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Abstract

To better understand off-target effects of widely prescribed psychoactive drugs, we performed a comprehensive series of
chemogenomic screens using the budding yeast Saccharomyces cerevisiae as a model system. Because the known human
targets of these drugs do not exist in yeast, we could employ the yeast gene deletion collections and parallel fitness
profiling to explore potential off-target effects in a genome-wide manner. Among 214 tested, documented psychoactive
drugs, we identified 81 compounds that inhibited wild-type yeast growth and were thus selected for genome-wide fitness
profiling. Many of these drugs had a propensity to affect multiple cellular functions. The sensitivity profiles of half of the
analyzed drugs were enriched for core cellular processes such as secretion, protein folding, RNA processing, and chromatin
structure. Interestingly, fluoxetine (Prozac) interfered with establishment of cell polarity, cyproheptadine (Periactin) targeted
essential genes with chromatin-remodeling roles, while paroxetine (Paxil) interfered with essential RNA metabolism genes,
suggesting potential secondary drug targets. We also found that the more recently developed atypical antipsychotic
clozapine (Clozaril) had no fewer off-target effects in yeast than the typical antipsychotics haloperidol (Haldol) and pimozide
(Orap). Our results suggest that model organism pharmacogenetic studies provide a rational foundation for understanding
the off-target effects of clinically important psychoactive agents and suggest a rational means both for devising compound
derivatives with fewer side effects and for tailoring drug treatment to individual patient genotypes.
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Introduction

Neuropsychiatric disorders will effect 25% of all individuals at

some point in their lives, with devastating social and economic

consequences [1]. This constellation of diseases encompasses

schizophrenia, depression, age-related memory and cognition

decline, and the degeneration of neuromuscular function. Most

prescribed psychoactive drugs are thought to primarily target

neurotransmission pathways in the central nervous system, and

thereby cause changes in perception, mood, consciousness, and

behavior. Many of these therapeutics have been developed using in

vitro assays and, as such, may have other unknown targets and

unanticipated cellular effects in vivo. For example, side effects of

antipsychotic drugs include tremors, hypotension, impotence,

lethargy, and seizures [2]. In an effort to improve efficacy and to

reduce side effects, new generations of drugs have been developed;

among these are the so-called atypical antipsychotics such as

clozapine. While clozapine is linked to a reduced risk of

neuromuscular side effects, it is associated with new side effects

such as life-threatening agranulocytosis in up to 1% of patients [3],

and, less frequently, fatal myocarditis [4–6]. As such, the

therapeutic benefit of this and other new atypical drugs remains

open to debate. For example, a comprehensive meta-regression

analysis that compared both typical and atypical drugs concluded

that atypical antipsychotics were neither more effective nor better

tolerated than conventional agents [7]. Other classes of psycho-

active drugs, such as the antidepressants, also cause numerous

undesirable side effects and the broad usage of these medications

have been questioned [8].

Surrogate genetics is an effective approach to interrogate

heterologous gene function or drug mechanism of action using

simpler model organisms [9,10]. The budding yeast Saccharomyces

cerevisae has previously been used to help elucidate the basis of

some psychiatric disorders [11–18]. For example, the expression in

yeast of mutant and wildtype forms of the Huntington’s disease

gene revealed important factors regulating the toxicity of protein

aggregates [11,15,19], and a genome-wide suppressor screen in

yeast uncovered kynurenine 3-monooxygenase as a potential new

therapeutic target for the treatment of Huntington’s disease [13].

In other studies, expression in yeast of the alpha-synclein gene

associated with Parkinson’s disease yielded a network of

interacting genes that modulate cellular toxicity [11,15,19].

Recently, the genome-wide collection of yeast gene deletion

strains has been used to generate genetic profiles of drug sensitivity

and resistance [20–26]. These profiles have uncovered unexpected

mechanisms of action for well-known drugs, such as for the anti-
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metabolite 5-fluorouracil in perturbation of rRNA processing

[22,25] and for the anti-cancer agent tamoxifen in calcium

homeostasis [26].

To better understand potential off-target effects of FDA-approved

psychoactive drugs and their analogs, we profiled 214 psychoactive

compounds in quantitative wildtype yeast growth assays and

generated genome-wide deletion sensitivity profiles for the 81 drugs

that caused overt growth defects. The sensitivity profiles for 49 of

these drugs were overrepresented for core cellular functions such as

chromatin organization, establishment of cell polarity, and mem-

brane organization and biogenesis. Our results provide a rational

foundation for personalized drug approaches and for understanding

unwanted side effects in clinically important psychoactive agents.

Results

Specific Classes of Psychoactive Drugs Have Bioactivity in
Yeast

To ask if psychoactive compounds can inhibit wildtype budding

yeast growth, we challenged yeast with 76 high-purity psychoactives

representing 16 ligand categories that encompass a broad spectrum of

treatments for neurological disorders (see Figure 1 for workflow and

Table S1 for drug information). Despite the fact that yeast lacks the

established neuronal targets of these compounds, 17/76 (22%) drugs

inhibited the growth of wildtype yeast (when tested at 200 mM) and

are hereafter referred to as ‘‘bioactive’’. This observation shows that

in addition to their reported targets, many of these compounds also

have secondary mechanisms of action. In fact, over half of the 16

tested ligand classes included compounds that were bioactive

(Figure 2A). Among these, serotonin uptake inhibitors were most

effective; four of five tested molecules in this class inhibited yeast

growth (Figure 2A). Because our assay depends on growth inhibition

in order to observe any effects on specific deletion strains, we

proceeded with the 17 bioactive compounds and determined a drug

dose that inhibited wildtype growth by ,15% (Figure 2B, Table S1).

In our previous genome-wide studies this level of inhibition best

captured the ability to identify the known drug target while

minimizing the number of generally sensitive strains [22,23].

