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Purpose: To apply tracer kinetic models as temporal constraints during reconstruction of under-
sampled brain tumor dynamic contrast enhanced (DCE) magnetic resonance imaging (MRI).
Methods: A library of concentration vs time profiles is simulated for a range of physiological kinetic
parameters. The library is reduced to a dictionary of temporal bases, where each profile is approxi-
mated by a sparse linear combination of the bases. Image reconstruction is formulated as estimation
of concentration profiles and sparse model coefficients with a fixed sparsity level. Simulations are
performed to evaluate modeling error, and error statistics in kinetic parameter estimation in presence
of noise. Retrospective under-sampling experiments are performed on a brain tumor DCE digital ref-
erence object (DRO), and 12 brain tumor in-vivo 3T datasets. The performances of the proposed
under-sampled reconstruction scheme and an existing compressed sensing-based temporal finite-
difference (tFD) under-sampled reconstruction were compared against the fully sampled inverse
Fourier Transform-based reconstruction.

Results: Simulations demonstrate that sparsity levels of 2 and 3 model the library profiles from the
Patlak and extended Tofts-Kety (ETK) models, respectively. Noise sensitivity analysis showed equiva-
lent kinetic parameter estimation error statistics from noisy concentration profiles, and model approxi-
mated profiles. DRO-based experiments showed good fidelity in recovery of kinetic maps from 20-fold
under-sampled data. In-vivo experiments demonstrated reduced bias and uncertainty in kinetic mapping
with the proposed approach compared to tFD at under-sampled reduction factors >= 20.

Conclusions: Tracer kinetic models can be applied as temporal constraints during brain tumor DCE-
MRI reconstruction. The proposed under-sampled scheme resulted in model parameter estimates less
biased with respect to conventional fully sampled DCE MRI reconstructions and parameter estima-
tion. The approach is flexible, can use nonlinear kinetic models, and does not require tuning of regu-
larization parameters. © 2019 American Association of Physicists in Medicine [https://doi.org/
10.1002/mp.13885]
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1. INTRODUCTION

Dynamic contrast enhanced-magnetic resonance imaging
(DCE-MRI) is a powerful technique that provides a quantita-
tive measure of vessel permeability and interstitial volumes.
In the brain, it characterizes the blood brain barrier (BBB)
leakiness, which has proven to be valuable in several
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applications.” These include assessing conditions with large
BBB breakdown such as gradation of brain tumors,z’3 multi-
ple sclerosis lesions,*” and conditions with subtle and
chronic BBB breakdown such as diabetes,® and Alzheimer’s
disease.” Outside the brain, DCE-MRI has applications in
cancer assessment and therapeutic monitoring in several body
parts including breast,®” prostate,'” and liver."
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DCE-MRI involves a challenging trade-off between the
achievable spatial resolution, temporal resolution, and vol-
ume coverage. Acceleration strategies that exploit redundan-
cies along the time dimension have shown significant
potential to improve these trade-offs. These include schemes
such as view-sharing,'>"* highly constrained back projection
(HYPR)," and compressed sensing.'®' Several sparsifying
spatio-temporal transforms have been proposed including
spatio-temporal wavelet transform, spatio-temporal finite-dif-
ference, temporal Fourier transform. A major challenge with
these “off-the-shelf" object models is that the modeling
assumptions do not fit the data, which limits the achievable
acceleration rates. Data-driven schemes that learn sparse repre-
sentations from the data have been proposed,” > and have
shown to out perform off-the shelf transforms. However, these
are often associated with highly nonconvex optimization. Fur-
thermore, image reconstruction with existing transforms
involves tuning one or more regularization parameters, which
poses challenges to the standardization of these methods.

In this manuscript we explore the use of physical tracer
kinetic models for constrained reconstruction. This approach
has been used extensively in dynamic positron emission
tomography (PET) imaging,”®° and has recently been
adapted in MRI for the applications of relaxometry,’*> per-
fusion,***  permeability,’*"’ and diffusion imaging.**-’
Broadly, these methods can be classified into methods based
on direct reconstruction of parameters from under-sampled
data, or methods that use representations derived from para-
metric models as constraints in image reconstruction.

We propose a model-constrained approach for DCE-MRI
reconstruction, where established contrast-agent kinetic mod-
els used in post-processing are employed as temporal con-
straints in reconstruction. From a specific kinetic model, and
a physiological range of kinetic parameters, we construct a
library of concentration vs. time profiles. Kinetic model-
specific temporal basis functions are derived from the library
using the k-singular value decomposition (k-SVD) algo-
rithm.*® Through noiseless and noise-based simulations, we
deduce a relation between the sparsity parameter in k-SVD
and the complexity level of the kinetic model. We design a
constrained reconstruction method where the kinetic model-
based temporal bases are used to constrain the recovery of
concentration vs time profiles from under-sampled (k-t) data.
We utilize an iterative multiscale optimization algorithm for
improved robustness to undesirable local minima solutions.

The proposed approach has similarities with recent work
on direct reconstruction of kinetic parameters from under-
sampled DCE-MRI data.***” We use the same tracer kinetic
model for reconstruction and post-processing to exploit the
redundancy in the DCE-MRI pipeline. The major difference
is in formulation of the optimization problem. Direct recon-
struction involves estimation of kinetic parameters directly
from under-sampled data.*® When using the Patlak model, a
Newton-based solver is used. When using the ETK model’*” a
variable splitting strategy is used to iterate between sub-prob-
lems of data consistency, concentration time profile estima-
tion, and kinetic parameter estimation. One major challenge
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is that the kinetic parameter estimation is treated as a black
box. For models like ETK, this fitting problem is nonlinear
and is applied to concentration vs. time profiles containing
noise and potential artifact at every iteration. Errors in kinetic
parameter estimation propagate to the main reconstruction
step. A second limitation is substantial compute times as
kinetic model estimation is performed at every iteration. In
contrast, the proposed approach decouples kinetic parameter
estimation from the reconstruction of concentration profiles.
This avoids calling the computationally expensive kinetic
parameter estimation during reconstruction. The proposed
optimization iterates between data consistency, concentration
profile estimation, and k-sparse projection of concentration
profiles onto a set of temporal basis functions. Kinetic param-
eter estimation needs to be performed only once.

