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Genome sequencing projects of humans and other organisms reinforced that

the complexity of biological systems is largely attributed to the tight regulation

of gene expression at the epigenome and RNA levels. As a consequence,

plenty of technological developments arose to increase the sequencing

resolution to the cell dimension creating the single-cell genomics research

field. Single-cell RNA sequencing (scRNA-seq) is leading the advances in

this topic and comprises a vast array of di�erent methodologies. scRNA-

seq and its variants are more and more used in life science and biomedical

research since they provide unbiased transcriptomic sequencing of large

populations of individual cells. These methods go beyond the previous

“bulk” methodologies and sculpt the biological understanding of cellular

heterogeneity and dynamic transcriptomic states of cellular populations in

immunology, oncology, and developmental biology fields. Despite the large

burden caused by mycobacterial infections, advances in this field obtained via

single-cell genomics had been comparatively modest. Nonetheless, seminal

research publications using single-cell transcriptomics to study host cells

infected by mycobacteria have become recently available. Here, we review

these works summarizing the most impactful findings and emphasizing the

di�erent and recent single-cell methodologies used, potential issues, and

problems. In addition, we aim at providing insights into current research gaps

and potential future developments related to the use of single-cell genomics

to study mycobacterial infection.

KEYWORDS

single-cell RNA sequencing (scRNAseq), mycobacteria, tuberculosis, leprae, single-

cell, omics, spatial transcriptomics (ST)

1. Introduction

The understanding of a cell as the functional unit of life has led to a profound interest

in single-cell analysis. This specificity offers unique opportunities to dissect the interplay

between intrinsic cellular processes and extrinsic stimuli, and unfold cell-to-cell identity

and variability. Besides being referenced as one of the paths for personalized medicine,
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single-cell studies further allow the understanding of the

outcome of an infection, as well as drug resistance as a

primary source for the development of clinical tools. Despite

the extensive study of the proteome over the years, the

transcriptome has thrived in the single-cell field, as it provides

insight into changes over a cellular lifetime and in response

to external signals (Chambers et al., 2019). From the vast

knowledge in this area, single-cell methodologies evolved

to included the analysis of DNA, protein, and chromatin

modifications (Linnarsson and Teichmann, 2016). Moreover,

the latest applications are focused on the simultaneous

measurements of two or more modalities, such as genome and

transcriptome, transcriptome and methylome, RNA and protein

(Linnarsson and Teichmann, 2016), as well as the quantification

of these modalities throughout time and space in the cellular

environmental niche.

Resorting to in vivo reverse transcription (RT) followed by

amplification through in vitro transcription (IVT), Eberwine

et al. (1992) measured the expression of a few individual genes

at the single-cell scale. The scaling up of the number of cells and

genes analyzed was dependent on further improvement of PCR-

based methods (Lambolez et al., 1992) and scale application

of micro-arrays or real-time quantitative reverse transcription-

polymerase chain reaction (RT-PCR) methods (Peixoto et al.,

2004). Taking on a different approach, the bulk RNA sequencing

(RNA-seq) method was based on the liaison of millions of cells

and the sequencing of this collective admixture, whereby the

gene expression profile represents the averaged effect across a

large population of cells. However, knowing that gene expression

is regulated deferentially across cells and that cells have distinct

and specific functions, single-cell sequencing thrived in the field

of transcriptomics due to its higher resolution. Building upon

PCR and unbiased amplification of cDNA, Tang et al. (2009)

performed the first wide coverage single-cell RNA sequencing

(scRNA-seq), discovering, and estimatively quantifying many

new transcripts that had been overlooked. One year later, Guo

et al. (2010) developed a new way to identify cell types in

parallel, based on different fluorescence intensity ranges and

without cell pre-sorting. Overlooking the field of fluorescent

labeling, in 2011, Islam et al. (2011) developed single-cell tagged

RT sequencing (STRT-seq), a highly multiplexed method for

scRNA-seq, which allowed the obtention of single-cell detail

and cell type-specific population averages. The characteristic

high throughput and cost reduction were largely dependent

on the incorporation of a unique cell barcode and template-

switching oligos (TSO), during RT (Islam et al., 2011). To

correct amplification bias and improve mRNA amplification,

a unique molecular identifier (UMI) was described using

a random code for labeling individual mRNA strands and,

thereby, distinguishing the original templates from the amplified

sequences (Kivioja et al., 2011). Simultaneously, distinct and new

techniques combining microfluidics, random capture methods,

and in situ barcoding arose, allowing a broader implementation,

conjugation of steps, and cost reduction.

Following the aforementioned breakthroughs, investments

in the technology and improvements in the cost-efficiency

have increased the application of scRNA-seq in several fields,

including the study of mycobacterial infections. As in other

infections, the outcome of an infection bymycobacteria is largely

dictated by the interactions between host and microbe. This

interaction may cause different outcomes that depend upon

the regulation of the host-microbe cell response dynamics and

co-evolution (Casadevall and Pirofski, 2000). Based on scRNA-

seq advances, a new understanding of both host-pathogen

interactions and the development of subsequent treatment

strategies has been possible since this technology probes cell-to-

cell variability and uncovers host and bacterial responses.

On the whole, this review provides a technical up-to-

date summary of the current scRNA-seq techniques and its

applications on the study of mycobacteria that are relevant and

common human pathogens.

2. Technological advances of
single-cell genomics

2.1. Single-cell RNA sequencing

Each cell from the same organism can have a different

phenotype when compared to its neighboring cells. ScRNA-seq

enabled the identification of the differences across individual

cells in contrast with the previously used bulk RNA sequencing

technique (Adil et al., 2021). To achieve the final goal of analyze

and extract information from single cells, scRNA-seq has an

extensive pipeline ranging from processing the samples to the

generation of the gene expression matrix used to perform the

data analysis.

Considering all the new doors that scRNA-seq can open,

this technique has become widely used; however, new challenges

have appeared throughout the pipeline. One of the steps that

often generates difficulties is cell isolation and separation.

Depending on the final goal of the research, various techniques

can be used to make this process more efficient and quick.

One of the most used and compatible methods to isolate

single cells is flow cytometry with Fluorescence-Activated Cell

Sorting (FACS). FACS takes advantage of labeling specific cell

surface molecules with a fluorescent tag allowing the isolation

and separation of single cells and providing high throughput

(Gross et al., 2015). Other technologies, less widely adopted

when compared to FACS, are based on custom-built semi-

automatic cell collectors (Islam et al., 2011). Although nowadays

individual markers can be simultaneously used and cytometers

can be interfaced with 96-well and 384-well plates, ensuring

the distribution of a single cell per well (Dalerba et al., 2011),
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the requirement of known specific antibodies and relatively

large initial volumes of cell-containing solution (Hu et al.,

2016) are relevant disadvantages of FACS. Another disadvantage

is the need to have cells in a suspension which cause the

loss of tissue architecture and disrupt cellular function and

communication (Jahan-Tigh et al., 2012). Additionally, despite

the advances made (Baumgaertner et al., 2021), FACS is

inefficient for the isolation of cells with largely heterogeneous

cell sizes, challenging the identification of rare cell populations

(Saliba et al., 2014). Laser capture microdissection (LCM) is

an alternative technique which solves some of these problems

by allowing precise isolation of individual cells. This method

can be classified into two different systems: ultraviolet (UV

LCM) or infrared (IR LCM; Hu et al., 2016). LCM does

not require cell suspensions, allowing the selection of cells

from solid tissue samples and the instigation of heterogeneous

tissue sections, which enables the acquisition of information

related to cell morphology and structure along with the spatial

location (Fink et al., 2006). However, LCM relies on the visual

delimitation of cell boundaries, is laborious, and has limited high

throughput scalability, making it less attractive to use despite the

aforementioned advantages (Gross et al., 2015).

Following the above-mentioned techniques, a novel and

less laborious stream of microfluidic or lab-on-a-chip devices

arose, being characterized by passive and random cell-capture,

and controlled cellular microenvironment features (Young and

Beebe, 2010). Microfluidic devices, especially the ones used

for single cell separation, can be classified into three main

technologies: (1) “trap”-based microfluidics, where cells are

retained in small structures present on the microfluidic channel

(Carlo et al., 2006); (2) valve-based microfluidics, where cells are

isolated by causing deflection on amembrane opening or closing

the microfuidic channel (Gómez-Sjöberg et al., 2007); and (3)

droplet-based microfluidics, where cells are encapsulated inside

well-controlled size aqueous droplets (Brouzes et al., 2009).

These microfluidics technologies have different throughput,

being the valve-based the one with the lowest throughput and

the droplet-based the one with the highest (Edd et al., 2008;

Gross et al., 2015).

Currently, the most popular scRNA-seq profiling techniques

are built on droplet-based microfluidics. inDrop (Macosko

et al., 2015), Drop-seq (Klein et al., 2015), and more recently

10X Genomics Chromium (10X) (Zheng et al., 2017) are

the droplet-based microfluidics scRNA-seq methods with the

highest throughput (Zhang et al., 2019). These three techniques

use similar droplet designs to individualize cells, on-bead

primers with barcodes to differentiate individual cells and apply

unique molecular identifiers (UMI) to identify molecules and

to correct PCR amplification bias. Despite these similarities

inDrop, Drop-Seq and 10X techniques take distinct approaches

on the microfluidic devices, chosen bead material, and reagent

delivery. An example of the disparities among these three

technologies is the beads material type. inDrop and 10X systems

use beads made of hydrogel, whereas Drop-Seq uses beads made

of brittle resin (Zhang et al., 2019). The first two technologies

take advantage of the use of a deformable hydrogel, decreasing

the probability of encapsulating two cells or two beads in a single

droplet. This is possible by conjugating the deformable hydrogel

beads with the match between the periodicity of particle flow

and drop formation (Abate et al., 2009). It is extremely difficult

to achieve 100% of single-bead occupancy due to several factor

such as bead size variation. Regardless, both 10X and inDrop

protocols are highly effective in capturing single cells (Zhang

et al., 2019). Furthermore, the bead material may influence the

quantity and density of DNA primers since hydrogel beads allow

for large-scale primer immobilization, whereas the brittle resin

beads are more limited in this aspect. This will influence the

efficiency of mRNA RT and capture, since 10X and inDrop allow

the RT to occur within the droplets, confining the reaction to a

limited volume enhancing the specificity of cDNA conversion

and relative yield (Marcy et al., 2007).