Applying this drug dose, we subjected the bioactive compounds to

genome-wide parallel fitness profiling. In this technique, pools of

deletion strains are grown competitively for several generations in the

presence of a sub-lethal concentration of drug, and genomic DNA is

extracted. After PCR-amplification of the unique molecular barcodes

incorporated into each gene deletion cassette, the relative role of each

gene for growth in the presence of drug is determined by

hybridization of the PCR products to a DNA microarray carrying

the barcode complements [27–29]. The relative abundance of

sequence tags in the drug experiments is compared to control

experiments and fitness ratios and z-scores are calculated (see

Materials and Methods). We used two pools of diploid strains: i)

heterozygous deletion strains deleted for one copy of the essential

genes (1158 strains), which often identifies compound targets through

HaploInsufficiency Profiling (HIP) [22,30], and ii) homozygous

deletion strains deleted for both copies of non-essential genes (4768

strains); this HOmozygous Profiling (HOP) assay identifies genes that

buffer the drug target pathway [24].

Using this combination of the HIP and HOP assays we found

that only a few deletion strains (,5) exhibited significant sensitivity

to most of the 17 bioactive compounds (Figure 2C). In contrast,

several deletion strains (,50) were scored as sensitive for the a1-

adrenoceptor antagonist SR 59230A and the three selective

serotonin re-uptake inhibitors fluoxetine (Prozac), clomipramine,

and fluvoxamine (Figure 2C). Given this unexpected potency of

the serotonergic drugs in our yeast assays, we extended our

investigation to encompass pharmacologically related agents and

screened two commercially available drug libraries encompassing

95 serotonergic and 55 dopaminergic compounds. These drug

libraries contained the four FDA-approved serotonergics sertraline

(Zoloft), fluoxetine (Prozac), paroxetine (Paxil), and cyprohepta-

dine (Periactin), and the four FDA-approved dopaminergics

bromocriptine (Parlodel), clozapine (Clozaril), haloperidol (Hal-

dol), and pimozide (Orap). Based on our initial results, we

anticipated a high rate of bioactivity on yeast for these two drug

classes. Indeed, 66/150 (44%) of the serotonergic and dopami-

nergic drugs were bioactive, a significant difference compared to

Figure 1. Workflow. Schematic overview of the chemical genetic
screening process.
doi:10.1371/journal.pgen.1000151.g001

Author Summary

Neuropsychiatric disorders such as depression and psy-
chosis affect one-quarter of all individuals during their
lifetime, and despite efforts to improve the selectivity of
psychoactive drugs, all are associated with side effects.
Drug efficacy and tolerance are known to be linked to an
individual’s genetic profile, but little is known about the
nature of this correlation due, in part, to the current
emphasis on screening compounds against targets in vitro.
Here we present a comprehensive, genome-wide effort to
understand drug effects on the cellular level using an
unbiased genome-wide assay to determine the impor-
tance of every yeast gene for tolerance to 81 psychoactive
drugs. We found that these medications perturbed many
evolutionarily conserved genes and cellular pathways,
such as those required for vesicle transport, establishment
of cell polarity, and chromosome biology. The 500,000
drug–gene measurements obtained in this study increase
our understanding of the mechanism of action of
psychoactive drugs. Specifically, this study provides a
framework to assess the next generation of psychoactive
agents and to guide personalized medicine approaches
that associate genotype and phenotype.

Psychoactive Drug Profiling
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the 22% of the initially screened drugs that represented the 16

different ligand sets (p,1027).

Physiochemical Properties Separating Active from
Inactive Drugs

The high prevalence of bioactivity in yeast prompted us to ask if

any particular psychoactive drug attribute correlated with the

ability of these compounds to inhibit wildtype yeast growth. We

first performed structural clustering of all ,220 screened

psychoactive compounds using chemical fingerprints in Pipeline

Pilot (Accelyrs, San Diego). As more than half of the resulting

clusters contained both active and inactive drugs, chemical

structure was not predictive of drug action on wildtype yeast

growth for this selection of compounds (data not shown). We next

asked if any physiochemical properties, as predicted from the

Figure 2. Serotonergic Drugs Showed Potency on Yeast. (A) Number of drugs that did (black) or did not (white) inhibit wildtype yeast growth
for each of the initial drug sets tested. (B) Titration of drug concentrations used in genome-wide screening. Wildtype yeast growth in serial dilutions
of drug was recorded as optical density every 15 min over a 25 h period. (C) Number of deletion strains that were sensitive (r.2 and z.3, see
Materials and Methods) to bioactive drug in genome-wide fitness profiles.
doi:10.1371/journal.pgen.1000151.g002

Psychoactive Drug Profiling
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structures, were linked to drug activity. The parameters we tested

included the number of H-bond donors and acceptors, molecular

weight, and hydrophobicity as measured by AlogP (the octanol-

water partition coefficient). These measures are important

descriptors used in the empirical parameter set known as Lipinski’s

Rule of Five [31]. In addition to the Lipinski descriptors, we tested

six other parameters relevant to drug activity: van der Waals

surface area, molecular surface area, molecular solubility, logD

(the octanol-water distribution coefficient; a combination of logP

and pKa), number of rings and number of rotatable bonds.

Principal component analysis revealed that a partition coefficient

of AlogP.3 was best able to predict drug activity (p,4.9e-13, for

details see Materials and Methods) as shown in Figure 3. A

molecular weight of .260g/mole was also indicative of an active

compound (p,3.4e-05, Figure 3). If there is a correlation between

human side-effects and conserved cellular pathways scored using

our surrogate yeast system, it is possible that an additional study

could help predict such effects based on structural features.

Genome-Wide Fitness Profiles on Bioactive Drugs
To systematically interrogate compound mechanisms of action,

we subjected the 66 bioactive serotonergic and dopaminergic

compounds to genome-wide fitness assays using the approach

described above (Figure 1). Combined with the initial set of 17

bioactive drugs, we screened a total of 81 unique drugs (two drugs

occurred in duplicate in the chemical libraries), eight of which are

used therapeutically (Table 1). Fitness ratios and z-scores for all

deletion strains are provided in Tables S2 and S3, respectively

(raw data are available at ArrayExpress, EMBL-EBI, accession

number E-MTAB-34). The genome-wide fitness profiles were

reproducible as the average correlation coefficient for the five

replicated compounds was 0.83, which is similar to the average

correlation coefficient of 0.72 reported in a previous large-scale

fitness study [23]. As an unbiased control, we calculated the

average correlation coefficient between all possible random drug

pairs in our assay. As expected, this value (0.44) was lower than the

average correlation coefficient for duplicates, but well above the

previously noted average correlation of zero for unrelated

compounds (Maureen Hillenmeyer, unpublished data). In agree-

ment with this, two-dimensional hierarchical clustering [32] did

not separate the dopaminergic and serotonergic profiles into two

distinct groups, but clearly separated drugs from these two classes

from most other compounds profiled (Figure 4). Further indicating

the general similarities between dopaminergic and serotonergic

drugs in our yeast screen, 25% of the significantly sensitive strains

(r.2, z.3, see Materials and Methods) scored in both drug

categories (Table S4).