Since our formulation decouples reconstruction of concen-
tration profiles from parameter estimation, it allows for flexi-
bility to adapt to complex nonlinear Kkinetic models.
Furthermore, since the sparsity parameter is fixed a priori, the
proposed approach does not require any tuning of free param-
eters (e.g., regularization parameters). The flexibility allows
for its potential utility in DCE-MRI of most organs and dis-
ease conditions. In this work, we demonstrate effectiveness
with both the Patlak and extended Tofts-Kety (ETK) models,
and demonstrate application to brain tumor assessment.

2. MATERIALS AND METHODS
2.A. Tracer kinetic model-based temporal bases

A library of concentration vs. time profiles Zyy is simu-
lated using a kinetic model, an arterial input function (AIF),
and a physiologic range of kinetic parameters (Fig. 1). [
denotes the number of profiles in the library; and N denotes
the number of time instances. For the ETK model,*' we used
the range: K =0 —0.8min~' in steps of 0.01min~!,
v, = 0 — 60% in steps of 1%, v, = 0 — 100% in steps of 1%
to yield a library of size [ x N = 494100 x 50. Similarly, for
the Patlak model,” we used the range: K" =
0 — 0.8min"! in steps of 0.01min~", vy =0 —60% in steps
of 1% to yield a library size [ x N = 4941 x 50. We assume
a hematocrit (hct) of 0.4, which is equivalent to the range of
blood volume (v,) between 0% and 100% as v, = v,/
(1 = Het). N was chosen as 50 to match our in-vivo DCE-
MRI acquisition settings (i.e., temporal resolution of 5 s and
the total scan time of 250 s). This can however be adjusted
based on the temporal resolution and scan time of the DCE-
MRI acquisition. A population-based AIF was used.*> The
settings of the Parker model that specifies the population-
based AIF were the same as described in Ref. [**]. The range
of kinetic parameters was motivated by brain tumor DCE lit-
erature,’ which suggests 0-0.34 min~' for K™, 0%—60%
for v, assuming hematocrit of 0.4, and 0%—-100% for v.. We
expanded the K" range by ~2.5x, and used the full range
for v, and v, to ensure conservative coverage of the kinetic
parameter space. The k-SVD dictionary-learning algo-

rithm*” is then used to reduce the large library to a smaller
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FiG. 1. Construction of dictionary of temporal basis functions from a specified
tracer kinetic model (a). Based on a physiological range of kinetic parameters
and an arterial input function (AIF), a library of concentration vs time profiles
is generated (b). A subset of the profiles in the library is highlighted in red.
Using k-SVD, the library is then reduced to a smaller set of temporal basis
functions in a dictionary (c). The basis functions generated with the extended
Tofts-Kety model is shown in (c). The basis functions themselves are not rep-
resentative of kinetic model profile, and hence can be nonpositive. Instead, the
linear combination of them is designed to mimic any profile in (b). Approxi-
mate MATLAB computational times respectively for generating the library
(~400 000 profiles) and learning the dictionary were 11.5 min and 3.5 h.
[Color figure can be viewed at wileyonlinelibrary.com]

dictionary of temporal basis functions (denoted by V,«n).
k-SVD represents any time profile in Z, for instance the pth
row of Z, z,(t) as a sparse linear combination of basis func-
tions v;(z) from V:

2,(t) =~ u,V,«n such that,|| u, ||, <g; (1
—— = ~—
1xN Z;{*’”(;) rx1

where r denotes the number of basis functions in V, and is
chosen as r =100 < [. ¢ is the sparsity parameter. ||u,]],
denotes the 1y norm of the vector u, = {ui,u,...,u.}.
277 (1) denotes the g-sparse projection of z,(t) onto V. k-
SVD jointly estimates the sparse coefficient matrix Uy, and
the dictionary V 4y as:

{Glxrv i7r><N}
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2.B. Image Reconstruction

We pose the estimation of the concentration vs time pro-
files Cyxy (M — number of pixels; N — number of time
frames), and the sparse coefficient matrix Uy, from under-
sampled k-t space data (b) as:

miney ||A(C)=b|3;5.0.,C=UV;| ||, <g:p={1,2,....M};

data consistency TK model constraint

3)

C contains the concentration v.s time profile ¢(x, ¢) for every
pixel x € (x,y) stacked row wise. ¢(x, ) are constrained to be
a g-sparse linear combination of the kinetic model-derived
temporal bases in V,.N. The operator A(C) = F,(S,,(T(C)))
denotes the forward model which maps C to the measured
multicoil (k,t) data. F, denotes the Fourier Transform opera-
tor on a specified (k-t) under-sampling pattern. S,, contains
the receiver coil sensitivity maps. To estimate the coil maps,
the standard sum of squares method is applied on high SNR
multicoil images obtained after gridding reconstruction of the
time collapsed raw k-t data; the coil maps are assumed to cap-
ture object phase. T is an operator that relates the concentra-
tion profile to the signal intensity profile s(x, ) by the steady
state spoiled gradient echo (SPGR) equation:

s(x, 1) =T(c(x,1))
M()(X) sin oc(l _ efTR[RI(x,O)ﬁLc(x,t)r]])
1 — cos a(efTR[Rl(x,0)+c(x.t)r1])
My(x) sino (1 — e~ TRIRION) |-
1 — cos a (e TRIRi(x0)]) ’

