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Abstract

Obesity is a highly heritable condition that affects increasing numbers of adults and, concerningly, 

of children. However, only a small fraction of its heritability has been attributed to specific 

genetic variants. These variants are traditionally ascertained from genome-wide association studies 

(GWAS), which utilize samples with tens or hundreds of thousands of individuals for whom a 

single summary measurement (e.g., BMI) is collected. An alternative approach is to focus on a 

smaller, more deeply characterized sample in conjunction with advanced statistical models that 

leverage longitudinal phenotypes. Novel functional data analysis (FDA) techniques are used to 

capitalize on longitudinal growth information from a cohort of children between birth and three 
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years of age. In an ultra-high dimensional setting, hundreds of thousands of single nucleotide 

polymorphisms (SNPs) are screened, and selected SNPs are used to construct two polygenic risk 

scores (PRS) for childhood obesity using a weighting approach that incorporates the dynamic and 

joint nature of SNP effects. These scores are significantly higher in children with (vs. without) 

rapid infant weight gain—a predictor of obesity later in life. Using two independent cohorts, it 

is shown that the genetic variants identified in very young children are also informative in older 

children and in adults, consistent with early childhood obesity being predictive of obesity later 

in life. In contrast, PRSs based on SNPs identified by adult obesity GWAS are not predictive 

of weight gain in the cohort of young children. This provides an example of a successful 

application of FDA to GWAS. This application is complemented with simulations establishing 

that a deeply characterized sample can be just as, if not more, effective than a comparable study 

with a cross-sectional response. Overall, it is demonstrated that a deep, statistically sophisticated 

characterization of a longitudinal phenotype can provide increased statistical power to studies with 

relatively small sample sizes; and shows how FDA approaches can be used as an alternative to the 

traditional GWAS.
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1. Introduction

Obesity is a rising epidemic that is increasingly affecting children. In 2018, 18% of children 

in the United States were obese and approximately 6% were severely obese (Hales et 

al., 2018)—a substantial increase from previous years (Ogden et al., 2016). Given the 

strong association between weight gain during childhood and obesity across the life course 

(Cunningham, Kramer and Narayan, 2014, Zhang et al., 2019), the search for early life risk 

factors has become a public health priority.

Obesity is a complex disease with an etiology influenced by environmental, behavioral, and 

genetic factors, which likely interact with each other (Ang, Wee, Poh and Ismail, 2012). 

For childhood obesity, dietary composition and sedentary lifestyle have often been cited as 

main contributors (Sahoo et al., 2015). Evidence also exists for a significant role of parents’ 

socioeconomic status (Barriuso et al., 2015) and maternal prenatal health factors including 

gestational diabetes (Boney, Verma, Tucker and Vohr, 2005) and smoking (Kries and von 

Kries, 2002). In addition, obesity risk in children has been associated with appetite (Carnell 

and Wardle, 2007), which has been shown to be partially influenced by genetics (Wardle et 

al., 2008).

The heritability of obesity has been estimated to be between 50% and 90% (with the 

highest values reported for monozygotic twins and the lowest for non-twin siblings and 

parent-child pairs, reviewed in Maes et. al, 1997 (Maes, Neale and Eaves, 1997)). This is 

a much higher percentage than currently accounted for by known genetic variants (Pigeyre, 

Yazdi, Kaur and Meyre, 2016, Llewellyn, Trzaskowski, Plomin and Wardle, 2014). This 

discord is referred to as “missing heritability”—a broad discrepancy between the estimated 
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heritability of the phenotype and the variability explained by genetic variants discovered 

to date. Indeed, the search for specific genetic variants that increase the risk of obesity, 

in adulthood as well as in childhood, is still ongoing. Using whole-genome sequencing, 

researchers have found variants in individual genes that contribute to severe, early-onset 

obesity (Saeed et al., 2018). Moreover, genome-wide association studies (GWAS) have 

identified single nucleotide polymorphisms (SNPs) that are significantly associated with 

obesity phenotypes such as increased body mass index (BMI), high waist-to-hip ratio, etc. 

(Locke et al., 2015, Meyre et al., 2009, Speliotes et al., 2010, Thorleifsson et al., 2009, 

the Early Growth Genetics (EGG) Consortium 2012, Warrington et al., 2015, Felix et al., 

2016, Khera et al., 2019, Vogelezang et al., 2020). Albeit successful, these studies have not 

resolved the “missing heritability” discrepancy, and have other short-comings; in particular, 

the individual contributions of the identified SNPs tend to be very small (Pigeyre, Yazdi, 

Kaur and Meyre, 2016), and the prevalent focus is still on adult cohorts—with only one 

childhood obesity study for every 10 adult obesity studies (Goodarzi, 2018).