Alternative strategies to the use of emulsion-based

technologies are nanowell technologies, which consist in the

deposition of cells at random positions, by gravity, inside

microwells containing barcoded beads. Nanowell technologies,

such as Gene expression cytometry (Cytoseq) (Fan et al.,

2015), Seq-well (Gierahn et al., 2017), and microwell-seq (Han

et al., 2018), enable massively parallel scRNA-seq, and show

advantages over droplet-based microfluidics, including low

reagent and sample volumes, and short cell-loading period

(Zhou et al., 2021). In 2017, a different study proved the capacity

of processing over a million cells using combinatorial indexing.

This method is dependent on in situ reactions, using multiple

rounds of barcoding and mixing, generating combinatorial

barcodes and consequent single cell data (Cao et al., 2017;

Rosenberg et al., 2018).

Despite the different types of cell capture the overall scRNA-

seq follows a similar basic strategy. First, single cells are isolated

(cell capture) and lysed. Selecting the right type of cell lysis

is important since it may influence the quantity and quality

of available RNA (Haque et al., 2017). RT is then performed

on RNA to obtain cDNA. Subsequently, the resulting cDNA is

amplified by PCR or transcribed by IVT. Finally, the amplified

cDNA is used for sequencing library preparation. Each scRNA-

seq protocol presents differences in the three main steps: (1)

RT; (2) cDNA amplification; and (3) library preparation and

sequencing (Saliba et al., 2014).

The RT stage, is characterized by the capture of

polyadenylated mRNA species to further perform cDNA

synthesis. The polydenylated mRNAs are acquired by using

a poly-thymine (poly[T]) sequence primer that will bind to

the poly[A] tails present in the mRNA molecules. This step

prevent the capture of ribosomal RNA (Haque et al., 2017). An

exception to the common use of poly[T] priming is the use of

a Designed Primer-based RNA-sequencing (DP-seq) strategy.

When compared to the poly[T] priming, DP-seq shows similar
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transcriptome coverage and technical noise (Bhargava et al.,

2013). The main difference between protocols, concerning RT,

is the synthesis of the second-strand. This step can be done by

poly[A] tailing [used in the protocol described by Tang et al.,

2009, CEL-Seq (Hashimshony et al., 2012), and QuartzSeq

(Sasagawa et al., 2013)] or template-switching [applied in

SmartSeq (Ramsköld et al., 2012) and STRT-Seq (Islam et al.,

2011)]. The last one is an alternative strategy that ensures the full

transcription of mRNA by covering the premature termination

of the 5’ transcription in the poly[A] tailing (Saliba et al., 2014).

Moreover, during RT some protocols allow the addition of

small nucleotide sequences such as UMIs. The implementation

of UMIs associated to the cell barcode permits to quantify

the number of transcripts in each cell (Kivioja et al., 2011).

CEL-Seq (Hashimshony et al., 2012), CytoSeq (Fan et al., 2015),

STRT-Seq, MARS-Seq, 10X, Drop-seq, inDrop, and Smart-seq3

(Hagemann-Jensen et al., 2020) are some of the protocols where

UMIs can be added (Adil et al., 2021). More recently a technique

based on Smart-seq2 was developed, known as FLASH-seq,

which combines RT and cDNA pre-amplification (RT-PCR)

resulting in a reduction of the time of the protocol (Hahaut et al.,

2022). Furthermore, some protocols also implement spike-in

RNA controls to facilitate the measurement of accuracy, biases,

and sensitivity in RNA-seq procedures (Jiang et al., 2011).

Following RT comes cDNA amplification, where the minute

amounts of cDNA are amplified to obtain the required

starting material to generate a sequencing library. This can

be achieved by either a linear procedure based on IVT, or an

exponential procedure based on PCR. The advantage of the

PCR is the exponential amplification of cDNAs that allows the

amplification of millions-fold in several hours, however the

accumulation of primer dimers and other nonspecific products

hampers this process, especially during later cycles of PCR. One

of the main advantages of IVT is exactly this non-accumulation

and the specificity, however the efficacy of cDNA amplification

is lower and the process is more time-consuming (Tang et al.,

2011). The Tang protocol, SmartSeq, SmartSeq2, and STRT

are some protocols that implement PCR. Alternatively, IVT

is used in CEL-Seq and MARS-Seq protocols (Hedlund and

Deng, 2018). Table 1 has a summary of the protocols used for

single-cell preparation.

The step after cDNA amplification is library construction

followed by sequencing using the so called Next Generation

Sequencing (NGS) platforms. The library construction is related

to the preparation of the RNA strand in a manner compatible

with the applied sequencing system. Besides the wide offer

of sequencing platforms, such as Complete Genomics (CG)

(Lee et al., 2015), Roche (Margulies et al., 2005), Ion Torrent

(Rothberg et al., 2011), Pacific Biosciences (PacBio) (Eid et al.,

2009), and ABI SOLiD (McKernan et al., 2009), the Illumina

platform (Bentley et al., 2008) is the most used, even though the

obtained genetic material is compatible with the other platforms

(Quail et al., 2012). Illumina provides different technologies

ranging from high to low throughput sequencing and is

associated with the Nextera library kit preparation (Quail et al.,

2012). Despite the advances made to make NGS less expensive,

the cost of sequencing is still a barrier to the implementation of

scRNA-seq (Grada andWeinbrecht, 2013). This limitation could

be minimized by higher-level combinatorial barcoding allowing

a more efficient handling of samples (Slatko et al., 2018).

Another NGS limitation is the need for an automated routine to

employ the use of this technology, specially in the field of clinical

microbiology (Besser et al., 2018). Different NGS platforms have

specific advantages and disadvantages. The final output of this

step, independent of the used technology, is usually a FASTQ file

containing the scRNA-seq raw data. This type of file allows to

perform the quality control of the sequencing. Several software

tools can be used to analyse FASTQ files, being the most popular

ones developed for Unix-based operating systems (Chu and

Corey, 2012). In general, the analysis pipelines used by those

software follow a first stage quality control for the obtained

reads, followed by genome alignment and reads quantification.

These analysis pipelines then generate a count matrix that will

allow additional quality controls and the specific analysis of cell

expression profiles (Luecken and Theis, 2019).

The Python-based tool, Scanpy (Wolf et al., 2018), and the

R-based alternative, Seurat (Butler et al., 2018), are the two

most used tools for scRNA-seq data analysis. However, the vast

availability of different programming languages and pipelines

for data analysis causes a lack of standardization (Zappia et al.,

2018; Luecken and Theis, 2019). Generally, the analysis pipelines

encompass up to eight different steps described below and

presented in Figure 1.

2.2. Single-cell assay for
transposase-accessible chromatin (ATAC)
using sequencing

Eukaryotic genomes are hierarchically packaged into

chromatin, and the density of this packaging plays a key role

in gene regulation. The study of the nucleoprotein structure

of chromatin and its packaging is a fundamental research

path that has been giving major insights into how chromatin

regulation by epigenetic factors controls gene expression and

cell programming. This information has come from high-

throughput genome-wide methods assessing DNA methylation,

transcription factor (TF) occupancy and modification, and

chromatin accessibility.

DNA methylation, the first heritable epigenetic mark to be

identified, involves the covalent transference of a methyl group

to the C-5 position of the cytosine ring of DNA (5mC). Based on

the conversion of single unmethylated cytosine residue to uracil

(Bisulfite sequencing technique), single-cell DNA methylation

can be analyzed by two similar processes: single-cell bisulfite

Frontiers inMicrobiology 04 frontiersin.org

https://doi.org/10.3389/fmicb.2022.989464
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Geraldes et al. 10.3389/fmicb.2022.989464

TABLE 1 Summary table of the most common single-cell sequencing techniques explored in this section, “Single-cell RNA sequencing”.

Technique Transcript length Preamplification UMI insertion References

Tang protocol Full-lenght PCR No Tang et al., 2009

STRT-seq 5’ end PCR Yes Islam et al., 2011

Smart-seq/ Smart-seq2 Full-lenght PCR No Ramsköld et al., 2012; Picelli et al., 2013

CEL-seq/ CEL-seq2 3’ end IVT Yes Hashimshony et al., 2012

MARS-seq 3’ end IVT Yes Jaitin et al., 2014

Drop-seq 3’ end PCR Yes Macosko et al., 2015

InDrop 3’ end PCR Yes Klein et al., 2015

10x Chromium 3’ end PCR Yes Zheng et al., 2017

Smart-seq3 Full-lenght PCR Yes Hagemann-Jensen et al., 2020

FLASH-seq Full-lenght RT-PCR Yes Hahaut et al., 2022

It divides the information according to the steps of this technology: Technique, Reverse transcription, Preamplification, and UMI insertion.PCR (polymerase chain reaction), IVT (in vivo

transcription), RT-PCR (reverse transcription-polymerase chain reaction).