+ |s(x,0) —

“4)

where r| is the contrast agent relaxivity, 7R is the repetition
time, o is the flip angle, R;(x,0) and My(x) are respectively
the pre-contrast R (reciprocal of T7) and the equilibrium lon-
gitudinal magnetization. s(x, 0) is the pre-contrast first frame,
which is fully sampled. The bracketed term in the second row
of Eq. (5) resolves differences between the pre-contrast signal
s(x,0) and the predicted pre-contrast signal based on the

l 2) baseline R;(x,0) and My(x) maps (from a separate Ty map-
= min 1z, () —u,,V||§; such that, ||u,||, <g; ping acquisition). Similarly, the operation of mapping con-
UV p=1 . . . . . .
centration profile from the signal intensity profile can be
where u,, denotes the pth row of U. expressed as**:
| <s(x, 1) — s(x,0) 1 — e~ TRIRI(x.0)]
0)sine 1 — cosafe TRIRi(x0)])
—1ln s(x, —Ri(x,0
TR | (S(X,l‘) _ S(X,O) 1 — ¢ IRIRi(x,0)] ) 1( ) &)
—cosa
0) si 1— —TR[R; (x,0)]
(1) = T\ (s(x,1)) = 5(x,0) sino - cosafe 1(x0)]) :
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We solve (4) by alternately (a) updating U using orthogo-
nal matching pursuit (OMP) sparse projection,*®** and (b)
updating C by enforcing consistency with acquired data. To
be robust to spurious local minima, we use an iterative multi-
scale minimization approach, where we solve the problem at
a coarser spatial resolution during the initial iterations and as
the iterations proceed, we gradually update the resolution to
its full resolution. This is achieved by multiplication of spatial
Fourier Transform of s(x, ) by a two-dimensional Gaussian
filter (G(k,)) specified by filter width k,; where k, is initial-
ized to 0.1% of k., and gradually updated to 100 percent of
kmax» Where K, specifies the extent of k-space coverage.
This heuristic strategy is used in several nonconvex problems
such as in image registration,”® and recently in MR-finger-
printing.*”*® Starting with an initial guess obtained from
Cinit = AY (b), we iterate until a stopping criterion of

2
‘W <& =0.01 or until the maximum number of iter-
i 2

ations of 150 are achieved. After reconstructing 6 we esti-
mate the Kkinetic parameters by fitting the estimated
concentration profiles to the kinetic model using the open
source Rocketship®® package. The pseudo code of the algo-
rithm is shown below. The code and examples of the algo-
rithm are publicly available at the following URL: https://
github.com/sajanglingala/DCE_dictionary_recon/.

2.C. Simulations

The sparsity parameter g in Eq. (2) is determined based
on simulation studies with the Patlak and the ETK models.
Noiseless simulations are performed and the mean
approximation error f,,, = } ;7:1 ||z, (1) — 2L~ ()] 2, and
maximum approximation error: MAXerr =
max,_, ||z, (1) — 24~ (1)||5 are computed for different val-
ues of g.

Noise-based simulations were performed for broad ranges
of kinetic parameter values to (a) determine any systematic
bias and uncertainty in the kinetic parameter space that may

Initialization: C;,;; = A" (b); k, = 0.001 * Ky,
while ko < Kmax
o For all time frames, spatially blur s(x, t) by the 2D Gaussian filter G (k)
o ko=ko*2
e Map signal intensity profiles to concentration profiles: c(x,t) = T~!(s(x,t));

2
<)
2
e TK Model constraint update
o OMP update of up, s.t, u,V = c(x,t); ||u,,||0 <gpef{l2,..,M}

’ ICi-Ci—10]
ICil

while (

e Map the g-sparse projected concentration profiles to the signal intensity
profiles: s(x,t) = T(u,V);
e Data consistency update
o Compute $(kt)) =F, (Sm (s(x, tj))); for j € {1,2,..,N}; and
insert the measured data at the sampling locations §(ku, tj) =b;
e Map the above k-t space data to the concentration time profiles:
c(x,t) = A (§(k, tj));
end
end
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be induced by sparsity-based modeling of the concentration
time profiles, and (b) to deduce the correspondence between
the sparsity level (q) and the kinetic model.

Noisy concentration profiles were obtained as:
z,(t) = zp(t) +n(t);p = {1,.. ., 1}; (6)

where n(t) denotes i.i.d. white Gaussian noise with zero
mean and 0.005 standard deviation, which was chosen to
match the typical signal-to-noise ratio (SNR) from in vivo
brain DCE-MRI data acquired at our institution on a 3T com-
mercial system with an eight-channel head array coil. Noise
in the concentration time profiles was assumed to be additive
ii.d. Gaussian. Concentration time profiles are real valued
(negative values can occur in the presence of noise), and have
a one-to-one mapping with real-valued signal intensity time
profiles in the forward model. Monte-Carlo simulations with
500 realizations of n(#) were performed to evaluate the bias
and uncertainty in estimating kinetic parameters from (a) the
noisy profiles ZZ(I), and (b) the ¢ — sparse projections of
zy(t) on Vi z347(1).