One way to utilize the information gained from GWAS is to summarize the risk from 

multiple disease-causing alleles in polygenic risk scores (PRSs) that can be computed 

for each individual (Sugrue and Desikan, 2019). These scores are either simple counts 

(unweighted) or weighted sums of disease-causing alleles identified by GWAS. Notably, 

while several studies have constructed PRSs for childhood obesity (Khera et al., 2019, den 

Hoed et al., 2010, Elks et al., 2010, Belsky et al., 2012, Li et al., 2018), most have done 

so relying on SNPs identified by GWAS on adult BMI. Since SNPs affecting obesity risk 

in adults and children may differ (Andersson et al., 2010, Sovio et al., 2011, Graff et al., 

2013), this may explain the limited (Pigeyre, Yazdi, Kaur and Meyre, 2016, Llewellyn and 

Fildes, 2017, Khera et al., 2019) and age-dependent (Frayling et al., 2007, Khera et al., 

2019) explanatory power of such scores for children’s weight gain status.

We contribute to bridging this gap by focusing specifically on SNPs affecting obesity risk 

in children. In contrast to the majority of obesity-related GWAS, we focus on a small but 

deeply characterized pediatric cohort (Paul et al., 2014, Savage et al., 2016, Paul et al., 2018) 

with growth measurements from birth up to three years of age. This provides the unique 

opportunity to incorporate the time-dependent nature of weight gain in the analysis. To fully 

exploit this aspect, we use highly effective Functional Data Analysis (FDA) (Billheimer, 

Ramsay and Silverman, 2007) techniques to construct children’s growth curves and treat 

them as a longitudinal phenotype. FDA is a field of statistics that incorporates such structure 

and considers data as evaluations of curves over a discrete grid. Measurements are smoothed 

into curves, using the correlations of points to provide additional insights. FDA can fully 

leverage longitudinal information, extracting complex signals that can be lost in standard 

analyses of cross-sectional or summary measurements (e.g., BMI collected at a single 

time point). This increases power and specificity for assessing potentially complex and 

combinatorial genetic contributions. Moreover, FDA models genetic effects on the entire 

growth curve non-parametrically. This captures changes in effect size over time in a more 

flexible and effective manner than other statistical methods for longitudinal data. The 

growing amount of literature in biomedical and ‘omics research utilizing FDA (Cremona 

et al., 2019, Vsevolozhskaya et al., 2016, Huang et al., 2017, Park et al., 2018, Goldsmith 

and Schwartz, 2017, Wrobel, Zipunnikov, Schrack and Goldsmith, 2019, Gertheiss, Maity 
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and Staicu, 2013) provides further evidence of the need to capture as much structure as 

possible from such challenging, complex datasets.

We propose an effective pipeline to select genetic variants significantly associated with 

children’s growth curves and combine them into two novel PRSs that are predictive of 

growth patterns. The ultra-high dimensional (SNPs) and under-sampled (children cohort) 

setting we work with necessitates a multi-step procedure to carefully select relevant SNPs 

and build the scores, with each step utilizing the longitudinal structure. First we apply 

a computationally efficient feature screening method (Chu, Li and Reimherr, 2016) for 

function-on-scalar regression to eliminate a substantial portion of the hundreds of thousands 

of SNPs under consideration. Second, we use a regularization method (Parodi and Reimherr, 

2018) for function-on-scalar regression to further select SNPs. Third, we incorporate 

the corresponding smooth functional estimates of selected SNPs into the PRS weight 

construction. While existing methods have utilized FDA when studying genetic variants 

(Vsevolozhskaya et al., 2016, Huang et al., 2017, Chu, Li and Reimherr, 2016), to our 

knowledge, we are the first to produce PRSs fully constructed with these techniques, and 

on such a high-dimensional, under-sampled, yet deeply characterized population. We present 

details of our proposal along with relevant background in Section 2 and address technical 

aspects of our implementation in Section 3. We provide further evidence of how functional 

outcomes can increase statistical power in identifying relevant SNPs in Section 4, through 

simulations mirroring the study characteristics. Section 5 contains our main findings along 

with several complementary results including the biological interpretation of selected SNPs, 

independent validation on separate datasets, and comparisons with other PRSs derived by 

“conventional” GWAS methods. We also investigate how environmental, behavioral, and 

clinical covariates compound with our novel score in effecting weight gain. We provide final 

remarks and discussion in Section 6.

1.1. INSIGHT Study and Problem Setup

We collected genetic information from 226 children recruited from the 279 families involved 

in the Intervention Nurses Start Infants Growing on Healthy Trajectories (INSIGHT) study 

(Paul et al., 2014). These children are full-term singletons born to primiparous mothers 

in Central Pennsylvania. INSIGHT is a randomized study which compared a responsive-

parenting behavioral intervention aimed at the primary prevention of childhood obesity 

against a home safety control. The study collected clinical, anthropometric, demographic, 

and behavioral variables on the children between birth and the age of three years (Table 

1). In our study we utilize children’s weight and length or height measurements at eight 

time points; specifically, length was measured with a recumbent Shorr Productions length 

board at birth, 3-4 weeks, 16 weeks, 28 weeks, 40 weeks, and one year, and standing 

height was measured with a Seca 216 stadiometer at two and three years. We also utilize 11 

covariates including maternal pre-pregnancy BMI, paternal BMI, maternal pregnancy health 

variables (gestational weight gain, gestational diabetes, and smoking status), family income 

(as a proxy for socioeconomic status), mode of delivery, child’s sex, child’s birth weight, 

INSIGHT intervention group (intervention or control), and mother-reported child’s appetite 

at 44 weeks. The appetite score is an ordinal variable on a scale from 1-5 which summarizes 

the Child Eating Behavior Questionnaire (CEBQ) (Llewellyn et al., 2012). Domains on the 
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CEBQ include food responsiveness, emotional over-eating, food enjoyment, desire to drink, 

satiety responsiveness, slowness in eating, emotional under-eating, and food fussiness.