Core Cellular Processes that Confer Resistance to
Psychoactive Compounds

To ask which cellular functions and pathways were required for

resistance to the tested drugs, we performed functional enrichment

tests using Gene Ontology (GO) annotations specifically focusing

on sensitive strains in the i) essential heterozygous, ii) homozygous

or iii) both collections (see Materials and Methods). 32 drug

sensitivity profiles were not enriched for any GO Process but the

Figure 3. Hydrophobicity and Molecular Weight Discrimination for Non-Active and Active Compounds. All compounds tested were
plotted as a function of logP and molecular weight.
doi:10.1371/journal.pgen.1000151.g003

Table 1. Examples of Therapeutic Use of the Profiled FDA-Approved Drugs.

Compound Therapeutic use

Clozapine Schizophrenia

Cyproheptadine Schizophrenia, serotonin syndrome, allergy, eating disorder

Fluoxetine Depression, obsessive compulsive disorder, bulimia nervosa

Paroxetine Depression, anxiety disorder, obsessive compulsive disorder, panic disorder, post-traumatic stress disorder

Sertraline Depression, obsessive compulsive disorder, post-traumatic stress disorder

Pimozide Schizophrenia, psychosis

Haloperidol Mania, bipolar disorder, schizophrenia, psychosis, nausea, vomiting, restlessness, agitation and aggression, Tourette’s syndrome and
other tic disorders, hiccups

Bromocriptine Parkinson’s, pituitary tumours, female infertility, overproduction of breast milk

doi:10.1371/journal.pgen.1000151.t001

Psychoactive Drug Profiling
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remaining 49 profiled drugs (60.5%) interfered with 106 different

processes (multiple-testing corrected p-value,0.0001, Table S5).

For visual clarity, we collapsed these 106 processes down to 22

(Table S6). The drug sensitivity profiles obtained with the

combined set of heterozygous and homozygous strains were

enriched for the highest number of condensed GO processes (119

processes, purple color in Figure 5), while 12 processes were

uniquely enriched among sensitive homozygous deletion strains

(blue color in Figure 5). These processes likely reflect drug

detoxification mechanisms (e.g. ‘‘vesicle transport’’ and ‘‘response

to drug’’) or other processes required for resistance to compound

by an unknown mechanism (e.g. ‘‘amino acid biosynthesis and

metabolism’’). Two processes were uniquely scored for essential

genes (red color in Figure 5) and are further discussed below.

Investigating the general nature of our enrichment profiles, we

found that the most frequently enriched processes across all drugs

and genetic backgrounds were vesicle transport, protein localiza-

tion, and telomere biology (Figure 5). Genes functioning in cell

morphogenesis, establishment of cell polarity, cell cycle, amino

acid biosynthesis, chromatin organization, RNA metabolism, and

membrane organization were also needed for resistance to several

(.5) of the psychoactive drugs. A few GO Processes were unique

Figure 4. Global Landscape of Fitness Profiles. Two-dimensional hierarchical clustering [32] was used to group all log2-fitness ratios obtained
from the 81 drugs. Log2-fitness ratios from 0 (no fitness defect) to 3.5 (severe phenotype) are color-coded according to the severity of the sensitivity
(this paper focuses on sensitivities, see Materials and Methods). Only 0.1% of the log2-fitness ratios were higher than 3.5 and became saturated in the
figure. The separation of dopaminergic and serotonergic drugs (orange) from drugs in other categories (grey) is indicated. Groups of strains
exhibiting highly similar fitness profiles across the psychoactive drugs are extracted from the global clustergram, and the deletion strains included in
each group are listed in the order determined by the hierarchical clustering algorithm. For each group of strains, the dominant function(s) of the
deleted genes is indicated. Essential genes are underlined.
doi:10.1371/journal.pgen.1000151.g004

Psychoactive Drug Profiling
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Figure 5. Enriched GO Processes. Significant enrichment (p,0.0001) for GO Processes uniquely scored using sensitive (z.2) homozygous strains
(blue) or heterozygous strains deleted for essential genes (red). GO Processes scored using both strain pools are indicated in purple (for details see
Materials and Methods). Dopaminergic drugs are indicated in green, serotonergic in orange, and other drugs (from the initially analyzed diverse set)
in grey. Drugs with affinity for both a dopaminergic and a serotonergic receptor are indicated according to which Tocris drug library they belong to.
Closely related GO categories are collapsed for clarity (see Table S6).
doi:10.1371/journal.pgen.1000151.g005

Psychoactive Drug Profiling
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to a single drug: protein glycosylation (A77636), methylation (SB

216641), cell wall organization and biogenesis (GR 127935), and

membrane lipid metabolic process (pimozide). In the subsequent

sections we focus on the analysis of the FDA-approved drugs and

summarize the most notable enrichments for these drugs in

Table 2. First, we discuss identified buffering pathways and drug

detoxification mechanisms. Next, we concentrate on potential new

drug targets identified for the therapeutically used psychoactive

drugs.