FIGURE 1

Schematic representation of a scRNA-seq pipeline, showing the outputs of each step stated in this review.

sequencing (scBS-seq) (Smallwood et al., 2014) and single-

cell reduced representation bisulfite sequencing (scRRBS) (Guo

et al., 2013). However, due to the non-static characteristics of

these processes, it has been shown that 5 mC can be converted

to a cytosine (5 hmC). Since the traditional standard techniques

for detecting 5 mC cannot discriminate between 5 mC and 5

hmC, and to provide unique insights into the dynamics of DNA

methylation turnover and the extent of cellular heterogeneity,
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in 2016 scAba-seq was presented as a signature to genome-wide

detection of 5 hmC marks, using the restrictive endonuclease

AbaSI (Mooijman et al., 2016).

The diversity and temporal alteration of cells and tissues

in an organism is also dependent on chromatin organization,

genome integrity, and gene expression regulation, where

protein-DNA interactions play a vital role. In this specific

field, Chromatin Immunoprecipitation (ChIP) is a commonly

used technique for mapping histone, TFs, and other protein-

DNA interactions in the genome. In most ChIP protocols,

cells are crosslinked with formaldehyde, then chromatin is

fragmented and solubilized, followed by the addition of a highly

specific antibody, and finally the purification steps allow the

DNA extraction. Subsequently, the bounded DNA is identified

by microarray hybridization (ChIP-chip) or deep sequencing

(ChIP-seq). Despite the fundamental necessity of crosslinking

steps in ChIP, it can promote epitope masking and generate

false positive binding sites, when trying to preserve the in

vivo organization (Kasinathan et al., 2014). Therefore, to tackle

these misleading outcomes, ChIP can be performed in low-salt

conditions that can functionally fix protein-DNA interactions

in a non-covalent manner, since salt competes for electrostatic

protein-DNA interactions (Kasinathan et al., 2014).

On the negative side, this technique requires large amounts

of input material and yields “averaged” profiles that are

insensitive to cellular heterogeneity. Additionally, low levels

of non-specific antibody binding pull-down off-target sites

and lead to experimental noise. Such scenario justifies the

employment of methods based on labeling chromatin from

single cells, using droplet-based microfluidics technologies. As

previously described, the formation of micron-sized aqueous

droplets immersed in a carrier oil acts as ideal microreactors

and can be precisely sized to contain an individual cell (Rotem

et al., 2015). When first applied, researchers used the method to

investigate cell-to-cell variability in different types of regulatory

elements by profiling the H3 lysine 4 trimethylation (H3K4me3)

and dimethylation (H3K4me2) in a mixed population of mouse

embryonic stem (ES) cells, embryonic fibroblasts (MEFs), and

hematopoietic progenitors (EML cells) (Rotem et al., 2015). A

similar approach, combining droplet microfluidics with single-

cell DNA barcoded beads was used to study intra-tumor

heterogeneity of chromatin states, based on H3K27me3 histone

alteration (Grosselin et al., 2019).

Depending on the quality of the compounds needed, in the

first ChIP protocols the use of the purification steps related to

centrifugation, generated an enormous loss in the amount of

insoluble proteins attached to nuclei sequences (Schmid et al.,

2004). Termed as chromatin immunocleavage (ChIC), Schmid

et al. reported an alternative strategy to detect binding sites

of transcription factors in the genome by targeting micrococal

nuclease (MNase) conjugated with protein A (pA-MN), through

a specific antibody (IgG and IgG1). The nuclease is activated by

the addition of calcium, and fragments of specific binding sites

are released into the supernatant for DNA extraction, library

preparation, and paired-end sequencing (Schmid et al., 2004).

Since IgG and IgG1 ensure the affinity of pA-MN protein,

the addition of IgG sepharose beads, to the cleavage reaction,

ensures the sequestering of unbound pA-MN or complexes

thereof that become unbounded (Schmid et al., 2004).

Based on ChIC, improved techniques such as Cleavage

Under Targets and Release Using Nuclease (CUT&RUN)

(Skene and Henikoff, 2017) and Cleavage Under Targets

and Tagmentation (CUT&Tag) (Kaya-Okur et al., 2019)

arose. The CUT&RUN modifications of ChIC were derived

by the observation that light MNase treatment released

mononucleosomes and TF-DNA complexes, leaving behind

oligonucleosomes. A critical modification was based on the

immobilization of permeabilized and unfixed nuclei to magnetic

beads, allowing the rapid and efficient solution changes,

maintaining epitope preservation and accessibility (Skene and

Henikoff, 2017). Moreover, the specificity of CUT&RUN is

characterized by the performance of digestion at ice-cold

temperature and the efficient fractionization based on the

solubility of the cleaved fragments (Skene and Henikoff, 2017).

Although CUT&RUN can generate high-quality data, it must

be followed by DNA end polishing and adapter ligation to

prepare sequencing libraries, which increases the time, cost,

and effort of the overall procedure. Additionally, the release

of MNase-cleaved fragments into the supernatant is not well-

suited for application in single-cell platforms (Kaya-Okur

et al., 2019). Therefore, CUT&Tag replaces pA-MN for pA-

Tn5 fusion protein, pre-loaded with sequencing adapters, that

enable chromatin protein binding sites used at PCR (Kaya-

Okur et al., 2019). Further alternatives to ChIP including

enzyme-tethering methods for unfixed cells, are DamID and

ChEC-seq technologies.

Since heterogeneity at the single-cell level extends to

chromatin accessibility, transposase-accessible chromatin using

sequencing (ATAC-seq) studies this variation, like earlier assays

such as DNase-seq, MNase-seq, or FAIRE-seq (Smith and

Sheffield, 2020). ATAC-seq allows identifying and sequencing

DNA regions that are accessible to external factors as regulatory

elements. Promoters, enhancers, and other types of regulatory

elements vary spatially, temporally, and among cell types, which

influence the binding of transcription factors and the expression

of target genes. In scATAC-seq, individual cells are captured

and assayed using a programmable microfluidics platform

(Fluidigm). The main workflow of this protocol consists in the

cut and insertion of sequencing adapters into accessible regions

of the genome, through the tag of prokaryotic Tn5 transposase to

regulatory regions, following PCR amplification and sequencing

by a high-throughput sequencing instrument. Since transposons

have been shown to integrate into active regulatory elements

in vivo, Tn5 is fundamental for the discovery of this locus

(Buenrostro et al., 2015). scATAC-seq has been widely adopted

due to its efficiency in cost, time, and required amount of
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necessary samples compared to previous assays (Klemm et al.,

2019). However, the epigenetic resolution obtained is only

interesting in the context of understanding gene expression.

Therefore, RNA sequencing is conjugated with this technique.

2.3. Spatial transcriptomics

Even though scRNA-seq is an extremely useful tool to

understand single cells’ behavior and mechanisms, scRNA-seq

by itself does not allow the understanding of how the single cells’

genomic and transcriptomic landscapes are spatially organized

throughout a tissue (Crosetto et al., 2015). In order to overcome

this drawback, a new collection of technologies emerged,

known as spatial transcriptomics. These technologies allow the

preservation of spatial information since there is no need to

dissociate the tissue to obtain single cells for sequencing. This

set of techniques is commonly characterized into five groups:

(1) microdissected gene expression based technologies, (2) in

situ hybridization (ISH) based methods, (3) in situ sequencing

(ISS) based methods, (4) in situ capturing technologies, and (5)

in silico reconstruction of spatial data (Asp et al., 2020).

The main principle of methods based on microdissection

gene expression is to isolate and perform RNA extraction of

a region of interest, followed by gene expression profiling.

The combination of LCM and scRNA-seq gave origin to the

first technology of this group, geographical position sequencing

(Geo-seq). The use of a laser beam to cut regions of interest

within a tissue, selected under a microscope (Emmert-Buck

et al., 1996; Simone et al., 1998), allows the scRNA-seq profiling

of small regions of the tissue (Chen et al., 2017). Despite

being a very robust technique, a disadvantage is the high cost

due to the very demanding labor and low throughput (Asp

et al., 2020). Another technology is RNA tomography (tomo-

seq), which is based on the computational overlap of the RNA

information obtained by three cryosections of the tissue with

different directions (Junker et al., 2014; Asp et al., 2020). Despite

having a good spacial resolution, tomo-seq cannot be used in

clinical samples due to the need of having identical tissues

(Asp et al., 2020). A very different approach is transcriptome

in vivo analysis (TIVA), which allows spatial transcriptomics

in living cells (Lovatt et al., 2014). This method exposes living

tissue sections to photoactivable mRNA capture molecule tags

(TIVA tags), that will further enter the cell. This step allows

to select only the marked cells by using a photoactivation

laser. Moreover, the activated TIVA tags hybridize with the

cells’ mRNAs, allowing its capture and further analysis. A

disadvantage of TIVA is the low throughput and the demand of

living tissues (Asp et al., 2020). NICHE-Seq is another method

that uses photoactivation, however the tissue recovery is based

on the expression of green fluorescent protein (GFP) within

an area with a particular microenvironment (Medaglia et al.,

2017). This method is dependent on transgenic animals and

the GFP detection depends on the intravenous transference

of labeled landmark cells. Thereafter, the selected niches can

be photoactivated with subsequent dissociation of the tissue

and cell sorting followed by scRNA-seq. NICHE-Seq has the

advantage of high throughput, however, does not allow to know

the exact position of the cell within a niche and cannot be

used in human samples since it implies the use of transgenic

organism (Asp et al., 2020). Another technique that profiles cells

within a niche is ProximID, which allows the understanding of

the physical interactions between cells in addition to cellular

distance (Boisset et al., 2018). Mild dissociation of the tissue

preserve small interacting structures with two to three cells.