Based on the ratio of weight for length or height (henceforth referred to weight-for-length/
height) at the eight time points at our disposal, we constructed growth curves for each of the 

226 children (Fig. 1a; see Section 3.1). Weight-for-length is the recommended measurement 

for identification of children at risk for obesity under the age of two years by the American 

Academy of Pediatrics (BMI is recommended afterwards) (Daniels and Hassink, 2015). 

Since six out of our eight time points fall into this category, we utilized weight-for-length/

height ratio for all time points for consistency. In addition to growth curves, we computed 

the conditional weight gain for each child (change in weight between birth and 6 months, 

corrected for length, see Section 3.1). Conditional weight gain was shown to be an effective 

indicator of risk for developing obesity later in life in a previous study (Taveras et al., 

2009). Also in our study, children who experienced rapid infant weight gain, i.e. those 

with a positive conditional weight gain, had a significantly greater weight at one (p<2.2 

× 10−16), two (p=9.1 × 10−14), and three (p=6.2 × 10−13) years of age than children who 

did not experience rapid infant weight gain (one-tailed t-tests, Fig. S1). While the growth 

curves are the main response of interest in our analyses, we further support our results by 

demonstrating the association of our PRS with conditional weight gain (a scalar outcome) 

and rapid infant weight gain status (a binary outcome). Fig. 1b provides a snapshot of the 

relationship between one of our PRSs and the growth curves, demonstrating that curves of 

children with high PRS values are concentrated above the mean curve. More details are 

presented in Section 5.1.

Regarding the genetic information, which provides the predictors (or features) in our 

analyses, we isolated genomic DNA from blood samples from the 226 children and 

genotyped it on the Affymetrix Precision Medicine Research Array, which contains 920,744 

SNPs across the genome. SNPs that had missing information, a minor allele frequency 

below 0.05, or were in the mitochondrial DNA were removed from the dataset—leaving a 

total of 329,159 SNPs for subsequent analyses (Fig. S2). With these SNPs we calculated 

individuals’ relatedness to assess the presence of population substructure that may confound 

the analysis of genomic associations. After computing a relationship matrix we regressed 

conditional weight gain on the top five principal components of relatedness and found 

no significant correlation (R2=−0.003, p=0.4992). This indicates that there is no need to 

incorporate a population stratification into downstream analyses. Lastly, to apply the FDA 

techniques, we restricted ourselves to a subset of 210 children and 79,498 SNPs for which 

we had complete information (no missing SNP values).

2. Background and Proposed Methodology

Let ℍ be a real separable Hilbert space with norm ∣ ∣ ⋅ ∣ ∣ℍ. We consider the function-on-

scalar linear regression model:

Y n = ∑
i = 1

I
Xniβi

∗ + εn, 1 ≤ n ≤ N, (1)
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where Y n ∈ ℍ, n = 1, … N are functional outcomes, Xni ∈ ℝ, i = 1, … I are scalar predictors, 

βi
∗ ∈ ℍ are nonparametric smooth coefficient functions, and εn are iid Gaussian random 

elements of ℍ with mean function 0 and covariance operator C. In our problem, Y ∈ ℍN is 

composed of the growth curves and X ∈ ℝN × I is the complete set of SNPs. For a more in 

depth introduction to FDA and function-on-scalar regression, we refer the reader to Ramsay 

and Silverman (2007) (Billheimer, Ramsay and Silverman, 2007); Graves et al. (2009) 

(Ramsay, Hooker and Graves, 2009); Horvath and Kokoszka (2012) (Horváth and Kokoszka, 

2012); Hsing and Eubank (2015) (Hsing and Eubank, 2015); and Kokoszka and Reimherr 

(2017) (Kokoszka and Reimherr, 2017).

We assume that only a small portion—without loss of generality and for ease of notation, 

say the first I0, of the I features—are relevant, i.e., that only β1*, …, βI0* are non-zero. 

Feature sparsity (that is, the existence of only a small portion of relevant SNPs) is a 

reasonable assumption for our problem; traditional GWAS considering millions of SNPs 

tend to discover only a handful of significant features (Zhang et al., 2019, den Hoed et 

al., 2010, Elks et al., 2010, Belsky et al., 2012) with few exceptions (Khera et al., 2019). 