Uncompromised Cellular Transport, Protein Localization,
and Telomere Maintenance Is Important for Resistance to
Psychoactive Drugs

Vesicle transport was the most commonly overrepresented

process among genes required for resistance to psychoactive drugs

(Figure 5) suggesting that uncompromised vesicle transport

function is a general requirement for psychoactive drug detoxifi-

cation. The enrichment of cellular transport genes was especially

pronounced in response to clozapine treatment, where 9 of the 10

most required genes belonged to this category (Table 3). Protein

sorting and localization accounted for the second most frequently

enriched process (Figure 5). Deletion of vesicle trafficking and

protein localization genes often resulted in very severe phenotypes

(bright yellow in Figure 4). Gene products with protein localization

roles include those involved in selecting cargo proteins for

endosome-to-Golgi retrieval (e.g. Vps29), and those involved in

sorting proteins in the vacuole (e.g. Pep8). Interestingly, the fitness

profiles obtained with certain vesicle transport and protein

localization deletions clustered with those obtained with strains

deleted for genes functioning in actin filament organization/

stabilization (arc18D, tpm1D, vrp1D,), mRNA degradation (lsm1D),

and stabilization of membrane amino acid transporters (npr1D)

(Figure 4, left text panel). A second, large group of strains mainly

deleted for genes functioning in vesicle transport and protein

localization exhibited similar phenotypes across the 81 drugs as

ckb1D and ckb2D, which are deleted for genes functioning in

regulation of transcription and mitotic cell cycle (Figure 4, right

panel).

Most of the drug sensitivity profiles were enriched for both

protein localization and telomere biology (Figure 5). The apparent

‘‘linking’’ of these enrichments could be attributed to genes that

are, in fact, involved in both these processes. Examples of such

genes function in the three Endosomal Sorting Complexes

Required for Transport, more specifically in ESCRT I (VPS28,

STP22), in ESCRT II (SNF8 and VPS25), and in ESCRT III

(SNF7). These genes are, in addition, associated with telomere

defects [33,34].

The Atypical Antipsychotic Clozapine Has No Fewer Off-
Target Effects than Typical Antipsychotics

Because the more recently developed atypical antipsychotic

drugs are still associated with side effects and their benefits are

currently debated, we compared the phenotypic profiles of the

atypical antipsychotic clozapine to two traditional antipsychotics,

reasoning that if atypical drugs are more specific, they would

exhibit fewer off-target effects in yeast. In contrast to this

expectation, the atypical antipsychotic clozapine exhibited a

similar number of significantly sensitive (r.2, z.3, see Materials

and Methods) deletion strains (26) as the typical antipsychotic

drugs pimozide (29) and haloperidol (20). Comparing the fitness

profiles of clozapine with the typical antipsychotics pimozide and

haloperidol, we found that each drug was associated with unique

functional enrichment profiles: clozapine for telomere biology and

Table 2. Most Notable Off-Target Effects of FDA-Approved
Drugs.

Drug Functional enrichment (p,0.0001)*

Clozapine Vesicle-mediated transport

Cyproheptadine Chromatin-remodelling

Fluoxetine Establishment of cell polarity

Paroxetine RNA processing

Sertraline Vesicle-mediated transport

Pimozide Membrane lipid metabolic process

Haloperidol Aromatic amino acid biosynthesis

Bromocriptine Aromatic amino acid biosynthesis

*Italics = unique enrichment among FDA-approved drugs.
doi:10.1371/journal.pgen.1000151.t002

Table 3. Top-Ten Sensitive Deletion Strains in Genome-Wide Profiles of FDA-Approved Serotonergic and Dopaminergic Drugs*.

Clozapine Cypro-heptidine Fluoxetine Paroxetine Sertraline Pimozide Halo-peridol

NEO1 V NEO1 V NEO1 V NEO1 V NEO1 V MCD4 NEO1 V

PEP7 V ARP4 D RPL32 R TOA2 R CCT7 P GSP1 R TRP4 A

VPS35 V PEP12 V TCP1 P CFT1 R RPL32 R PEP12 V ARP4 D

PEP12 V TUB1 P VPS30 V SEC4 V GSP1 R TUB4 P ERG11

SAC1 V CCT7 P CAP2 P CCT8 P NOP8 R SEC22 V ARO2 A

VPS29 V VPS35 V PEP12 V RPL32 R BET1 V PGD1 R APL2 V

PEP8 V CCT3 P CCT3 P FHL1 R ARP4 D THP2 R ARO1 A

VPS20 V CCT4 P MRS5 V GSP1 R NUS1 V PIK1 RCY1

NHX1 VPS30 V PEP8 V GCD11 R CCT3 P YPK1 VPS29 V

LEM3 V VPS29 V DFR1 RHO1 PEP12 V PEP7 V PIK1

*Essential genes are in bold, and gene functions that occur frequently in the table are indicated with letters. V = vesicle transport, protein transport and localization,
D = DNA repair, P = protein folding, actin and tubulin assembly, R = RNA processing, transcription, translation, ribosomal function, A = amino acid biosynthesis and
metabolism. For bromocriptine, we scored only one significantly sensitive strain, trp3D, which is involved in aromatic amino acid biosynthesis (z.3, r.2). Strains were
sorted according to their fitness ratio, using average ratios for replicated drugs and removing dubious ORFs.

doi:10.1371/journal.pgen.1000151.t003

Psychoactive Drug Profiling

PLoS Genetics | www.plosgenetics.org 7 August 2008 | Volume 4 | Issue 8 | e1000151



protein localization, pimozide for membrane lipid metabolic

processes, and haloperidol for aromatic amino acid biosynthesis

and metabolism (Figure 5). In contrast, vesicle transport was

enriched in all three drug sensitivity profiles. The more detailed

GO processes behind the condensed process vesicle transport were

vesicle-mediated transport for all three drugs and, in addition,

secretory pathway, secretion, post-Golgi vesicle-mediated trans-

port and Golgi vesicle transport for haloperidol and clozapine

(Tables S5 and S6). The distinct fitness profiles are consistent with

the structural differences that exist between these drugs (Figure

S1). For example, clozapine has substructures (piperazine and

diazepine) that do not exist in pimozide and haloperidol, and

haloperidol contains two benzene rings while pimozide has three.