We performed covariant error analysis for two parameters
(K'ans, vp) with the Patlak and the ETK model over a broad
range of kinetic parameters. With both the models, we evalu-
ated the bias and uncertainty in estimating K™ and v,
before and after g-sparse projections. With the ETK model,
for simplicity, we focus only on analysis in a two dimensional
space with a fixed v, = 0.6. The open-source Rocketship
package®” was used for kinetic parameter estimation.

2.D. Evaluation with a digital reference object

An anatomically realistic brain tumor DCE-MRI digital ref-
erence object (DRO) was generated based on the method and
data described in Ref. [*"]. Briefly, the population-based AIF
with the Parker model, known kinetic parameters, the ETK
model, and the steady state spoiled gradient signal equation was
used to generate the dynamic images. We then multiplied by
coil sensitivities, took the Fourier Transform, and added realis-
tic complex Gaussian noise to each channel. Coil maps, noise
covariance matrix, and the signal to noise (SNR) level were
obtained from in-vivo data acquired at 3T. Comparisons were
performed at a SNR = 30 to mimic measurements at 3T.

This phantom data was retrospectively under-sampled
using a randomized golden-angle Cartesian (GOCART) sam-
pling pattern,” and evaluations in fidelity of the kinetic
parameters were performed at under-sampling factor of
R = 20. GOCART"' is originally a three-dimensional (3D)
golden angle Cartesian sampling scheme, with random sam-
pling of the ky-kz phase encode locations along each Carte-
sian radial spoke. In this study, we perform retrospective
under-sampling in the kx-ky plane in a representative slice.
This strategy was chosen to simulate k,-k, under-sampling in
prospective acquisitions.

Reconstruction was performed using the fully sampled
direct inverse Fourier Transform-based approach (considered
as reference), and the proposed constrained reconstruction
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TasLE 1. Patient demographic information and diagnosis of the brain tumor
cases used in this study.

Case no. Age/sex Diagnosis

1 T4/M Glioblastoma

2 60/M Metastatic Melanoma
3 44/F Meningioma

4 79/F Metastatic melanoma
5 63/M Meningioma

6 68/M Glioblastoma

7 73/M Metastatic melanoma
8 38/F Meningioma

9 67/M Renal Cell Carcinoma
10 71/M Pituitary adenoma

11 73/F Meningioma

12 54/F Meningioma

approach with full-sampling (R = 1), and under-sampling
(R = 20). Kinetic modeling was performed both using the
ETK model, and a simpler Patlak model. The latter was used
to analyze any errors due to model mismatch. The proposed
constrained reconstruction was implemented with temporal
dictionaries derived from the kinetic model (Patlak or ETK)
that corresponded to the same kinetic model used for subse-
quent parameter estimation.

2.E. Evaluation with in-vivo data

We reviewed 110 fully sampled DCE-MRI raw datasets
from patients with known or suspected brain tumor, receiving
a routine brain MRI with contrast on a clinical 3T scanner
(HDxt, GE Healthcare, Waukesha, WI). The data acquisi-
tion was based on a 3D Cartesian SPGR sequence with field
of view (FOV): 22 x 22 x 4.2 cm’; spatial resolution:

41

09 x 1.3 x 7.0 mm3; temporal resolution: 5 s; 50 time
frames; and eight receiver coils; flip angle of 15°, TE/
TR = 1.3 ms/6 ms. Driven equilibrium Single Pulse Obser-
vation of T1 (DESPOT1) was performed before the DCE
sequence, where three images with flip angles of 2°, 5°, 10°
were acquired to estimate T1 and MO maps before the con-
trast arrival. Gadobenate dimeglumine (Multihance,
Bracco) (0.05 mmol/kg) was administered into an upper
extremity vein using a power injector (ACIST
EmpowerMR Injector, Bracco), at a rate of 3 ml/s, followed
by a 20 ml saline flush.

Of these 110 cases, we identified a cohort of 12 cases,
which had different brain tumor characteristics (shape, size,
heterogeneity), and also had enhancing tumors of atleast
1 cm (as determined by standard bi-directional assessment).””
The demographics of these patients are shown in Table I, and
the post-contrast images (last spatial frame from the DCE-
scans) are shown in Fig. 2. The protocol was approved by our
institutional review board (IRB).

(k-t) under-sampling was performed retrospectively on
fully sampled raw data using the GOCART (randomized
golden angle Cartesian) sampling trajectory”’ at acceleration
factors R = 20 and R = 40. Image reconstruction was per-
formed with the proposed dictionary based approach, an exist-
ing compressed sensing approach that uses a temporal finite
difference (tFD) sparsity constraint,' and compared against
the reference fully sampled inverse Fourier Transform based
approach. ETK derived bases with a fixed sparsity level of
q = 3 was used in the proposed approach. The ETK model
was chosen as it accounts for backflux of contrast from the
extravascular space to the plasma, which in turn improves the
accuracy of K" estimation, and has shown to be applicable
to brain tumor data.”® All the patient datasets were acquired
with fixed injection timing, however timing delays between
5 and 10 s (1-2 frames) existed amongst different patients.