From a practical standpoint, as will be discussed in Sections 3.4 and 6, a PRS built from 

a large number of SNPs can also be challenging to utilize and/or validate on new groups 

of individuals. Thus, we propose a pipeline to narrow down the set of SNPs that have 

a significant effect on the growth curves. In this section we present relevant background 

and details of our pipeline, which includes a feature screening method for function-on-

scalar regression to quickly and efficiently filter out a substantial portion of the SNPs, a 

regularization method for more accurate SNP selection post screening, and a novel approach 

for PRS construction utilizing the nonparametric smooth coefficient functions corresponding 

to the final set of selected SNPs.

2.1. Feature screening for function-on-scalar regression

Feature screening procedures have gained wide popularity in recent years in part due to 

the increasingly common ultra-high dimensional problems produced in biomedical research. 

In the case of scalar outcomes, even popular and usually computationally efficient model 

selection methods such as the LASSO (Tibshirani, 2011) or SCAD (Fan and Li, 2001) are 

ineffective for ultra-high-dimensional problems (Fan and Lv, 2008, Fan, Samworth and Wu, 

2009, Hall and Miller, 2009). This challenge is only heightened in the presence of complex, 

functional outcomes like our growth curves. The goal of a screening procedure is to quickly 

and effectively filter out as many irrelevant features as possible without removing those of 

importance. This provides a first, substantial reduction in problem size and often removes 

highly collinear features—paving the way for the effective use of other, more in-depth 

selection methods to further reduce the problem to a final predictor set.

While the literature on screening for scalar outcomes is extensive (Fan and Lv, 2008, 

Li, Zhong and Zhu, 2012, Shao and Zhang, 2014), approaches for longitudinal/functional 

outcomes are still under development. Existing proposals tend to rely on strict assumptions 

that are not realistic in our problem, e.g., independence among within-subject observations 

(Fan, Ma and Dai, 2014, Song, Yi and Zou, 2014). In addition, there are often baseline 

variables that should be controlled for and included within the procedure, for instance, 
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sex may be incorporated to help screen SNPs whose effects are solely sex-based prior to 

the main selection method. This ability is not supported in existing screens for functional 

outcomes (Liu, Li and Wu, 2014). Thus, we utilize the screen proposed in (Chu, Li and 

Reimherr, 2016) that can incorporate baseline variables and utilize within-subject correlation 

while taking into account a time-varying error variance. This screen has both theoretical 

guarantees (i.e., the sure screening property (Fan and Lv, 2008)) and numerical evidence of 

increased screening accuracy by exploiting the correlation structure.

In short, we consider marginal function-on-scalar regression models for each of the I 
features:

Y n = Xniβi + ∑
j = 1

q
Znjγj + εn, 1 ≤ n ≤ N . (2)

The framework for the screening method is a specific instance of the scenario presented in 

(1) with ℍ taken to be L2[0, 1]. Here Znj ∈ ℝ, j = 1, …, q are the optional baseline variables 

to include in each marginal regression with corresponding smooth coefficient functions 

γj ∈ ℍ. The marginal regressions are fitted and used to provide a ranking of the features, 

after which the top d can be retained for further analysis. More specifically, a weighted 

least squares is used to estimate the coefficients for the I models in order to incorporate the 

covariance matrix of εn. The covariance itself is estimated using techniques in (Huang, Wu 

and Zhou, 2004). The corresponding weighted mean squared error is then used to generate 

feature rankings.

2.2. Functional linear adaptive mixed estimation (FLAME)

FLAME (Parodi and Reimherr, 2018) is a regularization approach that simultaneously 

selects important predictors and produces smooth estimates for function-on-scalar linear 

models by minimizing the target function L(β):

L(β) = 1
2N ∣ Y − Xβ ∣ℍ2 + λ∑

i

I
wi ∣ ∣ βi ∣ ∣K . (3)

Here Y ∈ ℍN and X ∈ ℝN × I are as previously defined. Let K be a compact linear operator 

from ℍ ℍ assumed to be positive-definite and self-adjoint. Then, by the spectral theorem, 

K can be decomposed as:

K = ∑
i = 1

∞
θivi ⊗ vi, (4)

where θ1 ≥ θ2 … ≥ 0 are the ordered eigenvalues with corresponding eigenfunctions vi ∈ ℍ. 