These structures are manually microdissected making the

protocol considerably exhaustive. After that, single cells are

subject to scRNA-seq (Asp et al., 2020).

In ISH-based methods, RNA molecules can be visualized

straight in their environment by hybridizing labeled probes.

One of the oldest ISH-based method, created in 1962, is single-

molecule RNA fluorescence in situ hybridization (smFISH).

smFISH uses short probes to hybridize with different regions

of the target RNAs, previously defined. This approach allows

quantitative evaluation of the transcripts due to its’ greater and

more vigorous signaling (Femino et al., 1998). Despite being

more efficient than its antecedent method (FISH), smFISH

limitation resides in the difficulty of labeling probes with more

than five fluorophores. Using large sets of fluorophores makes

it difficult to synthesize and purify the RNA (Asp et al., 2020).

To overcome this limitation an improved version of smFISH

was developed, where a single fluorophore is coupled to ∼40

probes (Raj et al., 2008). Despite the enhanced subcellular

spatial resolution and sensitivity of this method, in both solely

a few number of genes can be targeted due to the spectral

overlapping (Asp et al., 2020). In 2014 a multiplex smFISH-

based approach that uses sequential hybridization (seqFISH)was

developed (Lubeck et al., 2014; Shah et al., 2016b). seqFISH

applies various rounds of hybridization, imaging and probe

withdraw which allows the identification of singular transcripts.

The excessive amount of smFISH probes required in this method

makes it really slow and expensive (Asp et al., 2020). To

overcome this issue, two new and similar approaches were

developed, multiplexed errors-robust FISH (MERFISH) and

seqFISH+ (Chen et al., 2015; Eng et al., 2019). The first step

in MERFISH is the hybridization of non-readout probes with

the target transcript. Thereafter, the fluorescent readout-probes

hybridize with the product of the previous hybridization in

several circuits of hybridization, imaging, and signal extinction.

By changing the usage of smFISH hybridization to just one,

and by using multiple readout hybridization, the time of the

process can be substantially reduced (Asp et al., 2020). On

the other hand seqFISH+, uses primary-probes with flanking

regions to target the RNA, followed by a sequence of barcoding

cycles with hybridizations (Eng et al., 2019). This approach

allows the identification of a higher quantity of unique gene
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barcodes. Despite being much faster than seqFISH, seqFISH+

still depends on a previous selection of the targets, maintaining

the need for a large number of synthesized probes (Asp et al.,

2020). A further FISH-based approach is ouroboros smFISH

(osmFISH), develop in order to try to bypass optical crowding

(Codeluppi et al., 2018). The use of this technique results

in a lower number of targets, than the previous mentioned

approaches, since this is a non-barcoding method. Here the

number of targets is defined by the number of hybridization

rounds and imaging is performed after every round, followed

by probe elimination and a new hybridization. Besides being

quite more laborious than smFISH, the semi-automation of

this method overcame this limitation. Additionally osmFISH

is more capable of handling larger areas of tissue than the

other smFISH approaches, despite its lower multiplex capacity

(Asp et al., 2020). A different method was developed to

overcome a common inconvenience in FISH-based methods,

the high amount of autofluorescence background, that occurs

when the tissues are opaque. Single-molecule hybridization

chain reaction (smHCR) is an amplified version, where each

target has numerous readout probes attached (Shah et al.,

2016a). Besides this common limitation, ISH-based methods

have spectral overlapping as a disadvantage. This occurs when

large groups of different transcripts are detected at the same

time. However, the solution to this problem contributed to

a computational power limitation caused by the powerful

decoding methods applied (Asp et al., 2020). A more recent

approach called CosMx was developed by NanoString and uses

a spatial molecular imager (SMI) combined with ISH probes

and fluorescent readout probes. CoxMx is an high throughput

technique that allows to target both RNA and proteins and can

be used into fresh-frozen tissue and formalin-fixed, paraffin-

embedded (FFPE) tissues. The workflow of this technique is

composed by the hybridization of the ISH probe with the target,

followed by several rounds of readout probes, containing 16

sets of reporters (He et al., 2021). Leaving behind the FISH-

based approaches, RNAscope is based on designing probes.

Here, target RNA transcript binds to two adjacent Z-probes in

order to construct the necessary binding site to allow further

hybridization of the molecule responsible for amplification

(Wang et al., 2012; Corporation, 2019). A limitation of

RNAscope is the low multiplex level (Asp et al., 2020). DNA

microscopy is a completely different approach, presented as

an optic-free nucleotide mapping technique (Weinstein et al.,

2019). This method relies on thermodynamic entropy instead

of physical capturing, however until 2020 this has only been

demonstrated on cultured cells with a small-scale subgroup of

transcripts (Asp et al., 2020).

Another in situ approach is the ISS-based technologies,

where RNA is sequenced straight from the cell within the

tissue of interest. Here the location of the transcript is achieved

with subcellular resolution, but to reach sufficient signal for

imaging, micrometer- or nanometer-sized DNA balls are used

to amplify the signal, which is jeopardized by the inherent

spatial limits of the cell (Asp et al., 2020). The first ISS-based

method was ISS using padlock probes, which are single strand

molecules of DNA complementary to the target cDNA (Ke

et al., 2013). In this technique mRNA is RT into cDNA to allow

the binding of the padlock probes within the tissue section

of interest. This method has two different approaches, one

uses padlock probes that bind to the cDNA leaving some gaps

amidst the ends, and another where, the ends of the molecule

are adjacent to each other. In both methods the ends of the

DNA molecule bind to form a circle of DNA, however in the

gap version, an intermediate step is needed to fill the gap.

Thereafter, cDNA amplification is performed by rolling-circle

amplification (RCA), giving rise to RCA products (RCP) which

will be decoded by using sequencing-by-ligation (SBL) method.

The difference between gap and non-gap approaches cause

different outcomes, with the gap approach directly allowing

the reading of RNA, while the non-gap approach has a higher

sensitivity (Asp et al., 2020). A new approach based on the

ISS padlock probes gap method was develop few years after to

overcome the limitation of the loss of sensitivity and allowing

a higher number of base pairs (bp) in the gap, known as

barcode in situ targeted sequencing (BaristaSeq) (Chen et al.,

2018). Despite the improvement on the RCP quantification

BaristaSeq uses sequencing-by-signaling (SBS) instead of SBL,

which has a higher signal-to-noise fraction. More recently,

a ISS barcoded approach was develop in order to overcome

noise caused by sequencing and the cDNA conversion efficiency

barrier limitations, from previous methods. Spatially resolved

transcript amplicon readout mapping (STARmap) combines the

use of padlock probes with a second primer to target the site

next to the probes, allowing to bypass the RT step and overcome

the previously mentioned limitations (Wang et al., 2018). Then

amplification is performed by RCA, forming nanoballs, which

are single-stranded DNA nanometer-sized products, instead of

micrometer-sized RCPs. Thereafter, the nanoballs are embedded

in a hydrogel-tissue, followed by a modified SBL. This approach

enables to visualize the location of the cells in 3D; however,

is limited to a narrow amount of targets, and can only be

used in tissue sections with a thickness comprised between 100

and 150 µ (Asp et al., 2020). To overcome the requirement of

previous knowledge of the targets and its’ selection, in which

all the previous methods are based on, a new approach was

develop. Fluorescent in situ RNA sequencing (FISSEQ) is a

non-target needed method that allows to capture every RNA

species (Lee et al., 2014). In FISSEQ a mixture of modified and

typical amine-bases combined with tagged RT primers is used,

to perform the cDNA synthesis that after RCA will give rise

to nanoballs, followed by SBL. The position of the nanoballs is

known due to the cross-linking with the cellular environment.

Despite overcoming previous limitations, in this method only

a random fraction of the nanoballs is sequenced (Asp et al.,

2020).
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A different approach for spatial transcriptomics is in

situ capturing technologies based on in situ capture of the

transcripts and ex situ sequencing and allow the analysis of

the transcriptome in an unbiased way (Asp et al., 2020).

The first method developed using this approach was spatial

transcriptomics (ST), where RT is executed in situ, followed by

cDNA-mRNA sequencing ex situ (Ståhl et al., 2016). In ST the

spatial information is achieved by placing a tissue section onto

glass slide with oligo(dT) barcoded RT primers containing the

coordinates. ST limitation is its resolution, however, in 2018 10X

Genomics acquired ST and improved the protocol giving rise to

10X Visium (10x Genomics, 2019; Asp et al., 2020). A similar

approach is Slide-seq, but instead of having the RT primers

printed in the glass, they are dispensed on the top of the glass

slide (Rodriques et al., 2019). In Slide-seq, SBL is performed in

situ since the position of the barcoded beads are unknown due to

their random distribution. Slide-seq has a sensitivity limitation

that demands the usage of scRNA-seq data to accurately map

the cell types (Asp et al., 2020). Although Slide-seq has a higher

resolution than ST a new method with even higher resolution

was lately developed. High-definition spatial transcriptomics

(HDST) uses tinier beads than the previous methods and

barcoded beads with RT primers randomly distributed into the

bead array (Vickovic et al., 2019). Despite its higher resolution,

HDST also needs the SBL to be performed in situ and requires

scRNA-seq data to help the mapping process (Asp et al., 2020).

