of Trichloro
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acetic acid (TCA, 10% 2 g of TCA dissolved in 20 mL H2O) was added and thereafter centrifuged at
3000× g for 5 min. To 100 µL of each of the supernatants/standards, 200 µL of K2HPO4 and 100 µL of
DTNB (5’-5’-dithiobis-(2-dinitrobenzoic acid) was added and the absorbance was read at 412 nm with
the use of spectrophotometry (Thermo ScientificTM MultiskanTM GO).

Glutathione peroxidase activity was observed by plotting the standard curve and the concentration
of the remaining GSH was extrapolated from the curve:

GSH consumed = 245.34 − GSH remaining (4)

Glutathione peroxidase = GSH consumed/mg protein (5)

Results are expressed as µM/mg protein.

4.9. Determination of Anti-Oxidant Capacity Assay

4.9.1. Ferric Reducing Anti-Oxidant Power (FRAP)

The FRAP assay was performed using the method described by Benzie and Strain [92]. The FRAP
reagent was a mixture of 30 mL acetate buffer (pH 3.4), 3 mL tripyridyltriazine (TPTZ), 3 mL FeCl3
and 6.6 mL distilled water (dH2O). The homogenised samples (100 µL) from the treatment groups
were mixed with 200 µL FRAP reagent in a micro plate (Brand Puregrade Ref: 781600 plates, Brand
GMBH + CO KG, Wertheim, Germany). The mixture was incubated for 30 min at room temperature
and the absorbance was read at wavelength of 539 nm using a spectrophotometer (Thermo ScientificTM

MultiskanTM GO). Ascorbic acid (AA) was used as the standard and the results were expressed as
µmolAAE/mL sample.

4.9.2. Trolox Equivalent Anti-Oxidant Capacity (TEAC)

TEAC assay was analysed using the principle of 2,2-azino-bis 3-ethylbenzothiazoline-6-sulphonic
acid (ABTS) radical scavenging activity as described by Ou, et al. [93]. The ABTS was prepared by
mixing 88 µL K2S2O8 and 5 mL ABTS and left overnight before use. The sample or standard (25 µL)
was mixed with 200 µL ABTS solution and incubated for 30 min at room temperature. The absorbance
of the mixture was then read at 734 nm using spectrophotometer (Thermo ScientificTM MultiskanTM

GO). Trolox was used as the standard and the results were expressed as µmol TE/mL.

4.10. Determination of Oxidative Stress Biomarkers

4.10.1. Lipid Peroxidation Assay

Tissue malondialdehyde (MDA) concentration were measured spectrophotometrically as
thiobarbituric reactive substance by the method of Buege and Aust [94]. Briefly aliquot mixtures
of 20 µL sample or standard (MDA) were mixed with 100 µL of 15% (w/v) trichloroacetic acid and
100 µL of 0.375% (w/v) thiobarbituric acid. This mixture was heated at 100 ◦C for 15 min and the
cooled to room temperature then centrifuged at 3000× g for 5 min and absorbance measured at 535 nm.
Results were expressed as nmolMDA/ng protein.

4.10.2. Nitrite Assay

Nitrite concentration was measured by the Griess reaction method [95]. Briefly, 100 µL of Griess
reagent (1% sulfanilamide, 0.1% naphthylethylenediamide in 5% phosphoric acid) was mixed with
50 µL of homogenised samples and incubated for 10 min at room temperature, and absorbance was
read at 540 nm using a microplate reader. The result was expressed as µM.
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4.11. Statistical Analysis

Data were expressed as mean ± standard deviation (SD) and analysed using GraphPad Prism for
Windows Version 7.0 (GraphPad Software Inc., San Diego, CA, USA). Samples from male and female
rats were pooled together for all the variables that were measured as there were no significant sex
differences across all treatment groups. A two-way repeated measures analysis of variance (ANOVA),
with Bonferroni post-hoc test, was used to analyse body mass changes with day as a within-subjects
factor and treatment as a between-subjects factor. A one-way ANOVA with Bonferroni post-hoc test
was used to compare the means for all the other parameters measured. The level of significance
acceptable was p ≤ 0.05.

5. Conclusions

The findings from this study provide evidence that short-term neonatal oral administration of
OA protects against fructose-induced oxidative damage with seemingly no adverse effects on health
or the maturational and developmental changes of the gastrointestinal tract in suckling male and
female pups. The prophylactic use of OA in the fight against metabolic syndrome during the critical
developmental period does not seem to carry health risks. The long term impact of the interventions
with OA need to be investigated epigenetically as well as using precocial species which better represent
the situation in higher order animals.
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