K is defined as a subspace of ℍ where:
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K ≔ {ℎ ∈ ℍ : ∑
i = 1

∞ < ℎ, vi >2

θi
≔ ∣ ∣ ℎ ∣ ∣K2 < ∞} . (5)

The weights wi in (3) are akin to those in adaptive LASSO (Zou, 2006, Fan and Reimherr, 

2017) and can be calculated in different data driven ways. Here we follow the default 

settings in FLAME, and first run an un-weighted/non-adaptive step taking wi = ∣ ∣ β i ∣ ∣K−1, 

where the β i, i = 1, …, I are initial coefficient estimates. FLAME utilizes the norm ∣ ∣ ⋅ ∣ ∣K
to induce both sparsity and smoothness, the degree of which is controlled using the tuning 

parameter λ. In contrast, previous approaches had to focus on one or the other (Parodi 

and Reimherr, 2018) and some can be computationally intensive (Chen, Goldsmith and 

Ogden, 2016), making high-dimensional problems difficult to compute. The implementation 

of FLAME relies on a functional coordinate descent algorithm, making it computationally 

efficient and applicable to ultra-high dimensional problems. We note that there are also 

several regularization procedures (Goldsmith and Schwartz, 2017, Gertheiss, Maity and 

Staicu, 2013, Mousavi and Sørensen, 2017) with functional features and/or outcomes, but 

this is not the scenario we consider for this work.

In addition, FLAME allows for a general K, creating a flexible framework that can 

incorporate various assumptions. Common choices include Sobolev, Gaussian, exponential, 

and periodic kernels which are discussed in more detail in (Parodi and Reimherr, 2018). 

We used the recommended Sobolev following the details in (Berlinet and Thomas-Agnan, 

2011). Let ℍ = L2(D) where D is a compact subset of ℝd and take K ⊂ L2(D) to be the subset 

of differentiable functions with up to and including mth order derivatives also contained in 

L2(D). Let α be a d-dimensional vector of nonnegative integers with ∑i = 1
d σαiαi ≤ m where 

σαi are nonzero weights. We can then define a family of norms on K:

∣ ∣ x ∣ ∣K2 = ∑ ∣ α ∣ ≤ m
1

σ2α
∫

D
∣ x(α)(s) ∣2 ds . (6)

With this norm K is an RKHS if and only if m > d/2. In our case, we again follow the default 

settings in FLAME and take D = [0, 1], d = 1. m = 1, and σ = 8 . Then the kernel K can be 

written explicitly as

K(s, t) =

σ
sinh(σ) cosh (σ(1 − s)) cosh (σt) t ≤ s

σ
sinh(σ) cosh (σ(1 − t)) cosh (σs) t > s

, (7)

which is solved numerically to identify eigenfunctions and eigenvalues.

Craig et al. Page 8

Econom Stat. Author manuscript; available in PMC 2023 January 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2.3. FDA-based Polygenic Risk Scores

In traditional studies, after a GWAS is completed and the final set of SNPs are selected, the 

PRS is computed through a weighted or unweighted approach. The latter is straightforward; 

the score of an individual is computed by taking the sum across relevant SNP counts. In 

the former, some measure of the effect size is used to create weights for each relevant SNP 

to incorporate varying levels of importance. These are usually the marginal effects on the 

(binary or scalar) phenotype considered, and are not derived from a joint model. We take 

a different approach and construct a novel PRS with weights based on effect sizes from a 

joint model that incorporates the dynamic nature of SNP effects on growth curves through 

the smooth coefficient curves produced by FLAME. The concept is intuitive: we select 

weights that maximize the squared covariance between the PRS and the growth curves. In 

more detail, consider the true set of I0 features x ∈ ℝI0 × 1 (the SNPs) and the population 

outcome (growth curve) expressed as Y (t) = ∑i = 1
I0 βi

∗(t)xi + ε(t). Note, here we narrow the 

setting of (1) taking ℍ = L2[0, 1] to better fit our problem scenario with functions over time. 

Let w∗ ∈ ℝI0 × 1 be the weight vector, then we have

w∗ = arg maxw∫ Cov( ∑
i = 1

I0
wixi, Y (t))

2

dt s . t . wTw = 1 . (8)

We can write

∫ Cov( ∑
i = 1

I0
wixi, Y (t))

2

dt = ∫ Cov( ∑
i = 1

I0
wixi, Y (t))

2

dt = ∫ Cov( ∑
i = 1

I0
wixi, ∑

i = 1

I0
βi

∗(t)xi + ε(t))
2

dt

= ∫ Cov(wTx, β(t)Tx) 2dt = ∫ wTΣxβ(t)βT(t)Σxwdt = wT(ΣxBΣx)w,
(9)

where Σx = Cov(x) and Bij = ∫βi*(t)βj*(t) dt. We can therefore maximize the quadratic 

form in (7) which when combined with the constraint in (6), attains a maximum of λmax; 

the maximum eigenvalue of ΣxBΣx. Optimal weights are then easily computed taking w* 

= vmax, the eigenvector corresponding to λmax. For further discussion of the computation 

of weights, including results when maximizing the correlation rather than covariance, see 

Section S1.1 in the Supplementary Materials.

3. Implementation

In this section, we provide technical details involved in the implementation of our 

pipeline. Code for carrying out the key steps in our proposal (screening, the application 

of FLAME, PRS construction and evaluation) can be found at https://github.com/makovalab-

psu/InsightPRSConstruction.