A completely different approach is APEX-seq, based on profiling

RNA subcellular regions inside living single-cells (Shah et al.,

2016b; Fazal et al., 2019). However this method uses cell lines

expressing the APEX2 enzyme on the subcellular area of interest,

which makes it ineffective to be used in regular tissue samples

(Asp et al., 2020). A different and more complete approach is

GeoMx, which has the ability to spatially profile proteins in

addition to mRNA, allowing sub-cellular and single cell analysis,

however in different tissue sections (NanoString, 2019). In this

technique it is needed to manually select different regions of

interest (ROI) that will further be subjected UV light in order

to release the target probes associated with the barcoded tags, for

both RNA and protein experiments. GeoMx has limitations such

as low multiplexing capacity, regional analysis of the tissue in an

unbiased way and for small ROI (≈ 10µm) it has a low efficiency

in protein detection (Van and Blank, 2019; Asp et al., 2020).

With the same goal, but using a different approach, microfluidic

deterministic barcoding in tissue (DBiT-seq) was developed (Liu

et al., 2020). In this method, a microfluidic chip containing

channels with barcoded tags for both mRNA (oligo-dT tags) and

protein capture (antibody tags) is planted on top of the tissue

region of interest (Asp et al., 2020).

Finally, it is also possible to perform spatial transcriptomics

in silico which uses computational methods to assign a spatial

location to each single cell from a dataset based on their gene

expression. In silico transcriptomics algorithms can be classified

in two groups, the ones that use reference maps and the ones

that rely on assumptions based on gene expression traits without

using a reference map (Asp et al., 2020). The first algorithms

developed use computationally generated ISH reference maps of

smaller regions within the tissue of interest, and a spatial location

is attributed to each cell using a small group of descriptive

genes (Achim et al., 2015; Satija et al., 2015). Despite being

reliable approaches to be used in well-described and defined

tissue structures and organisms, it is quite difficult to apply these

methods in more complicated structures. Furthermore these

approaches cannot be used in clinical samples and is limited

to already existent ISH maps (Asp et al., 2020). Methods that

do not use a reference map allow to overcome the previous

stated main limitation. NovoSpaRc enables de novo spatial

positioning without any reference map (Nitzan et al., 2019), by

taking in account assumptions of how gene expression changes

in the tissue and that proximal cells have a more identical

transcriptional profile. Although being a promising method,

further studies need to be done (Asp et al., 2020).

Despite being a really helpful tool to understand how

single cells’ landscapes are spatially organized throughout a

tissue, spatial transcriptomics by itself cannot achieve a deep

single cell transcriptomics resolution. To overcome this sort

off limitation, it is possible to combine scRNA-seq data,

from public repositories, to help understand the distribution

and architecture of cells. To integrate scRNA-seq data and

spatial data, there are two distinct methods: mapping and

deconvolution. Mapping can be divided into two branches:

(1) mapping each cell to a precise region of the tissue and

(2) mapping cells based in scRNA-seq cell types and subtypes.

Deconvolution is used to untangle subpopulations of cells mixed

with transcripts of mRNA (Longo et al., 2021).

2.4. Temporal transcriptomics

Temporal transcriptomics can be incorporated in the

scRNA-seq and spatial transcriptomics analysis. This type of

analysis predicts cells’ trajectory and cells’ lineage, allowing to

see the progression of cells fate during time. Although the

efforts made the challenge to introduce temporal information on

scRNA-seq data prevails due to the need of cell lysis to perform

sequencing, which makes it impossible to sequence the same

cell again in a different progression stage. This technique is

divided into two branches: (1) differentiation trajectory and (2)

lineage tracing.

Differentiation trajectory reconstruction is used when

analysing time scales ranging from hours to days. This one

diverges into three smaller branches which are the usage

of intronic reads to predict changes in expression over

time, pseudo-temporal cells’ arrangement, and RNA metabolic

labeling (Olivares-Chauvet and Junker, 2020). The intronic

reads uses a vector that can predict the next stage of a cell

based on their expression (La Manno et al., 2018). This method,
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also called RNA velocity, has the enormous advantage of no

additional steps needed during the scRNA-seq experiment.

However, limitations include the absence of quality control,

which disable a more specific transcriptional dynamic analysis,

and the fact this method can be solely applied to a portion of the

identified genes (Olivares-Chauvet and Junker, 2020). Pseudo-

temporal cell ordering is possible to use when a considerable

number of cells are captured during sequencing. Here cell

trajectory is predicted by connecting neighboring cells following

the dimensionality reduction or by using k-nearest neighbors

graph (Trapnell et al., 2014; Setty et al., 2016). Furthermore

this method allows the characterization of differentiation events

in early developmental stages if the sequenced cells are taken

at different time points (Wagner et al., 2018). However, this

method does not allow the visualization of the cellular trajectory

differentiation direction in contrast with the previous method.

Contrarily to the intronic reads based method, RNA metabolic

labeling enables the analysis of specific transcriptional dynamics

such as transcriptional, splicing, and decay rates. Despite all the

advances this method limitation is the necessity to incorporate

a new step into the scRNA-seq pipeline to add the labeling

(Olivares-Chauvet and Junker, 2020).

When there is a need to perform temporal transcriptomics

using larger timescales, it is preferable to use lineage tracing.

This method was first performed manually by following the

development and cell division of a given organism under

a microscope. With the same principle, this method allows

to perform lineage tracing from extremely specific cellular

niches to all the existent cells in an organism by using high-

throughput strategies (Olivares-Chauvet and Junker, 2020).

The combination of cellular changes on DNA and cell type

identification are used as lineage markers (Ju et al., 2017;

Wangsanuwat et al., 2019; Olivares-Chauvet and Junker,

2020). Besides the differences among the high-throughput

methodologies used in lineage tracing, the majority of the

most recent methodologies take advantage of the CRISPR/Cas9

system to break the double-strand into the transgene. Thereafter,

the repair mechanisms may lead to indels near the cut spot, that

can be used as barcodes (Olivares-Chauvet and Junker, 2020).

3. The burden of mycobacterial
diseases

Stated by the World Health Organization (WHO),

Tuberculosis (TB), Leprosy and Buruli ulcer (BU) are the

three most common mycobacteria causing disease in humans.

Looking at the WHO-published numbers, there were 127,558

new leprosy cases detected globally in 2020 (World Health

Organization, 2022b), whereas in the same year, 10 million TB

(World Health Organization, 2021), and 1,258 BU cases were

reported (World Health Organization, 2022a). Incidence and

prevalence of these diseases differs considerably per country,

noting that developing countries bear the biggest brunt of both

new cases and that of patients undergoing treatment. Despite an

apparent reduction in the number of cases of these diseases in

2020, it is important to take into account the disruption of the

WHO programs and control efforts, caused by the COVID-19

pandemic. These diseases continue to be major global health

concerns, due to a marked increase in the number of susceptible

individuals (Bruchfeld et al., 2015; Chao et al., 2020; Amoako

et al., 2021) and associated prejudicial direct and secondary

effects on global health and economy (Saraya et al., 2012).

Moreover, the increasing antimicrobial resistance limits the

efficacy of the reduced number of compounds available for

treatment, stressing the need for expansion of surveillance and

development of novel therapeutic and disease control strategies

(Owusu et al., 2016; Gygli et al., 2017; Cambau et al., 2018).

Since the beginning, humans have been exposed and

coexisting with bacteria from the genus Mycobacterium, mainly

through contact with soil and untreated water. These bacteria

mainly infect humans via the respiratory and gastrointestinal

tract or skin. Although commonly known as a generalist

environmental mycobacteria with capacity to cause disease

in certain situations, a minority of mycobacterial species has

gone through a long evolutionary process, evolving to a

slow-growing pathogenic lifestyle (Gutierrez and Somoskovi,

2014), with Mycobacterium tuberculosis and Mycobacterium

leprae standing out. M. tuberculosis is responsible for TB,

which is a primarily pulmonary disease initiated by the

deposition of the M. tuberculosis, via an airborne route, into

lung alveolar surfaces (Smith, 2003). Macrophages are the

first cellular line of protection, due to the expression of a

large array of pattern recognition receptors, being present in

pulmonary tuberculous granulomas. Nonetheless, these myeloid

cells, specifically alveolar macrophages (AMs), present a dual

role in TB also contributing for the spread of M. tuberculosis

during the course of disease. On the other hand, dendritic

cells act on antigen presentation in lymph nodes, in which a

T-cell response can subsequently be developed (Silva Miranda

et al., 2012). The delay between the arrival of T cells at

the site and the establishment of infection may contribute

to the inability of the host defenses (Silva Miranda et al.,

2012). All these signaling events lead to the formation of a

granuloma, the hallmark of tuberculosis (Mayer-Barber and

Barber, 2015). TB can present itself as a dynamic panoply

of conditions, ranging from an asymptomatic infection to a

life-threatening disease (Pai et al., 2016). In addition to host-

related factors bacterial diversity might also have a relevant

role in orchestrating immune responses to direct the distinct

TB severities (Bastos et al., 2016; Yruela et al., 2016; Sousa

et al., 2020). There are several treatment regimens recommended

for TB ranging in duration from 4 to 9 months and

relying on combination chemotherapy with drugs that include
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isoniazid, rifampicin, Ethambutol, Pyrazinamide, and others.

Unfortunately, the appearance of monoresistant-TB, multidrug-

resistant tuberculosis, extensively drug-resistant tuberculosis,

and total drug-resistant tuberculosis, is increasing to a point of

critical obstruction of the efficacy of currently available drug

regimens (Hameed et al., 2018). This phenomenon is fueled

by factors such as the long treatment duration, improper use

of antibiotics, evolution, and transmission of drug-resistant

M. tuberculosis, limited access to drugs or diagnostic tools

making imperative the development of new TB preventive and

therapeutic strategies (Bastos et al., 2018; Rocha et al., 2021;

Santos-Pereira et al., 2021).