Bromocriptine, Haloperidol, and Five Additional
Dopaminergic Drugs Interfere with Amino Acid
Biosynthesis and Metabolism

Compared to the other investigated therapeutics, the fitness

profile in the anti-Parkinson drug bromocriptine pointed to a

single potential off-target mechanism of action for this drug. The

only overrepresented function among sensitive strains was amino

acid biosynthesis and metabolism (Figure 5) and the most sensitive

strains were deleted for the aromatic biosynthesis genes TRP3,

TRP4, TRP1, ARO1, TRP2, and ARO2. In addition to bromocrip-

tine, six other dopaminergic drugs also interfered with amino acid

biosynthesis and metabolism (Figure 5). The sensitivity profiles of

all these seven drugs shared the enrichment for the detailed GO

process aromatic compound metabolic process (Tables S5 and S6)

due to the sensitive phenotype of 13 strains in total. Among them,

strains deleted for TRP1, TRP2, TRP3, TRP4, TRP5, ARO2, and

ARO3 were scored in all 7 drugs and strains deleted for ARO1 and

ARO7 in 6 drugs. Besides the notable enrichment for genes

involved in aromatic compound metabolism, the sensitivity of

strains missing other genes also contributed to the observed GO

process enrichment. Such genes included the folic acid (vitamin

B9) biosynthesis gene FOL2, the panthothenate (vitamin B5,

precursor of coenzyme A) biosynthesis gene FMS1, and the protein

kinase GCN2, which induces amino acid biosynthesis genes in yeast

in response to starvation and, in addition, restricts intake of diet

lacking essential amino acids in rats [35].

Pimozide Is Unique in Being Enriched for Membrane
Lipid Metabolic Process Genes

The sensitivity profile of the typical antipsychotic pimozide

showed a unique enrichment for membrane lipid metabolic

processes not seen for any of the other 80 profiled drugs (Figure 5).

In pimozide, the MCD4-deletion strain had the strongest

phenotype and was 21-fold depleted compared to the control

(Table 3). MCD4 is highly conserved among eukaryotes and

functions in glycosyl-phosphatidylinositol (GPI) anchor synthesis.

Because MCD4 is an essential gene, it may represent an additional,

clinically relevant drug target for pimozide. The inositol-lipid-

mediated signaling gene PIK1 and the spingholipid-mediated

signaling gene YPK1 were also among the ten most required genes

for resistance to pimozide (Table 3). They clustered with a group

of other strains deleted for genes involved in lipid biology

(Figure 4), such as the de novo lipid synthesis genes PAH1 and SUR4.

Fluoxetine Interferes with the Establishment of Cell
Polarity

Eight drugs, among them the antidepressant fluoxetine, were

enriched for the condensed term establishment of cell polarity

(purple or blue color in Figure 5). In total, 51 genes were assigned

to the detailed GO process establishment and/or maintenance of

cell polarity and caused a sensitive phenotype when deleted

(Tables S5 and S6). Many of these genes scored in the majority of

the drugs, for example all four members (CKA1, CKA2, CKB1, and

CKB2) of the casein kinase II-holoenzyme complex, and TPM1,

the major isoform of tropomyosin which directs polarized cell

growth and organelle distribution. For the seven drugs where the

enrichment for establishment and/or maintenance of cell polarity

was scored using sensitive homozygous and essential heterozygous

strains (purple color in Figure 5), six essential members (EXO70,

SEC3, SEC6, SEC8, SEC10 and SEC15) of the exocyst complex,

which determines where secretory vesicles dock and fuse, were

scored in all drugs except fluoxetine.

Essential Genes of High Importance for Drug Resistance
May Reveal Additional Secondary Drug Targets for
Psychoactive Drugs

Drug targets are often encoded by essential genes, thus essential

genes scored in our assay may represent important additional

targets of psychoactive compounds that may be useful in the

development of therapeutics for other applications. In a given

heterozygous strain, the reduced gene copy number of a potential

drug target leads to a reduced level of the corresponding protein.

When this strain is grown in the presence of a drug targeting the

heterozygous locus, the result is a further decrease in ‘‘functional’’

dosage due to the drug binding to the protein target. If this protein

is important for growth, the result will be drug sensitivity [22]. In

our functional enrichment tests, two processes were uniquely

overrepresented among sensitive essential genes (red color in

Figure 5): mitotic and meiotic cell cycle for fluorophenyl-

methoxytropane and chromatin organization for cyproheptadine.

Examples of targeted essential genes in cyproheptadine treatment

include chromatin-remodeling genes (ARP4, ARP7, ARP9), genes

in the multisubunit (NuA4) histone acetyltransferase complex

(EPL1, ESA1, SWC4), and RSC4 and RSC6 in the RSC Chromatin

remodeling complex.

Although not revealed as a functional enrichment among

sensitive strains deleted for essential genes, most of the other FDA-

approved drugs also have potential secondary drug targets as

infered by the presence of essential genes among the ten most

required genes for drug resistance (Table 3). As judged by the high

number of sensitive strains deleted for essential genes in paroxetine

treatment (10 strains) and sertraline treatment (9 strains), these

selective serotonin re-uptake inhibitors are particularly rich in

potential secondary drug targets. Essential genes required for

resistance to the FDA-approved drugs include those involved in

RNA processing, transcription and translation, genes functioning

in the protein folding chaperonin complex, and the chromatin-

remodeling/DNA repair gene ARP4 (bold in Table 3). Deletion of

ARP4 resulted in some of the most sensitive phenotypes when cells

were treated with cyproheptadine, sertraline, or with haloperidol

(Table 3). ARP4 has a close human homolog, ACTL6B, which

encodes a subunit of the BAF (BRG1/brm-associated factor)

complex in mammals, functionally related to the SWI/SNF

complex in S. cerevisiae. The SWI/SNF complex is thought to

facilitate transcriptional activation by antagonizing chromatin-

mediated transcriptional repression [36]. Another example of an

essential gene required for drug resistance in several FDA-

approved drugs is GSP1, which functions in RNA-processing

(Table 3). The mammalian homolog of Gsp1, Ran (BlastP E-

value,E-261) is, as in yeast, a nuclear GTP-binding protein.