FIG. 2. Post-contrast images of 12 brain tumor cases with different brain tumor characteristics (shape, size, heterogeneity). All cases had enhancing tumors of at
least 1 cm as determined by standard bi-directional assessment.”” Fully sampled raw multicoil (k-t) space data from these patients were used as reference in retro-
spective under sampling studies. Tofts-Kety parameter estimation was performed in the tumor regions of interests as marked by the red shaded regions. [Color

figure can be viewed at wileyonlinelibrary.com]
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FiG. 3. Kinetic model generated concentration vs time profiles and their representation using k-SVD derived temporal bases. (a) and (b) respectively show repre-
sentative profiles depicting different tumor enhancement dynamics from the Patlak, and extended Tofts-Kety models. The maximum and average approximation
errors are evaluated over the physiological range of kinetic parameters. A model sparsity choice of q = 2 was determined to be adequate for the Patlak model

maxﬁ""/ Herr =
ry.com]

As described earlier, a population based AIF with a fixed
delay was used to generate the library. Patient-specific AIF
delays were estimated as described by Lebel et al.>* Briefly,
the k-space origin was frequently sampled, and plotted as a
function of time. The region of maximum slope was
regressed to the baseline to determine the bolus arrival time.
Either padding zeroes initially to the acquired data or omit-
ting the last time frames corrected for any delay mismatch
to the library. The tFD-based formulation is convex and is
guaranteed to achieve the global minimum. Therefore the
multiscale optimization heuristic was not applied during
tFD optimization. We used the alternating direction method
of multipliers (ADMM) algorithm where the stopping crite-
rion was if the rate of change between reconstructions at
successive iterations fell below 10~> percent. The regular-
ization parameter in tFD constrained reconstruction was
tuned to provide the smallest normalized root mean squared
image reconstruction error (nRMSE) in tumor ROIs with
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10728%/1073°%). Similarly, ¢ = 3 was adequate for the ETK model max,,,/,,, = 2%/0.008%). [Color figure can be viewed at wileyonlinelibra

respect to the reference fully sampled datasets. All recon-
structions were implemented in MATLAB (The Math-
Works, Inc., Natick, MA) and executed on an Intel core i7
3.5 GHz machine with 32 GB memory.

The convergence of the proposed multiscale iterative opti-
mization was evaluated empirically. Reconstruction estimates
with different initializations of the concentration profiles
were compared: zero filled reconstruction (Cjy = A" (b));
low spatial resolution estimate obtained from the center 3x3
window of the k-space data in every time frame
(Cinit = Clow.res); and from the reference fully sampled data
(Cinic = Cref);

After image reconstruction, the ETK model was used to
estimate the kinetic parameters with a population based
AIF.* Bland-Altman analysis was performed to evaluate
systematic bias and uncertainty of the reconstructed Kirans
and ¥, maps (from the proposed and tFD approaches) with
respect to the reference fully sampled Kpi" and v .
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FiG. 4. Error statistics (bias and uncertainty) in estimating kinetic parameters in the presence of noise with the Patlak model. The first row in (a) shows the bias
and uncertainty in estimating kinetic parameters from the noisy concentration vs time profiles and is considered as reference. Rows (b) and (c) show the bias and
uncertainty in Kinetic parameter estimation after q-sparse projection of the noisy profiles with different values of q, and is evaluated against the reference. It can
be seen from (b) that g = 1 demonstrates considerable bias (e.g., see the white arrow in bias maps while estimating v;,). However, when q = 2, the bias and uncer-
tainty maps are equivalent to the reference, which motivated the choice of q = 2 for the Patlak model. [Color figure can be viewed at wileyonlinelibrary.com]

Comparisons using v, maps were not considered, as its
estimation is associated with high uncertainty with the
ETK model.*’

To evaluate error in the kinetic maps on using the ETK
model to constrain the reconstruction of time intensity curves,
we analyzed the kinetic maps from the proposed reconstruc-
tion against conventional direct inverse Fourier Transform
reconstruction on fully sampled data (R = 1).

On one of the in-vivo datasets where the Patlak model
produced less than one percent modeling error with the
population based AIF, the proposed reconstruction scheme
implemented with the Patlak dictionary was also compared
against the direct Patlak parameter estimation method.”®
The direct estimation approach was implemented based on
open source code (https://github.com/usc-mrel/DCE_direct_
recon). The reconstruction quality in the resulting K"
and v, maps from under-sampled data (at R = 10-30)
were compared against the maps obtained by conventional
fully sampled (R = 1) inverse Fourier Transform recon-
structions.

3. RESULTS
3.A. Simulations

Figure 3 shows the maximum and average approximation
errors (max,,,, and p,..)between the concentration vs time
profiles in the library, and the profiles obtained from g-sparse
projections onto V at different sparsity levels (q). q-sparse
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projections of the curves generated from the Patlak and the
ETK models are respectively shown in Figs. 3(a), and 3(b).
These curves are chosen to represent different types of tumor
enhancement dynamics.” With q = 1, we observe consider-
able bias in approximating the kinetic model generated
curves with both the Patlak and the ETK models. However,
for the Patlak model, a choice of q > 2 provided excellent
agreement with the profiles in the library (max../u,,, =
10728%/1073°%). Similarly, for the ETK model, a choice of
q >3 approximated the profiles in the library with
(maxes | Wy = 2%/0.008%).

Figure 4 and 5 demonstrates the bias and uncertainty in
estimating kinetic parameters in presence of noise. Over a
broad range of kinetic parameters, we observe that estimating
the kinetic parameters from noisy profiles and the g-sparse
projected profiles are equivalent when q > 2 (for the Patlak
model), and q > 3 (for the ETK model). Based on these sim-
ulations, we fixed q = 2 for the Patlak model, and q = 3 for
the ETK model.