On the other hand, M. leprae is the causative agent of

Hansen’s disease, also widely referred to as leprosy. As classified

by the Ridley-Jopling System, the disease spectrum of clinical

and histopathological forms varies between two poles, namely

tuberculoid (TT) or lepromatous (LL), depending on the

immunological response of the host (Walker and Lockwood,

2007). TT presents not only a M. leprae-specific Th1 response,

but also a TH17 response that limits M. leprae multiplication;

in contrast, LL is characterized by a Th2 and T regulatory

responses that allows bacterial dissemination instead of control

(Fonseca et al., 2017). This mycobacterium causes a chronic

infection in humans, mainly affecting the peripheral nerves

and skin. In addition, it can further affect sites such as the

eyes, mucous membranes and bones, producing a spectrum of

clinical phenotypes (Walker and Lockwood, 2007; Graham et al.,

2010; Polycarpou et al., 2013). In the skin, M. leprae has an

affinity for keratinocytes, macrophages, and histiocytes, while in

peripheral nerves,M. leprae can target Schwann cells giving rise

to axonal dysfunction and demyelination, which leads to sensory

loss and disabling or deforming conditions (Polycarpou et al.,

2013). The treatment of Hansen’s disease involves a combination

of antibiotics, with dapsone and rifampicin typically being

conjugated for 6 months. Furthermore, lepromatous forms of

the disease imply the addition of clofazimine to the treatment

(Belachew and Naafs, 2019). Since M. leprae does not grow in

vitro the resistance to antibiotics in laboratory has not yet been

widely assessed. Notwithstanding, it has recently been disclosed

an emergence of resistance to rifampicin (Cambau et al., 2018).

Although the mycobacteria responsible for tuberculosis

and leprosy are recognized as obligate pathogens of humans,

environmental mycobacteria such as the ones responsible for BU

disease and non-tuberculous mycobacterial diseases are gaining

recognition and relevance. BU is an indolent necrotizing and

slowly progressive disease caused by Mycobacterium ulcerans,

whose key pathogenic factor is the lipid toxin mycolactone

(Kumar et al., 2015). During the progression of M. ulcerans

infection, mycolactone is responsible for tissue necrosis and

inhibition of the host’ immunity. Since 2004, the WHO issued

treatment guidelines recommending the combination of the

antibiotics rifampicin and streptomycin for 8 weeks associated

with other supportive treatments, namely wound management

and physiotherapy (Kumar et al., 2015; Converse et al., 2018).

In 2017, the WHO Technical Advisory Group on BU replaced

streptomycin by oral clarithromycin, considering that injections

of the former were painful and could cause ototoxicity (Yotsu

et al., 2018). In the three mentioned diseases vaccination with

Mycobacterium bovis bacillus Calmette-Guérin (BCG) is a safe,

but only partially effective, prevention measure (Phillips et al.,

2015; Coppola et al., 2018).

To clarify the pathogenesis of these diseases, it is vital to

characterize the host-pathogen interactions in the course of the

infection. Although traditional phenotypic measurements and

bulk transcript analysis can provide insights into pathogenesis,

the heterogeneity of individual cell populations and its

contribution to disease progression is challenging to be analyzed

(Huang et al., 2021). However, the emergence of scRNA-seq

with high resolution and scale now allows transcriptome analysis

of thousands of individual cells. Thus, the use of scRNA-seq

has refined the knowledge of the human cell landscape and

has driven progress in various areas including immunology,

developmental biology, oncology, and infectious diseases

(Huang et al., 2021). In the latter, single cell approaches are

imperative to obtain insights on the evolution of infections, by

identifying susceptible cell types, examining infection dynamics,

studying immunological changes, discovering biomarkers, and,

ultimately, contributing to unravel novel treatment strategies

(Luo et al., 2020).

4. Application of single-cell
genomics to study mycobacterial
infection

A bacterial infection is characterized by host-microbe

interactions, that may have different outcomes depending on the

regulation of the host-microbe relationship and its’ coevolution.

Looking at its’ global impact, infection caused by mycobacteria

present a substantial threat to public health and specifically

in patients with defects in cell-mediated immunity (Brown,

2008). The continuous spread, profound negative effects, and

inexistence of an efficient cure are related to the diverse number

of strategies employed by these mycobacteria to infect, escape

the immune system, proliferate, and establish in host cells.

Based on scRNA-seq advances, a new understanding of both

host-pathogen interactions and the development of subsequent

treatment strategies has been made possible, since this method

probes host’s cell-to-cell variability and uncovers in a very

sensitive way the host’s immune response to a bacterial threat.

Throughout this section the main findings using scRNA-seq

on the two most relevant intracellular mycobacterial infections,

responsible for tuberculosis or leprosy, will be explored.

When facing the progression of an infection, the activity

and response of heterogeneous immune cells play a central

role in important biological processes, such as pathogen
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identification, antigen presentation, immune response, threat

neutralization and elimination, and tissue recovery. Since

scRNA-seq can define the transcriptomic heterogeneity of a

complex community of cells during the infection process, obtain

high-throughput data of cellular phenotypes, and assign robust

identity classifications to cell populations, this approach deepens

the understanding of infectious disease mechanisms. To initially

illustrate these strengths in the mycobacteria field and studying,

specifically, the M. tuberculosis infection, Gierahn et al. (2017)

developed and used seq-Well to profile thousands of primary

human macrophages exposed to tuberculosis. Although five

clusters were initially defined, lower transcript capture and high

mitochondrial gene expression lead the authors to focus on

three distinct clusters in their macrophage culture that passed

quality control. As expected from previous literature, infection

of macrophages with M. tuberculosis resulted in pronounced

shifts in gene expression, such as genes related to Toll-Like

Receptors (TLRs), in a response that was shared by all the

discovered clusters. Interestingly, the authors also reported

cluster-specific responses to the exposure to M. tuberculosis.

Differential expression of cell growth genes was only found in

cluster 1, metabolism-associated genes in cluster 2 and genes

involved in hypoxia in cluster 3 (Gierahn et al., 2017). Overall,

this study suggests either distinct origins or adaption to different

microenvironments by the defined clusters, uncovering a level

of cellular heterogeneity in response toM. tuberculosis infection

that was previously overlooked (Luo et al., 2020).

In a more recent study, Esaulova et al. (2021) advanced

an in-depth analysis of the immune landscape in the lungs of

healthy, latent TB infection (LTBI), and pulmonary tuberculosis

(PTB) in macaques, using a droplet-based microfluidics

single-cell technology. Specifically, major differences in lung

T cell activation state were observed. T cells from control

and LTBI macaques were predominantly represented by naive

CD4+CD8+ T cells and effector memory CD4+/CD8+ T cells,

whereas PTB lungs were enriched in activated CD4+/CD8+ T

cells. Although the common expression of IL7R, TCF7, and

LEF1 genes and the low expression of activation markers, a

new subset of naive T cells was identified in PTB patients. This

identification depended on the single-cell differential expression

analysis of heat shock proteins, including HSP1A and

DNAJB1. Regarding the myeloid cell family, three differential

clusters of macrophages were sorted by this technology. In

the lungs of control and LTBI macaques, “CD163+MRC1+

macrophages” were distinguished by classic markers of

alveolar macrophages (AM)-like population identifiers, namely

MARCO, MERTK, and APOE. The second cluster formed,

which also expressed CD163+MRC1+ and presented a higher

expression of TREM2, C1Q, and TREM176A/B genes, was

the “CD163+MRC1+TREM2+ macrophage” subgroup. This

subgroup was found in the lungs of healthy macaques. Finally,

“IFN-responsive macrophages” was CD163+MRC1low and

uniquely located in the lungs of macaques with PTB. These

macrophages produce proinflammatory proteins and express

suppressive molecules such as IDO1. Importantly, lung CD27+

Natural killer (NK) cells were associated with protection during

latent TB. Contrarily, the influx of plasmacytoid dendritic

cells (pDCs), Interferon (IFN)-responsive macrophages, and

activated T cells into the lung were the three defining features

associated with active pulmonary TB (Esaulova et al., 2021). This

study demonstrated the capability of scRNA-seq to currently

distinguish different and novel populations of cells based on the

transcription readings obtained per cell and therefore establish

significant differences between control and stages of the disease.

Although capable of distinguishing between different stages

of the disease, single-cell analysis can be useful to study

and evaluate the cellular and molecular footprint particularly

related to disease progression. Nathan et al. (2021) focused

on the single-cell sequencing of only memory T cells

isolated from PBMC of TB progressing cases. Although, 31

memory T cell states were sorted (four major clusters—CD4+,

CD8+, CD8+CD8+CD4-CD8-), the differential abundance and

function of TH17 subset between progressors and non-

progressors donors directed the study to its’ deep analysis.

Although dependent on age, sex, winter blood draw, and

proportion of European genetic ancestry, this disparity may

either be a long-term consequence of prior TB disease or

predisposition to TB disease progression. The TH17 subset

is marked by a CD4+CD45RO+CD26+CD161+CCR6+ which

confers cytotoxic and proinflamatory properties (Nathan et al.,

2021). Another biomarker of the progression of this disease

was proposed by Bossel Ben-Moshe et al. (2019). Based on

the knowledge gained from the single-cell analysis of infected

PBMCs, the authors trained a dynamic deconvolution algorithm

to achieve the same resolution in bulk measurements as in

single-cell sequencing. It was observed that TB patients, when

compared to LTBI and controls, expressed less NKT cell

activation and higher monocyte activation. Furthermore, the

different signature of infected monocytes between progressors

and non-progressors individuals, suggests the capability to

identifying LTBI individuals with higher risk to develop active

TB (Bossel Ben-Moshe et al., 2019).