Interestingly, the fitness profile of the ARP4-deleted strain was

very similar to the strains deleted for the cytosolic chaperonin

subunits CCT5, CCT8 and TCP1 (Figure 4). The chaperonin
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complex is involved in protein folding (primarily of actin and

tubulin) and cytoskeleton organization [37]. In our fitness assays,

seven of eight CCT-strains scored as significantly sensitive in many

of the probed psychoactive drugs. Some (CCT3, CCT4, CCT7 and

CCT8) were even among the top-ten required genes for resistance

to cyproheptadine, fluoxetine, paroxetine, and sertraline (Table 3).

Furthermore, several deletion strains with uncharacterized func-

tions had similar fitness profiles as the chaperonins CCT5, CCT8

and TCP1 (Figure 4). Among them were TVP23 and YIP5 which

both localize to the late Golgi, YEL048C which is synthetic lethal

with GCS1 (involved in ER to Golgi transport), APM2 (homologous

to medium chain of mammalian clathrin-associated protein

complex involved in vesicle transport) and SWH1 (similar to

mammalian oxysterol-binding protein, localized to Golgi and

nucleus-vacuole junction).

Psychoactive Drugs often Impinge on Evolutionarily
Conserved Processes

To test if our findings in yeast might reflect drug action in

human cells, we looked at the proportion of scored genes with

human homologs. Among the strains significantly sensitive to at

least one psychoactive compound, 58.4% were deleted for a gene

with a close human homolog (BlastP E-value,E-6), as compared

to 45.0% for all analyzed deletion mutants regardless of whether

they had a fitness defect or not. To test if strains deleted for genes

involved in core cellular processes are more sensitive in general, we

compared our results obtained with the 81 psychoactive

compounds to 81 randomly chosen chemically diverse compounds

(see Materials and Methods). We found that a similar proportion

of genes with close human homologs (59.7%) were scored for

strains that were significantly sensitive to at least one of these

diverse chemicals. Despite this similarity in proportion of sensitive

strains with human homologs in the two datasets, conserved genes

were scored much more frequently (in .10% of the compounds)

in the psychoactive drug set than in the random drug set. In fact,

considering only genes deleted in frequently scored strains, 64.1%

of the psychoactive drugs had close human homologs (BlastP E-

value,E-6) while the corresponding proportion for the structur-

ally diverse drug set was significantly (p,0.006) lower (45.4%) and

similar as the fraction of human homologs for multi-drug

resistance genes (47.1%) in a recently published study [23]. This

difference points to a significant enrichment of frequently scored

sensitive strains with human homologs for the psychoactive drugs.

Among the strains sensitive to the highest number of psychoactive

compounds, seven of eight had close human homologs: NEO1,

SAC1, PIK1, VPS29, PEP8, ARP4 and VPS35. The majority of

these genes are involved in vesicle transport, which was the most

frequently enriched function among strains sensitive to psychoac-

tive drugs. Thus, the specific psychoactive drug detoxification

mechanisms identified in yeast are likely to be of importance in

humans treated with psychoactives.

Discussion

Many psychoactive drugs are associated with adverse secondary

effects in humans yet the mechanisms that underlie these off-target

effects are poorly understood. To address mechanisms of drug

action in a systematic manner, we profiled the genome-wide

collection of budding yeast deletion strains for sensitivity to a

broad spectrum of psychoactive compounds, of which dopami-

nergic and serotonergic drugs had a high bioactivity. Among 214

tested compounds, we uncovered 81 drugs that conferred a

measurable growth defect on wildtype yeast. An appropriate dose

of these active compounds was applied to the pooled heterozygous

and homozygous yeast deletion sets to identify genes whose

function is required for optimal growth in the presence of drug.

Fifteen percent of all yeast strains (deleted for non-dubious ORFs)

exhibited significant sensitivity (r.2, z.3) to these 81 psychoactive

compounds and more than half of the drugs interacted with core

cellular functions. Several clinically important drugs, such as

fluoxetine, cyproheptadine, and clozapine were linked to diverse

cellular processes. This observation may explain both the diversity

of side effects observed in human patients and the therapeutic

variability associated with these drugs. That is, polymorphisms in

any of the conserved processes affected by a given drug are a likely

source of the individual variation in response to drug. For instance,

the response to the frequently prescribed antipsychotic clozapine is

highly variable between individuals as the same dose can have

markedly different efficacy and/or side effects in different patients

[38]. Genes functioning in vesicle transport, protein localization,

telomere biology, and catabolic processes were required for

clozapine resistance in yeast. In another example, fluoxetine is

associated with side effects such as seizures, nausea, sleepiness,

anxiety, and serious allergic reactions. This antidepressant affects

numerous cellular processes including establishment of cell

polarity, protein localization, and cytoskeleton organization and

biogenesis. Given the limited number of FDA-approved drugs

within the set of 81 compounds analyzed here and the overlapping

side effects associated with these drugs, it is not yet possible to

correlate any single side effect to a particular perturbed pathway.

The most frequently scored sensitivity for the 81 profiled

antipsychotic drugs was due to loss of secretory pathway function,

likely indicating the importance of vesicle transport (e.g. to the

vacuole) for drug detoxification. The lysosome (the mammalian

vacuole equivalent) is known as the major site of degradation of

both exogenous and endogenous molecules. For FDA-approved

drugs, the requirement for vesicle transport genes was reflected in

the frequent sensitivity of the neo1 deletion strain as the most

sensitive strain in six FDA-approved drugs. Neo1 is an essential,

highly conserved type 4 P-type ATPase involved in intracellular

membrane- and protein-trafficking. Members of this family of P-

type ATPases are implicated in the translocation of phospholipids

from the outer to the inner leaflet of membrane bilayers. Our data

suggested that interference with membrane structure and transport

through inhibition of Neo1 is an additional, unwanted mechanism

of action for clozapine, cyproheptadine, fluoxetine, paroxetine,

sertraline and haloperidol, and their drug analogs. The impor-

tance in humans of functional 4 P-type ATPases is well

documented as hereditary cholestasis, caused by defects in biliary

epithelial transporters, has been directly linked to mutations in a 4

P-type ATPase gene [39].

In addition to the frequently observed requirement for

uncompromised vesicle transport for drug detoxification, several

drug sensitivity profiles were enriched for more specific processes.