Figure 6 shows evaluations on the brain tumor DRO which
is constructed based on the ETK model. When the simpler
Patlak model is applied on the reconstructed concentration
time profiles, an under-estimation in K™ (a factor of about
10 fold) and over estimation in v;, (a factor of about 2.5 fold)
is observed. This bias is observed in both the reference fully
sampled inverse Fourier Transform reconstruction, and the
proposed reconstruction suggesting that model selection error
is independent of the choice of the reconstruction [see
Fig. 6(b)].
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FiG. 5. Error statistics (bias and uncertainty) in estimating kinetic parameters in presence of noise with the extended Tofts-Kety model. The first row in (a) shows
the bias and uncertainty in estimating kinetic parameters from the noisy concentration vs time profiles and is considered as reference. Rows (b—d) show the bias
and uncertainty in kinetic parameter estimation after g-sparse projection of the noisy profiles with different values of q and is evaluated against the reference. It
can be seen from (b) and (c) that q = 1, and q = 2 demonstrates considerable bias and uncertainty (also see white arrows in (b) and (c)). However in (d), when
q = 3, the bias and uncertainty maps are similar to the reference in (a) over a broad range of the parameter space. This motivated our choice of q = 3 for the

ETK model. [Color figure can be viewed at wileyonlinelibrary.com]

When evaluated against the kinetic parameter estimates
from reference reconstructions, the proposed reconstruction
showed robust quality maps from 20 fold under-sampled data
[Figs. 6(a) and 6(b)]. This is also depicted in the difference
maps where the reconstruction error lies at the level of back-
ground noise.

3.B. Evaluation with in-vivo data

Figure 7 shows the kinetic maps from the proposed recon-
struction against conventional direct inverse Fourier Trans-
form reconstruction on fully sampled data (R = 1). Two
representative brain tumor datasets that have different spatial
characteristics are shown: (a) glioblastoma with thin rim,
necrotic core, connected to a solid tumor; (b) meningioma
with homogenous spatial tumor characteristics. As depicted
in the kinetic maps, the maps obtained from the two
approaches are qualitatively equivalent, with the error being
in the background noisy regions. This is also highlighted in
the difference maps. For both the reconstructions, the ve
maps are noisy due to the increased uncertainity in estimating
ve from short scan times (5 min in this study).56

Figure 8 shows the evolution of the objective function in
Eq. (3) as a function of CPU reconstruction time with
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different initializations of concentration time profiles (a)
from low-resolution dynamic images Ciowres; (b) from
zero-filled dynamic images C = A”(b); (c) from reference
dynamic images Cs. The multiscale optimization gradu-
ally updates the complexity of the problem. Due to spatial
low-pass filtering, the under-sampling artifacts in initial
iterations are considerably reduced making the problem
well-posed. C is updated gradually with increasing resolu-
tion, as a result of which a monotonic convergence is
observed. We empirically found this approach to be robust
to local minima; the final solutions were identical with dif-
ferent initializations.

Figure 9 shows retrospective under-sampling comparisons
of K™ at R = 20. tFD reconstructions resulted in consider-
able under estimation of K" in 9 of the 12 cases, while the
proposed method was found to be robust to this bias. tFD also
relied on adjusting the regularization parameter. In contrast,
the proposed parameter free reconstruction provided K™
estimates closer to that of the reference. It also provided supe-
rior fidelity in maintaining spatial characteristics of the
tumors in all cases (e.g., depiction of thin tumor boundaries
in cases 1 to 5).

Figure 10 shows Bland-Altman plots of the difference
between estimated TK parameters (at R = 20, R = 40) and
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FiG. 6. Evaluations using a brain tumor digital reference object (DRO). The DRO is constructed based on the extended Tofts-Kety (ETK) model. (i) and (ii)
shows the kinetic parameters after respectively applying the ETK and the Patlak model on the concentration time profiles obtained from (a) the reference fully
sampled inverse Fourier Transform reconstruction (R = 1); (b) the proposed reconstruction applied on fully sampled data (R = 1); and (c) the proposed recon-
struction applied on under-sampled data (R = 20). The proposed reconstruction employs the ETK-based dictionary in (i), and the Patlak-based dictionary in (ii).
From (i) and (ii), it is seen that when a simpler Patlak model is used in post-processing, the resulting K™ is under estimated in comparison to the ETK-based
K™ estimates (about a factor of 10-fold). This under estimation is observed in all the reconstructions (a—c) suggesting kinetic model selection error is indepen-
dent of the type of the reconstruction scheme. From (a—c), it can be seen that proposed reconstruction shows good quality in the kinetic parameter estimates at
R =1 and R = 20, which is also highlighted in the difference maps scaled by a factor of 3 in (d—e). [Color figure can be viewed at wileyonlinelibrary.com]
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FiG. 7. Comparison of kinetic parameters obtained from concentration time profiles from reference fully sampled data (first row) against the profiles after 3-
sparse projections onto the extended Tofts-Kety (ETK) dictionary (second row). The third row denotes the difference map that highlights the kinetic modeling
errors. The difference map is scaled up by a factor of 3 for better visualization. Two representative brain tumor datasets that have different spatial characteristics
are shown: (a) glioblastoma with thin rim, necrotic core, connected to a solid tumor; (b) meningioma with homogenous spatial tumor characteristics. The kinetic
maps in the first two rows are observed to be qualitatively equivalent suggesting 3-sparse projection mimics ETK modeling. Compared to the K™, and v, maps,
the uncertainty in v, is large attributed to the short scan time duration of 5 min. [Color figure can be viewed at wileyonlinelibrary.com]
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of increasing complexity. The black arrows in (a) indicate the instances at
which the scale (spatial resolution) is incremented. It can be seen in (a) that
the cost converges to the same minima irrespective of the initializations. The
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red dotted box). [Color figure can be viewed at wileyonlinelibrary.com]
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reference TK parameters on all the 12 cases combined. In
comparison to tFD, the proposed approach showed reduced
bias and reduced certainty during estimation of K™, and v,,.
A systematic bias of under estimating K", and v,, was pre-
sent in tFD, which is also qualitatively shown in Fig. 8.