Another key aspect to understand host-pathogen interaction

consists in uncovering the distinct regulation of the overall

immune response in physiological vs. pathological conditions.

Cai et al. (2020) focused on this particular interaction, by

comparing PBMCs isolated of LTBI and TB vs. healthy

control (HC). Using a droplet-based microfluidics single-

cell technology, three major cell types (T cells, B cells, and

myeloid cells) were prominent, with 29 subsequent subsets

being found. Given that the cellular composition of PBMCs

changes during pathological stress, an abundance of CD14+

myeloid cells had been expected and was witnessed, with three

subgroups of CD14+ pro inflammatory cells being specifically

enriched in TB clinical cases, when compared to HC and

LTBI. Sub-cluster analysis also revealed two distinct clusters
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of circulating NK cells, T2 (FCER1G, GZMB, GNLY, SPON2,

PRF1,CD7, MYOM2, and KLRF) and T7 (MH, FGFBP2, GNLY,

and selectively expressed KLRC). These clusters allowed the

understanding of differential progression of the disease, since T2

gradually decreased from LTBI to TB, compared to HC; while

T7 was present in a higher frequency in LTBI. Importantly the

depletion of CD3-CD7+GZMB+ NK cells in TB, when compared

to HC and LTBI, was recognized as a distinct marker of the

different stages of tuberculosis. The authors further analyzed

the frequency of this subset after anti-TB treatment, noticing an

increase of CD3-CD7+GZMB+ after 3 months, corroborating

the results found when using single-cell and flow cytometry

(Cai et al., 2020). Overall this article suggests single-cell as a

tool to characterize the flow of the disease by analyzing NK cell

alteration in blood samples.

To complete the profiling of the overall immune cell

response between physiological and infection conditions it

is crucial to specifically investigate the differences in cell

susceptibility during infection. Looking into the lungs of

tuberculosis infected mice, Pisu et al. (2021) developed

a multimodal scRNA-seq protocol. To fully assess cell

susceptibility during infection, single-cell transcriptional

data was used to determine the direct correlation between

fluorescence (hspx’::GFP) and environmental stress, sensed by

the bacteria. Although previous work carried out by the authors

had shown that, at a population level, alveolar macrophages

(AMs) were more permissive to bacterial growth than the

interstitial macrophages (IMs), the in depth single-cell data

obtained showed that both IM and AM lineages each contain

discernable and sensitive distinct subpopulations. The authors

highlighted only three populations of IM (IM_1, IM_2, and

IM_3) due to the low expression of IM_4. The additional

pseudotime analysis suggests that the latter subset represent

a transitional phenotype between the IM_3 and IM_1. The

IM_1 subpopulation is characterized by overexpression of

cyclooxygenase2 and Il1β , both of which are known to be

involved in a pathway that promotes a protective response in

M. tuberculosis-infected mice and up-regulates genes associated

with resolution of inflammation. On the other hand, IM_2

represents a more heterogeneous cluster, exhibiting a Nrf2

signature that has been associated with a reduced inflammatory

response, sensed by the hosted bacteria. Finally, the IM_3

subpopulation is relatively homogeneous and up-regulates

the expression of the Nos2 protein and pro-inflammatory

genes. Concerning the AM lineage, different subpopulations

were characterized by different expression of proinflammatory

responses. The AM_1 population included a subset, designated

AM_Pro-infl, that expressed high levels of Nos2, and showed

up-regulation of proinflammatory mediators. Both AM_1

and AM_3 populations shared a common signature, usually

associated with M2 polarization and up-regulation of fatty

acid metabolism. These cells appear to be permissive to M.

tuberculosis growth as detected by the low expression of the

hspx′:: GFP reporter. A similar population of inflammatory

AMs was also present in the AM_2 cluster, being closely related

to IM, with respect to a transcriptional profile upon infection

with M. tuberculosis. Finally, the transcriptome of the AM_4

cells revealed a phenotype of cell division, suggesting that this

subset is responsible for the maintenance and replenishment of

the AM population (Pisu et al., 2021).

In addition to the capacity to distinguish different and

rare cell populations, while simultaneously correlating this

information with the expressed gene profile, the authors also

applied scATAC-seq to assess changes in chromatin organization

of AMs and IMs. The data analysis showed that chromatin-

accessible patterns in IMs and AMs of BCG-infected mice

presented similar immunological responses to those observed

M. tuberculosis-infected mice. The authors then studied the

surface markers of infected cells, by assessing the level of

correlation between single-cell and flow-cytometry data. The

results confirmed that CD11clow AM and CD11clow IM

populations presented an increase in the median fluorescence

intensity of the GFP signal. Based on this evidence the authors

suggested that CD11low cell populations might harbor M.

tuberculosis bacilli, which can be correlated to a higher degree of

drug tolerance, being this a finding with potential implications

for TB treatment (Pisu et al., 2021).

In regards to leprosy, scRNA-seq data from four leprosy

lesions has been published by Hughes et al. (2020), focusing on

the development and application of a second-strand synthesis-

based scRNA-seq technique called Seq-Well S3. In this study,

the authors observed enhanced enrichment of TCR sequences;

a T-cell subset enriched for ROR-γT expression (suggesting

the primary role of Th-17 cells in bacterial control); a

unique population of macrophages defined by expression of

extracellular proteases; as well as elevated expression of IFN-

γ . The latter molecule controls transcription programs in

Langerhans cells, which, by comparison with normal skin

biopsies, showed elevated expression of pro-inflammatory

molecules (IDO1, STAT1, HCAR3, and MHC class I). Finally,

different groups of fibroblasts were classified based on the

expression of POSTN and MMP11 molecules and high amounts

of SFRP2, PRSS23, and IL6 (Hughes et al., 2020). On other

hand, Mi et al. (2022) focused on analysing two main

scenarios: (1) full comparison between data from leprosy

patients and healthy controls and (2) the analysis of the

intercellular crosstalk between immune cells. The authors

presented a detailed host-immune landscape againstM. leprae in

Lepromatous leprosy (L-lep), through the application of droplet-

based microfluidics single-cell technology on skin lesions and

PBMCs. As a result, part of the molecular mechanism by

which M. leprae escapes the immune response to reside and

proliferate within host cells was clarified. Nine skin immune

cells subtypes were revealed, including B cells, CD4+ T, CD8+

T, NK, mast cells, Langerhans cells, Mac_LIPA, Mac_FCN1,

and CD1C + DC. In respect to L-lep lesions, CD8+T cells
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revealed a significant upregulation of TIGIT and LAG3,

implying the exhaustion of this type of cells. This finding was

corroborated studying the intercellular communication, where

the enhancements of interactions between CD8+T cells and

antigen-presenting cells (CTLA4/CD86, PDCD1/PDCD1LG2,

and TIGIT/NECTIN2) were noticeable. Regarding PBMCs from

L-lep patients, alterations were observed by the expansion

of the Treg cell subset. In addition, there was an increase

of communications between Tregs and another cell type

[mediated by CTLA4/CD86, PDCD1 (PD-1)/PDCD1LG2,

LGALS9/HAVCR2 (TIM-3), PVR/TIGIT, TIGIT/NECTIN2,

and TIGIT/ NECTIN3], in a way that Treg could exert

their characteristic immunosuppressive function. Finally, the

upregulation of APOE led the authors to suggest the

involvement of this molecule in the pathogenesis of the infection

(Mi et al., 2022). All things considered, the knowledge of the

immune signatures and immune cell deficiencies associated with

Leprosy was depended by single-cell analysis.

Knowledge on the granuloma architecture and its molecular

spatial distribution is fundamental for the better understanding

of correlates of immune protection against M. tuberculosis.

The function of the granuloma is to sequester and degrade

microbial pathogens that have evaded the early immune

response. Gideon et al. (2022) applied Seq-Well platform for the

study of 26 cynomolgus macaques’ granulomas, distinguishing

them between low and high Colony-forming unit (CFU)

counting. After performing all the bioinformatic data care

steps, high-quality transcripts were used for downstream

analysis. This led to the identification of 13 general immune

cell type clusters across all granulomas, further detecting

subclusterings among the T/NK and macrophage cluster. Due

to the parallel study of the bacterial burden it was possible

to observe that an higher bacterial burden present higher

proportions of plasma cells and mast cells. The molecular and

cellular interaction in this context reflect fibrosis, metabolic

remodeling, and angiogenesis associated with immune attempts

at wound healing. On the other hand, T/NK cells were more

abundant in low-burden granuloma, being identified clusters

of cells with transcriptional features of both type 1 and 17

T cells associated with a coordinated immunity (Gideon

et al., 2022). As a drawback, this study makes it impossible

to investigate the structural organization of the granuloma.

Furthermore, single-cell technology requires high quality

cells and given the heterogeneous environment within the

granuloma, as well as the presence of necrotic debris in the

caseous center, the cell sample may be unrepresentative or

even biased for highly expressed populations. Therefore, by

integrating scRNA-seq with spatial sequencing, it was possible to

delineate the cellular and molecular structure of the organized

granuloma in leprosy. Ma et al. (2021) focused the study

on T-lep and reversal reactions (RRs), which is a dynamic

process characterized by the transition from a L-lep scenario

toward self-limiting tuberculoid leprosy (T-lep). A mixture

of M1-like and transitional macrophages was observed at the

core of the organized granuloma in RR and T-lep lesions.