Within the FDA-approved drug group, the antidepressant

paroxetine was unique in targeting RNA processing genes,

pimozide interfered with membrane lipid metabolic processes,

cyproheptadine preferentially targeted essential genes with chro-

matin remodelling functions, and fluoxetine interfered with

establishment of cell polarity. Furthermore, seven dopaminergic

compounds including the anti-Parkinson drug bromocriptine

resulted in sensitivity of strains deleted in aromatic amino acid

biosynthetic genes. This sensitivity may be a result of that

dopaminergic drugs block aromatic amino acid uptake in yeast,

requiring yeast to activate the corresponding biosynthetic

pathways. Given the fact that aromatic amino acids are precursors

to dopamine and serotonin, this was an interesting observation
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suggesting that the levels of intracellular precursors may be

important in the response to certain psychoactive drugs.

Interestingly, interference with members of the chaperonin

complex resulted in some of the most severe phenotypes. Seven of

eight CCT-strains scored as significantly sensitive in several

psychoactive drugs, among them CCT5. The human homolog of

this gene is associated with hereditary neuropathy [40]. Although

it is unclear how mutated CCT5 causes this disease, it has been

postulated that its mutation leads to accumulation of misfolded

cytoskeletal proteins, leading to defective assembly of actin into

microfilaments resulting in neuronal apoptosis [41]. In our yeast

screens, CCT5 was needed for resistance to eight different

compounds (cyproheptadine, paroxetine, fluoxetine, indatraline,

MDL72222, CY208-243, 2-Chloro-11-(4-methylpiperazino)-di-

benz[b,f]oxepin, N-Desmethyl-clozapine, and 3-alpha-[(4-Chlor-

ophenyl)-phenylmethoxy]-tropane. We conclude that interference

with tubulin and actin folding is an important, secondary

mechanism of action of these compounds.

As an example of how the information from our yeast assays

may lead to testable drug-gene interaction hypotheses in humans,

we found that the levels of the yeast strain heterozygous for ACC1

was eleven-fold reduced in ritanserin as compared to the control,

indicating that the acetyl-CoA carboxylase Acc1 may be a

secondary target of ritanserin. Like its yeast counterpart, the

human homolog ACACA is required for de novo biosynthesis of long-

chain fatty acids and its activity drops during fasting [42]. Because

increased appetite is a reported side-effect during ritanserin

treatment [43], it is tempting to speculate that biochemically

mimicking fasting would increase appetite.

These studies raise several important issues for further

consideration. Understanding the mechanisms that underlie

adverse effects of clinically approved drugs is crucial for the

development of next generation therapeutics with improved

selectivity and efficacy. Moreover, knowledge of patient polymor-

phisms in off-target pathways may allow adverse effects of any

given drug to be preempted by personalized pharmacogenomic

strategies. It is also conceivable that some of the observed

secondary drug effects are critical for therapeutic benefit.

In summary, a number of cellular processes were associated

with sensitivity to the dopaminergic and serotonergic classes of

psychoactive compounds. This points to additional, previously

uncharacterized mechanisms of action for these drugs in humans

and suggests follow-up experiments aimed at understanding a

drug’s mechanism of action on a genome-wide level. Our results

suggest that model organism pharmacogenetics can be used as a

comprehensive and unbiased tool in initial studies aiming at

unraveling secondary effects and mechanisms of action for

therapeutic compounds and their analogs. A more rigorous

understanding of the complete mechanism of drug action in

humans would be beneficial in the development of a new

generation of better tolerated psychoactive drugs, and in

personalized medicine.

Materials and Methods

Compound Libraries
High purity compounds for genome-wide fitness profiles were

obtained from Tocris BioScience (http://www.tocris.com) as

ligand sets and as the serotonergic (#1732) and dopaminergic

(#1718) collections. In total, these drug collections comprised 226

drugs, 12 of which overlapped between the collections. A complete

list of drugs, catalogue numbers, solvents, and concentration used

in the genome-wide screens is provided in Table S1.

Genome-Wide Yeast Growth Assay
For genome-wide fitness profiles, the complete sets of ,4700

homozygous deletion strains and ,1100 essential heterozygous

deletion strains in the BY4743 and BY4744 backgrounds (MATa/

a his3D1/his3D1 leu2D0/leu2D0 lys2D0/LYS2 MET15/met15D0

ura3D0 /ura3D0 ORF::kanMX4) were used [29,44]. A strain in the

same genetic background with YDL227C replaced by kanMX4 was

used as the wildtype control for drug titration curves. Strains were

stored in 7% DMSO at -80uC. Because all experiments were

performed in rich media (YPD [45], without antibiotics), it is

unlikely that the presence of auxotrophies had a major effect on

our results, however, we cannot rule out that the disruption of the

corresponding pathways in yeast may, in some cases, alter our

findings. Beginning from an initial maximal concentration of

200 mM, the degree of growth inhibition was determined by

exposing wildtype cells to a serial dilution of compound until only

a slight inhibition (,15%) of wildtype growth was observed (see

Figure S1). Cells were inoculated at an OD600 of 0.0625 in serial

dilutions of drug and grown in a Tecan GENios microplate reader

(Tecan Systems Inc., San Jose, USA) at 30uC with orbital shaking.

Optical density measurements (OD600) were taken every 15 min-

utes until the cultures were saturated, and doubling time (D) was

calculated as described [46]. Fitness assays using pooled deletion

strains were performed as described [47] with the following

modifications: i) after growth, 350 ml from each of two

independent cultures of the 5-generation homozygous pool and

350 ml from the 20-generation heterozygous essential pool were

combined, thereby allowing for approximately equal representa-

tion of barcodes for PCR reactions and hybridization to the same

DNA chip using the unique barcodes incorporated in each of these

strains. ii) for amplification of the tags, ,0.2 mg genomic DNA

was combined with a 1 mM mix of either up- or down-tags and

82% (v/v) Platinum High Fidelity PCR Supermix (Invitrogen #
11306-016) containing anti-Taq DNA polymerase antibody,

Pyrococcus species GB-D thermostable polymerase, recombinant

Taq DNA polymerase, Mg2+, and dNTPs, iii) extension temper-

ature was 68u, iv) extension was for 2 min except for a final 10 min

extension v) 34 cycles of amplification were performed, vi) after 10-

16 h, the hybridization mix was removed from Affymetrix Gene

Chips, replaced with Wash A (6x SSPE, 0.01% Tween), and chips

were stained and washed using GeneChip Fluidics Station 450

(Affymetrix) according to the GeneFlex_Sv3_450 protocol with

one additional wash A cycle before the staining.