Figure 11 shows the comparison of the estimated TK
parameters from the proposed approach with Patlak dic-
tionary against the direct Patlak parameter estimation at
R = 20, 30, 40 on case 7. Both the proposed approach and
the direct reconstruction provided good spatial fidelity of the
TK maps as depicted in Fig. 11(i). The proposed approach
however demonstrated subtle benefits in terms of reduced
bias, and reduced noise amplification as shown in the Bland-
Altman plots of Fig. 11(ii).

4. DISCUSSION

We have developed a new DCE-MRI reconstruction
approach that applies kinetic models routinely used in post-
processing as temporal constraints during reconstruction.
Based on simulation studies, we deduced a relation between
sparsity parameter q in k-SVD to the complexity of the kinetic
model. We have demonstrated equivalence of Patlak and ETK
models with dictionaries constructed respectively with q = 2
and q = 3. This approach exploits the smooth time intensity
DCE patterns by using temporal basis functions derived from
a kinetic model. This is in contrast to generic off-the-shelf
transform bases that are blind to the kinetic model behavior of
the time intensity profiles. We also proposed a robust
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Fic. 9. Evaluation of K"™" maps derived from the proposed dictionary-based and tFD reconstructions (R = 20) against the reference K™" maps (R = 1). The
12 cases are sorted based on decreasing difference between the proposed and tFD methods. The tFD reconstructions demonstrated under-estimation of K" (vi-
sually evident in cases 1 to 9, see arrows). tFD also relied on tuning of a regularization parameter. In contrast, the proposed parameter-free model-based recon-
struction provided K™ estimates closer to that of the reference, and has improved fidelity in preserving spatial characteristics of the tumors (e.g., thin
boundaries of the tumor, see arrows in cases 1-5). [Color figure can be viewed at wileyonlinelibrary.com]
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FiG. 10. Bland-Altman plots of (a) the difference between estimated K™ (at
R = 20, R = 40) and reference K™ (b) the difference between estimated
vp (at R = 20, R = 40) and reference vp; for the proposed (left column) and
tFD (right column) reconstructions. Each dot corresponds to one pixel within
the tumor ROIs of all the 12 cases. The mean and 1.96 times the standard
deviation (1 £ 1.960) of the difference entities are quantitatively shown.
These are also qualitatively marked by the solid red and dotted red lines. As
seen from the plots, the proposed approach had lower bias (jt) and uncer-
tainty (o) in estimating K™, and v,, in comparison to tFD. tFD depicted a
systematic bias in underestimating K", and v,, in comparison to the pro-
posed approach This can also be noted from the qualitative comparisons in
Fig. 9. [Color figure can be viewed at wileyonlinelibrary.com]

multiscale iterative optimization algorithm to solve the result-
ing 10 norm based nonconvex objective function. We empiri-
cally demonstrated robustness to local minima. The tFD
approach has a convex formulation with a guaranteed global
minimum, and therefore, no multiscale optimization heuristics
were applied during tFD minimization. /n-vivo validation with
12 brain tumor cases demonstrated superior recovery perfor-
mance with the proposed method compared to tFD (reduced
bias, uncertainty in kinetic mapping, and better spatial fidelity
of kinetic maps) at up to R = 40.

The proposed framework can be extended in several ways.
A uniform grid of kinetic parameters was used in this study
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to generate the library of possible concentration profiles from
a chosen kinetic model. However, it is possible to perform
application-specific discretization of the kinetic parameters to
improve sensitivity and accuracy in modeling time curves
that lie in a particular zone in the kinetic parameter space. We
have demonstrated that for the 2-parameter Patlak model, a
choice of two temporal bases from the dictionary was ade-
quate to reliably model the concentration temporal profiles.
For the 3-parameter ETK model, three temporal bases were
adequate. We expect that if this approach is extended to more
complex models (e.g., fast exchange, shutter speed, two com-
partment exchange model), the complexity of the bases repre-
sentation may also increase. Increasing model complexity is
expected to place more stringent limits on the maximum
achievable acceleration rates.

This study demonstrates the utility of the kinetic model-
based reconstruction approach in the application of brain
tumor imaging. The framework may be extended to DCE-
MRI of other diseases and body parts by appropriately con-
sidering different ranges of kinetic parameters and kinetic
models. Other applications would also warrant validation
with digital reference objects specific to that body part, dis-
ease, and kinetic parameter ranges. Complementary con-
straints such as spatial sparsity could be added to further
improve the recovery.

4.A. Limitations of the study

A limitation of this feasibility study is the use of popula-
tion-averaged AIF.** Population-averaged AIFs are known to
produce a potential bias in the final kinetic maps,”’ however
in this study, the bias identically affects the reference maps,
and maps produced by the proposed reconstruction and the
temporal finite difference reconstruction that is used for
comparison. The framework can be extended to account for
patient-specific AlFs. For instance, the full patient-specific
AlFs can be obtained from a preprocessing reconstruction
or could be characterized by including richer dictionaries
that parameterize the shape and amplitude of the AIF.*%>°
Our preliminary findings show that with whole brain scans
and transform sparsity reconstruction, we could extract good
fidelity AIFs that are free of inflow enhancement artifacts.>*
Such a reconstruction could potentially be a preliminary
pre-processing step. These extensions are a scope of our
future work.