3.1. Functional and non-functional outcome generation

To construct growth curves, we utilized the anthropometric data collected by INSIGHT 

to calculate weight-for-length/height ratio for each child at each time point. These 
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measurements, considered longitudinally, were then used to create a curve for each child 

using the Principal Analysis by Conditional Estimation (PACE) algorithm (Yao, Müller 

and Wang, 2005), which pools information across subjects for more accurate curve 

reconstruction. We used the implementation of PACE provided in the fdapace package in 

R with default settings. The resulting 210 curves (51 cubic splines functions with evenly 

spaced knots) are shown in Fig. 1a.

Conditional weight gain z-scores (scalar variable) were calculated as the standardized 

residuals from a regression of age- and sex-specific weight-for-age z-score at six months 

on the weight-for-age z-score at birth (determined using the World Health Organization 

sex-specific child growth standards (Savage et al., 2016)). Length-for-age z-score at six 

months, length at birth, and precise age at the 28-week visit were considered as cofactors 

in this regression, and thus only the change in weight between birth and six months 

was captured (Savage et al., 2016, Griffiths et al., 2009). These scores are approximately 

normally distributed and have, by construction, a mean of 0 and a standard deviation of 1. 

Positive conditional weight gain z-scores correspond to a greater than average weight gain 

and are used to define rapid infant weight gain status (binary), which is a risk factor for 

developing obesity later in life (Baird et al., 2005, Ong and Loos, 2006, Zhou et al., 2016).

3.2. Feature generation

Blood from a fingerstick was collected at the child’s one year clinical research visit as 

part of INSIGHT. Genomic DNA was isolated (Qiagen DNeasy Blood and Tissue Kit) 

and genotyped on the Affymetrix Precision Medicine Research Array (PMRA). Initial 

quality filtering was performed using the following criteria: we removed SNPs with minor 

allele frequency <0.05 and/or present in less than 5% of individuals and SNPs located in 

mitochondrial DNA. All quality filtering steps were performed in PLINK v1.9 (Purcell et al., 

2007, Chang et al., 2015) with 329,159 SNPs remaining after quality filtering.

We calculated the relatedness of the INSIGHT individuals using the –make-rel command 

in PLINK 1.9 (Purcell et al., 2007, Chang et al., 2015). Principal components (eigenvalues 

and eigenvectors) of the relationship/relatedness matrix were then computed using the eigen 

function in R.

3.2. SNP screening

For the feature screening procedure described in Section 2.1, we considered marginal 

models for each SNP and included sex as a baseline feature. After ordering SNPs according 

to the weighted least squares error of their corresponding marginal model, the top d = 10, 

000 were selected and used for further analysis. We chose 10,000 based on the largest set 

of SNPs FLAME could sustain before suffering losses in solution quality (e.g., shrinking all 

coefficient curves to zero). Our implementation of this approach in R is available online in 

the GitHub repository mentioned above.

3.3. FLAME details and selection stability

Prior to applying FLAME, we standardized the predictors (now consisting only of the top 

10,000 SNPs retained by the screening in Section 3.2) and centered the growth curves. 
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We used the default choice of kernel for FLAME (Sobolev), and tuned the penalty for 

sparsity and smoothness splitting our observations into training (75%) and test (25%) sets 

and selecting the λ with minimum error on the test set. This resulted in a set of 24 SNPs 

which were used to construct our FDA-based PRS, i.e. FDA24 PRS (Table 2). Due to the 

standardization step required for FLAME, coefficient curves were re-computed regressing 

growth curves on the 24 SNPs using raw SNP counts. These curves were used to compute 

the final PRS weights, now on the original scale. Coefficient curves and an extended 

discussion are illustrated in Fig. S3 and Section 1.2 of the Supplementary Materials.

We also assessed the statistical robustness of SNP selection through a 20-fold sub-sampling 

scheme akin to a 20-fold cross-validation. Specifically, we randomly split the subjects into 

20 equal parts (folds) and applied FLAME to perform SNP selection 20 times, each time 

omitting a different fold. To compare selection results produced through similar levels of 

induced sparsity and smoothness, we always used the same penalty parameter λ previously 

selected with the training-test sets split (see above). To ascertain stability of SNP selection, 

we counted how many times (out of 20) each SNP was selected. Five “top” SNPs, which 

presented both high selection frequency and large weight magnitude (see Section 5.1), 

were used to create a second, more parsimonious and possibly more stable FDA-based 

PRS, i.e. FDA5 PRS. This approach was implemented by modifying existing open source 

implementations of FLAME in R. This sub-sampling scheme is also used to assess out-of-

sample prediction performance. After SNP selection and weight computations on left-in 

training folds, we compute the PRS for each individual in the left-out test fold. Next we fit a 

function-on-scalar regression of the growth curves on the PRS values in the left-out test fold, 

and compute its R2.. This is repeated on all folds, providing multiple “prediction” R2 values 

that we average and compute standard errors for. For further discussion and comparable 

results obtained changing the number of folds in the sub-sampling scheme see Section S1.3 

and Figure S4 in the Supplementary Materials.