The pseudotime trajectory analysis of the leprosy scRNA-seq

data suggest that TREM2 macrophages, predominantly found

in L-lep lesions, differentiate to transitional macrophages,

which are found in both RR and L-lep lesions, and further

mature to ML4 macrophages, which are found predominantly

in RR lesions. IL1B and IFNG are upstream regulators of

the pseudotime trajectory in macrophages, acting as well

on macrophage activation in granulomas to express genes

known to contribute to antimicrobial responses. Focused on

the spatial sequencing analysis, the surrounding zone of the

granuloma is characterized by the presence of dendritic and

Langerhans cells, along with T cell subtypes, which have the

ability to deliver antimicrobial effector molecules into infected

cells and can secrete cytokines that trigger a downstream

antimicrobial response in macrophages. This analysis indicated

that fibroblasts, keratinocytes and endothelial cells also express

antimicrobial genes in RR granulomas. Moreover, two different

fibroblast sub-populations were characterized, CXCL2+

fibroblasts and SFRP2+ fibroblasts. Localized at different sites of

the periphery of the granuloma both fibroblast sub-populations

contribute to the deposition of extracellular matrix proteins

in the granuloma and to the release of antimicrobial proteins

(Ma et al., 2021). These findings present a temporal and spatial

model, not only of the immunological activation of multiple cell

types, but also of the granuloma organization to effectively act

in the control of pathogen activity.

Moreover, Carow et al. (2019) identified immune transcripts

located within the tuberculosis granuloma using a highly

sensitive multiplexed in situ imaging. The authors compared

granulomas from lungs of mice at different time points after

aerosol M. tuberculosis infection (3, 8, and 12 weeks). Although

the similar transcription expression by innate immune cell

(Tnf, Il6, Inos, Il12), an increase of transcripts related to T-

or B cells (Cd3e, Cd19, Ccr6, Ifng) was observed at later time

points. An over-representation of Cd19 mRNA was noted in

the lymphoid cell area at 8 and 12 weeks. Cd19 and T-cell

transcripts were co-expressed together with CCR6 mRNA in

most lymphoid areas indicating close interactions between T

cells and B cells. This data, together with the expression of Il12

mRNA in several lymphoid areas, highlights the importance

of lymphocytes to orchestrate the immune response to M.

tuberculosis. Moreover, in the epithelioid areas of the granuloma

the main clusters included Cd68, Tnf, and Inos but also Cxcr3

and Ccr4 mRNA, expressed by TH1 and TH2 cells, respectively.

The combined application of this technology with stained

bacteria allowed the authors to take conclusions about the

distance of different cellular types from the bacteria. Inos, Cd68,

Cd11b, Tnf, and Socs3 mRNAwere enriched at shorter distances

to M. tuberculosis, suggesting that activated macrophages co-

localize with this bacteria in the granuloma. On the other hand,

transcripts such as Cc10, Spc, Il6, and Foxp3 were decreased
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TABLE 2 Summary table containing the technique and major conclusions of the articles discussed in this section.

Technique Major conclusions References

Seq-Well Genetic profile of macrophages exposed toM. tuberculosis Gierahn et al., 2017

10x Chromium Single-cell landscape ofM. tuberculosis-infected macaques lungs during TB and

latency

Esaulova et al., 2021

CITE-Seq Differential abundance and function of TH17 subset between progressors and

non-progressors donors

Nathan et al., 2021

10x Chromium Identification of latent individuals with high risk to develop active TB disease based

on monocytes immune cells

Bossel Ben-Moshe et al., 2019

10x Chromium Identification of NK cell subset depleted, and monocytes and B cells increase during

TB

Cai et al., 2020

CITE-Seq Understanding of the roles that different host cell populations play during the course

of an infection

Pisu et al., 2021

Seq-Well S3 Transcriptional landscape of inflammatory skin disease, leprosy Hughes et al., 2020

10x Chromium Primary suppressive landscape in the L-LEP patients Mi et al., 2022

Seq-Well Single-cell profiling of tuberculosis lung granulomas Gideon et al., 2020

Seq-Well Integration of scRNA-seq with spatial sequencing, to delineate the cellular and

molecular structure of the organized granuloma in leprosy

Ma et al., 2021

In situ sequencing Different immune landscapes ofM. tuberculosis granulomas depending on the time

after infection

Carow et al., 2019

at shorter distances. Other transcripts including Cd8b, Cd3e,

Cxcr3, Ccr4, and Il12 showed similar frequencies at different

distances from M. tuberculosis. Overall, this study highlights

the potential of single-cell spatial analysis when combined with

other techniques (Carow et al., 2019).

Although scRNA-seq has been extensively developed in

recent years and answered different questions (as summarized

in Table 2), little work has been done specifically onM. ulcerans,

once no articles were found for this review. In contrast, the use of

scRNA-seq in the field ofM. tuberculosis is continuing to expand

(Khan et al., 2020; Longo et al., 2021; Akter et al., 2022; Oelen

et al., 2022). Thus, with the development of new techniques and

the uptake of this method, it is imperative to take advantage of

scRNA-seq to better understand the evolution of infection by

identifying susceptible cell types, studying infection dynamics

and immune inflammatory changes, discover biomarkers and,

ultimately, unravel novel treatment strategies.

5. Discussion

Mycobacteria are among the oldest and deadliest aetiologies

of human infectious disease still accounting for large global

morbidity and mortality. The current perspectives for mankind

being able to control the negative burden of Mycobacterial

diseases are not blooming. Innovation will be key for this defiant

goal and will likely encompass a shift from the traditional

chemotherapy to host-directed therapies and personalized

medicine. For these to become a reality there is a strong need for

deeper insights into the host immune status, intra-host pathogen

evolution, and how it associates with different disease spectra

in the course of Mycobacterial infection. Understanding the

dynamic diversity within the populations of cells from the host

and pathogen is fundamental to better understand protective

immune responses and therapy resistance mechanisms. The

high-resolution study of these processes is challenging but the

technological developments in the field of single cell genomics

bring new hope. The combination of incremental advances

in recent years forms an idyllic vision for the future of

Mycobacterial infection research than can be named “dual

single-cell in vivo multiomics.” Dual RNA-seq emerged as

powerful tool in which the simultaneous analysis of the host

and pathogen transcriptomics added large value to dissect the

interplay between the organisms. Most studies published to

date in the field of Mycobacteria using dual RNA-seq focused

on M. tuberculosis infection and are based on bulk analysis

(Pisu et al., 2020). Exciting next steps will encompass taking

these studies to the single cell level in primary cell cultures or

tissue biopsies from animal models or the human host. Also

brightly encouraging will be recording in each experiment the

multiomics dimension by combining transcriptomics with other

modalities such as epigenomics, metabolomics, or proteomics.

As mentioned in this review scRNA-seq, along with ATAC-seq,

spatial, and temporal transcriptomics were proven to be able

to provide relevant insights into how cells behave and interact

with adjacent cells through time in the context of the “natural”
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cellular niche and how they interplay in various cellular

events and signaling cascades. These approaches performed

in a dual(or multi)-organism approach can be of particular

significance to better understand the dynamics of mycobacterial

survival and growth within the host as these are often

linked with cellular structures such as granulomas composed

of heterogenous population of host and mycobacterial cells.

Also potentially revolutionizing of the state-of-the-art will

be to take into account the effects of the microbiome and

syndemics by using these tools to investigate hosts affected by

relevant global co-infections such asM. tuberculosis and HIV-1,

SARS-CoV-2, or Plasmodium falciparum. Overall, these studies

could decisively impact existing knowledge dissecting with

unprecedented levels of detail the complex interplay between

host and microbe cells influencing metabolism and other

essential biological pathways and having a strong influence on

disease outcome. Advances in single-cell genomics in the context

of Mycobacterial infection also have the potential to impact

future clinical practice helping clinicians to better prioritize and

personalize treatment. In example, these methods will likely

providemeans for better detection/prevention of drug resistance

and increase the accuracy of severe disease risk prediction.

However, these approaches still encounter technical limitations

that greatly challenge its expansion and scaling in research and

development programmes. A major limitation in combining

single cell with dual RNA-seq approaches for the simultaneous

analysis of the host and mycobacterial transcriptome is the

fact that the most validated scRNA-seq methods capture only

polyadenylated RNA transcripts that are in low abundance

in bacteria. The use of poly[T] priming in these methods

for efficient RT discards all non-polyadenilated mycobacterial

RNAs also excluding from the experiments host non-coding

RNAs (such as microRNAs, long non-coding RNAs, circular

RNAs, among others). Furthermore, the use of short-read NGS

technologies for sequencing impairs the correct analysis of

genomic regions that are highly repetitive or diverse. These

regions often include molecular targets of high interest in the

host-pathogen interaction including targets that are co-evolving

to modulate immune responses or sites involved in evolution

toward drug resistance. These could be surpassed by a more

extensive validation of single cell genomics methods that do

not rely on poly[T]/[A] priming and by the use of hybrid

sequencing strategies combining short read with long read NGS

technologies (Amarasinghe et al., 2020). Alongside these specific

limitations the application of single cell genomics to the field

of Mycobacterial infection is also affected by more general

limitations such as: (i) the requirement for large volumes of

sample, (ii) the need for more efficient cell isolation methods,

(iii) the effect of sample preparation, processing, or storage on

the obtained results, and (iv) the overall high costs. Moreover,

albeit the advances and remarkable efforts in the development

of bioinformatics for analysing single cell data the meaningful

analysis of multiomics data, from multiple organisms within the

same sample, incorporating temporal and spatial information

is a major challenge requiring the development of improved

computational methods (Chen et al., 2021; Cho et al., 2021;

Fu et al., 2021). Confidently, in the long run, the advances in

single cell genomics will generate findings translatable into novel

therapeutic targets, biomarkers of prognosis, ways to track and

prevent transmission ultimately bringing us closer to eradicate

the devastating diseases caused by Mycobacteria.
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