In this study, our DCE-MRI protocol employed a flip
angle of 15°, and in-vivo data were acquired at %2 dose
(0.05 mMol/kg). With these settings, there exists some
nonlinearity in mapping between concentration profiles
and signal intensity time profiles at concentra-
tions > 1.0 mM. The linearity can however be improved
with the use of flip angles > 25°. R2* effects were not
included in the forward imaging model.®® Our DCE-MRI
scans were performed with %2 dose (0.05 mmol/kg), and
used a short TE of 2 ms. We have examined several clini-
cal datasets at our institution and have found phase and
R2* effects to be insignificant in tissue and in vessels.
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Fic. 11. (i) Comparison of K™ and v,, derived from the methods of direct reconstruction of Patlak parameters *°, and the proposed approach with a Pat-
lak dictionary at R = 10, 20, 30 against the reference fully sampled reconstruction followed by Patlak modeling (R = 1). (ii) shows the Bland-Altman
plots of the difference between estimated K"™"* (at R = 10, 20, 30) and the reference K" for the direct reconstruction and proposed reconstruction with
the Patlak dictionary. Each dot corresponds to one pixel within the tumor ROI of case 7 as marked in Fig. 2. The mean and 1.96 times the standard devia-
tion (n £ 1.960) of the difference entities are quantitatively shown in (ii). Both direct reconstruction, and the proposed dictionary reconstruction pro-
vides good spatial fidelity in the reconstructed maps (in i). From the Bland-Altman plots in (ii), the proposed approach demonstrated subtle
improvements over the direct reconstruction in terms of a smaller bias and reduced noise amplification. [Color figure can be viewed at wileyonlinelibra

ry.com]

We therefore did not consider R2* or off-resonance
effects, but these could be easily added to the forward
model.

v has shown clinical value in studies with long scan times
of 10 minutes or more (e.g., Ref. [6']). At our institution (and
most of our peer institutions) the standard of care brain tumor
protocol utilizes a DCE-MRI scan time of 5 min, which is
insufficient to recover v,. This is documented in the literature
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where estimation of v, had high uncertainty with short scan
times,”® and longer scan times o upto 10 min are recom-
mended.’®* We have included a range of values for v, in the
library because accounting for backflux is known to improve
the estimation of K™ and v,,.*!

In this study, we have only focused our analysis only on
tumor ROIs. We intend to perform comprehensive statistical
studies against controls (nonleaking areas from the whole
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brain) in a future study with prospective under-sampling that
can enable whole brain coverage.

Comparison of the proposed approach against direct recon-
struction of Patlak parameters showed subtle improvements in
estimating the TK parameters with less noise amplification,
and reduced bias on a single dataset. Comprehensive evalua-
tion against the direct reconstruction method when using non-
linear models and multiple datasets were not performed in this
study as this warrants establishing a detailed study of optimiza-
tion routines in direct reconstruction (e.g., Newton based,36
variable splitting®”). An important distinction of the proposed
work is that it decouples computationally expensive kinetic
parameter estimation from the reconstruction of concentration
vs time profiles. Kinetic parameter estimation need only be
performed once as a final step. In contrast, direct reconstruc-
tion, as described in Guo et al.,*” requires kinetic parameter
estimation at every iteration. This itself can require on the
order of minutes to hours for typical DCE-MRI datasets with
sizes of at least 128 x 128 pixels and 50 time frames. Precise
reconstruction times depend on the choice of optimization sol-
ver and their implementation (e.g., efficiency and whether they
exploit GPUs). We have not performed detailed comparisons
of reconstruction times, as this is beyond the scope of this
feasibility study.

The T1 maps were estimated prior to reconstruction
using DESPOT1 with three flip angles.®> However, using
fully sampled data, the joint estimation of T1 and kinetic
parameter maps has recently been shown to improve accu-
racy of DCE kinetic parameter maps.®* An extension of
the proposed framework to include joint T1 estimation
would warrant the inclusion of multiple T1-based simu-
lated concentration curves in the library, and exploration
of superior learning approaches (alternate to k-SVD) that
offer better compression capabilities to efficiently repre-
sent a richer library. Furthermore, there could be a num-
ber of approaches to improve pre-contrast T1 mapping in
a separate step. For instance, increasing the number of
flip angle measurements, use of constrained imaging
methods (e.g., model-based reconstruction, MR finger-
printing).

The proposed approach has similarities and important dis-
tinctions with prior art. Similar to MR-fingerprinting,**> our
approach exploits physical models for reconstruction. How-
ever, it does not modify the acquisition parameter settings. It
takes a two-step approach of first reconstructing the concen-
tration time profiles, and then estimating the kinetic parame-
ters in a final step. In comparison to MR-Fingerprinting, our
approach is sensitive to motion because the basis functions
do not account for motion. However, if reasonable estimates
of the motion deformation fields are known or can be esti-
mated from the data, it can be corrected by integration into
the forward model.®*¢’

Our experiments in this work show incoherence along
time benefits the reconstruction. However, a detailed evalua-
tion of various sampling pattern choices including coherent
sampling, and evaluation against incoherent sampling is yet
to be done, and is a scope of future work.
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Data inconsistencies such as motion, or B1 non-unifor-
mity, may violate the assumption of the appropriateness of
the kinetic model on the concentration time profiles. This
is equally true with existing compressed sensing methods.
However, the framework can seamlessly accommodate
prior information in the forward model to improve data
consistency (e.g., integration of motion maps, B1 maps).
The proposed reconstruction assumes the chosen kinetic
model to be appropriate to the data. While the kinetic
model of choice can be motivated based on the application
at hand, the framework is flexible to generate comprehen-
sive libraries from more than one kinetic model. Future
application-specific studies with chosen kinetic models are
however needed to deduce the relation between the com-
plexity of the library and the sparsity parameter (q) during
dictionary generation, and subsequently acceleration capa-
bilities.
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