3.4. Computing Polygenic Risk Scores

To compute our FDA-based PRSs, we follow the weighting scheme proposed in Section 

2.3, taking w* = vmax where vmax is the eigenvector of ΣxBΣx corresponding to the 

maximum eigenvalue. In practice, Σx is replaced with its Maximum Likelihood estimate, 

and Bij = ∫ βi
∗(t)βj

∗(t) dt is formed replacing β* (t) with the smooth coefficient estimates of 

SNPs selected by FLAME and re-computed on the original scale (see Section 3.2). The 

pairwise integrals are evaluated numerically over a grid of time points.

In Section 5.3, we study the relationship between the children’s growth curves and other 

proposed scores—Belsky PRS (Belsky et al., 2012), Elks PRS (Elks et al., 2010), den Hoed 

PRS (den Hoed et al., 2010), Li PRS (Li et al., 2018), and Khera PRS (Khera et al., 2019). 

In order to calculate these PRSs on the INSIGHT cohort we employed the Allelic Scoring 

function in PLINK v1.9 (Purcell et al., 2007, Chang et al., 2015). For Belsky PRS, Elks 

PRS, and Li PRS some proxy alleles had to be used in place of SNPs that were not assessed 

on the PMRA. Such proxies were determined using linkage disequilibrium with LDlink 

(Machiela and Chanock, 2015). Tables describing the composition of each PRS can be found 
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in the Supplementary Materials (Tables S1-S4). For SNPs for which no appropriate proxy 

could be found, we utilized imputed data (these are also denoted in Tables S1-S4).

For imputation, we used 294,987 of the 329,159 quality-controlled SNPs (see Section 1.1; 

34,172 SNPs were removed because they were not found in the 10 0 0 Genomes Project 

reference). Children’s genotypes were first phased leveraging pedigree information using 

SHAPEIT2 (Delaneau, Marchini and Zagury, 2011, O’Connell et al., 2014)(genotypes were 

also collected for mother and father in most cases, and for some younger siblings), The 

phased haplotypes were then used for imputation using the 1,000 Genomes Project phase 3 

data (1000 Genomes Project Consortium 2015) as a reference panel with IMPUTE2 (Howie, 

Donnelly and Marchini, 2009). SNPs with imputation probability <90% were removed. 

Following imputation, we had information for 12,479,343 SNPs. However, when calculating 

the Khera PRS we were still only able to use 751,735 SNPs—which is only 37% of the 

very large total number of SNPs (as many as 2,100,302 (Khera et al., 2019)) included in this 

score.

4. Simulation Study to Evaluate Sample Size vs Depth

While our sample size is smaller than those of most recent GWAS studies, there is much 

to gain from the use of the longitudinal information in growth curves. We demonstrate 

this through a simulation study that builds upon our actual data, as to guarantee realistic 

settings. In Section 4.1 we attempt to quantify these gains in terms of selection accuracy 

under a setting where there is a set I0 of “true” features (e.g., SNPs) in the underlying model. 

Here FLAME is applied for selection and compared against a corresponding cross-sectional 

case with an adaptive Lasso (Zou, 2006). This comparison is implemented under a scenario 

where both selection methods operate on a pre-screened subset containing the true features 

(thus, complete selection accuracy is possible). We separately compare screening results 

with a threshold proportional to the one used in our analysis. Here marginal correlations are 

used for screening in the cross-sectional case.

In Section 4.2, we shift from selection to the risk score, where, assuming a “true” PRS has 

been constructed that does in fact explain the phenotype, statistical significance is compared 

between longitudinal and cross-sectional scenarios. Additional noise is added to the latter to 

account for the variability in less controlled studies. This section explores a setting in which 

a proposed PRS may be biologically valid, but its effect is better captured using longitudinal 

data and FDA methods. For instance, a score may not validate (or have weaker validation 

results) if the validation dataset is derived from a cross-sectional study versus a longitudinal 

one.

4.1. Feature Selection

As mentioned above, we built our numerical experiments from our actual data. We 

considered the 210 growth curves employed in our analysis, and re-sampled them to create 

simulated samples of curves with different sizes N. In each such sample, we altered the 

curves associating them to I0 = 5 artificial features which act as the “true” set of important 

SNPs in this abstract setting. This was done taking Y n = Y n + Xn
Tβn where Yn is the n-th 
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original growth curve, Xn is a vector of size I corresponding to the n-th value of the 

artificial features, and the strength of the association, βn, is an I × m matrix consisting 

of the estimated coefficient curves of our FDA5 PRS (see Section 5.1) evaluated over the 

corresponding m = 8 time points for the n-th individual. Since there are I0 = 5 “true” 

features, only 5 rows of each βn are non-zero. Next, to simulate a comparable scenario with 

a scalar, “cross-sectional” response W, we randomly selected one time point in each curve 

Y n —this corresponds to a measurement at a given age A.