Data Analysis
Intensity values for the probes on the chip were extracted using

the GeneChip Operating Software (Affymetrix). Quantile normal-

ization, outlier omission, fitness defect ratio (denoted as ‘‘r’’) and z-

score (denoted as ‘‘z’’) calculations were performed as previously

described [47,48]. In short, fitness defect ratios were calculated for

each deletion strain as the log2 of the ratio between the mean

signal intensities of the control and the drug chips. The larger the

ratio, the more depleted (sensitive) is the strain as compared to

control condition without the drug. To include the variance in the

control experiments, we also calculated z-scores for each gene by

dividing the difference in mean intensity across the control chips

and treatment with the mean standard deviation of the signal

intensities for the given gene across all 18 control chips [48]. The

larger the z-score, the more likely it is that a given strain is

significantly depleted from the pool. In our analysis, we scored a

deletion strain as significantly sensitive using a threshold for both

z-score and log2 intensity ratio. A threshold of z.3 was selected

based on our earlier observations that above this limit, 100% of

186 deletion strains detected as sensitive by microarray could be
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confirmed using individual growth assays [24]. This stringent

threshold was chosen to minimize the number of false positives. In

addition, we added a further requirement that a sensitive strain

should display at least a fourfold depletion (r.2, i.e. log2.2)

compared to the control condition. This criterion was added to

avoid including z-scores which were artificially high due to a low

standard deviation in the control chips. Due to the way the screens

were performed (at low drug concentration, i.e. an IC15) and

analyzed [22,24] we have focused on sensitive strains in this work,

as opposed to apparently resistant strains. Two-dimensional

hierarchical clustering of the fitness ratios was performed using

Pearson correlation [32] and the data was visualised using the

MultiExperiment Viewer from the TM4 microarray software suite

(http://www.tm4.org/index.html).

In each of the 81 profiled drugs, sensitive deletion strains were

tested for Gene Ontology Functional enrichment using the

standard hypergeometric test provided by the GoStats Biocon-

ductor modules for R [49]. For each drug, we performed three

independent functional enrichment tests using i) sensitive hetero-

zygous strains deleted for essential genes (z.2), ii) sensitive

homozygous strains (z.2), and iii) all sensitive strains in the given

drug with z.2. As the global control set, we used all yeast ORFs in

the corresponding deletion background with chip intensity values

above background. The background was determined as the

average value of all unused tags on the chip (,3600 tags65

copies = 18000 values) +2 standard deviations of the background

tags. Obtained p-values were corrected for multiple testing by

multiplying by the number of identified terms. Adjusted p-

values,0.0001 were considered significant. GO processes linked

to less than 20 or more than 300 genes in our background set were

excluded from our tests. Two-dimensional hierarchical clustering

of overrepresented GO processes was performed using binary data

[50]. To test the robustness of our functional enrichment tests, we

repeated the same analysis using each of the following thresholds:

z.3, r.2, r.3 and found consistent functional enrichment

profiles.

In the calculations of the proportion sensitive strains deleted for

genes with close human homologs (Blastp E-value,E-6), we used a

set of 81 recently profiled (our unpublished data) compounds with

potency against wildtype yeast. These compounds represent

structurally diverse chemicals derived from Chemical Diversity

Labs, Inc. repository of .500,000 compounds.

Structure data files were obtained from Tocris and Pubchem for

all compounds and Babel canonical smile strings were generated.

In the chemical structure clustering, extended connectivity

fingerprints based on functional classes in Pipeline Pilot were used

[51]. In the physiochemical property clustering, ten descriptors

representing important properties for potential drug candidates

were calculated after salts were stripped, using Frowns and

Openeye cheminformatic libraries [31,52]. PCA was used to find

the strongest properties that separated active from non-active

compounds. The revealed properties ALogP and molecular weight

were validated to see how they correlated with the pattern of the

other eight descriptor loadings. The non parametric Wilcoxon

rank sum test supported LogP (p-value 4.91e-13) and MW (p-value

3.42e-05) as significant representative properties.

All supplementary data can also be downloaded from our

webpage, http://chemogenomics.med.utoronto.ca/Supplemen-

tal/psychoactives/.

Supporting Information

Figure S1 Chemical structures of the atypical antipsychotic

clozapine and the typical antipsychotics haloperidol and pimozide.

Found at: doi:10.1371/journal.pgen.1000151.s001 (0.80 MB TIF)

Table S1 Drugs used in genome-wide fitness profiles. Catalogue

number (Tocris), solvent, highest drug concentration tested in

wildtype yeast, drug concentration used, and brand names for

FDA-approved drugs.

Found at: doi:10.1371/journal.pgen.1000151.s002 (0.04 MB

XLS)

Table S2 Fitness ratios for indicated compounds for all deletion

strains with intensity values above background.

Found at: doi:10.1371/journal.pgen.1000151.s003 (9.73 MB

XLS)

Table S3 Z-scores for the indicated compounds for all deletion

strains with intensity values above background.

Found at: doi:10.1371/journal.pgen.1000151.s004 (9.73 MB

XLS)

Table S4 Strains scored as significantly sensitive with at least one

dopaminergic or one serotonergic drug. For each strain, the

number of dopaminergic and serotonergic drugs that caused

significant depletion in the pool is shown (r.2, z.3). Strains

scored in both drug classes are indicated with "1".

Found at: doi:10.1371/journal.pgen.1000151.s005 (0.33 MB

XLS)

Table S5 Significantly enriched (p,0.0001) GO Processes in

genome-wide fitness profiles.

Found at: doi:10.1371/journal.pgen.1000151.s006 (0.12 MB

XLS)

Table S6 Sub-grouping of the enriched GO categories.

Found at: doi:10.1371/journal.pgen.1000151.s007 (0.02 MB

XLS)
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