We varied the sample size N = 50, …, 1000, generating 10 0 instances for each fixed N, 

and considered a smaller scenario with I = 100 and larger scenario with I = 1000. The 

features, X, are independently sampled from a normal distribution with mean 0 and identity 

covariance matrix. We applied FLAME under the settings described in Sections 2.2 and 3.3, 

regressing Y  on X in each instance. In the cross-sectional case, we first regressed W on 

A, computed the residuals Wres, and applied an adaptive Lasso to the regression of Wres 

on X using the glmnet (Friedman, Hastie and Tibshirani, 2010) package in R. For a fairer 

comparison, we mimicked the adaptive step in FLAME where in the first run, Lasso is 

tuned via cross-validation and the resulting estimates are used as weights in the adaptive step 

taking 1 ∕ ∣ β lasso ∣ (any Xj with corresponding β lassoj = 0 are removed from consideration). 

This adaptive step is also tuned via cross-validation. To evaluate performance, in each 

instance we computed the F-score

Fscore = TP
TP + 0.5(FP + FN) , (10)

which is a combination of true and false positives. Results are summarized in Fig. 2, which 

shows averages and standard errors for the F-scores across sample sizes. We observe that 

a small (say N = 200, close to our 210 from INSIGHT) but deeply characterized sample, 

where a longitudinal phenotype is recorded and exploited with FDA methods, can produce 

F-scores similar to those produced with much larger samples where only a cross-sectional 

response is measured; specifically, samples around 4 times larger when I = 100 , and more 

than 3 times larger when I = 1000. Thus, smaller studies can recover comparable selection 

accuracy exploiting richer phenotypes.

In the above comparison FLAME and the adaptive Lasso operate on a pre-screened subset of 

features containing the true set. To contextualize these results, we also applied the functional 

screening approach to this setting with additional features to total I = 10, 000 predictors to 

be ranked. For the cross-sectional case, we ranked the features based on their correlation to 

the scalar response (after first regressing out age, as above). The median ranking of the 5 

true features along with standard median absolute deviations (MAD) are shown in Fig. 2 (on 

a logarithmic scale due to a large variation range across sample sizes). All but one of the 

five true features would be included both in the longitudinal and the cross-sectional case if 

we set a cutoff at the top 1300 features (this 1300/10000 is proportional to the 10000/79498 

in our main analysis, but we could reduce the cutoff here with similar results). However, 

the rankings are stronger in the longitudinal case, and the most difficult feature would be 

included at a lower sample size. For instance, the median ranking of this feature at a sample 
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size of N = 500 is 1386/10000 in the longitudinal case compared to 1982/10000 in the 

cross-sectional case.

4.2. PRS Significance

Here we follow a simulation framework similar to that of Section 4.1, but associate the 

curves to an artificial feature P which plays the role of a “pseudo” PRS. This was done 

taking Y n = Y n + Pnβn where Yn is again the n-th original growth curve, Pn ~ N(0, 0.52) 

is the n-th value of the artificial feature, and the strength of the association, βn, is a 

vector of size m consisting of the estimated coefficient curve of our FDA24 PRS (see 

Section 5.1) evaluated over the corresponding m = 8 time points of the n-th individual. As 

before, we also simulate a comparable scenario with a scalar, cross-sectional response W by 

randomly selecting one time point in each curve Y n. Thus, in either case, we assume that the 

longitudinal and corresponding cross-sectional study are utilizing a truly relevant PRS.

To quantify how the effect of this PRS differs across sample sizes in the longitudinal case, 

we performed a functional regression for Y  on P and recorded the resulting p-values. In the 

cross-sectional case, we performed a standard regression of W on P and age A and recorded 

p-values for P. Thus, while this regression does not use longitudinal information, it does 

correct for age when evaluating the effect of P on the cross-sectional phenotype W.

To more realistically account for the variability in less controlled studies (e.g. based 

on Electronic Medical Records), we also generated cross-sectional responses with larger 

variation/noise, adding Gaussian errors with mean 0 and variance s2 to the cross-sectional 

response. In a first scenario, the variance was “calibrated” on the INSIGHT data; we took 

s2 = 5 × 10−5 , the within-day variation estimated from a mixed effects model for the weight-

for-length/height ratio (fixed effect for age, random effects for individual and observation 

number—for visits where multiple measurements were taken). In a second scenario, meant 

to mimic a study where measurements are less accurate than those collected in INSIGHT, 

we took s2 = 5 × 10−4. In both scenarios we again performed a standard regression on W 
and A, and recorded the p-value for W. The whole procedure—creating simulated samples 

of different sizes, generating the artificial explanatory feature (pseudo-PRS) and the various 

functional and scalar responses, performing the various regressions and recording p-values

—was repeated 100 times, allowing us to compute averages and standard errors for the 

negative log p-values plotted in Fig. 3.

We observe very similar gains in power to those seen in Section 4.1. Here the smaller sample 

(say N = 200, close to our 210 from INSIGHT) can produce results with a significance 

equivalent to those produced with a sample more than 4 times larger where only a cross-

sectional response is measured—even when this response contains no additional noise. 

Adding noise akin to that in INSIGHT increases this factor to more than 5 times, and one 

would need sample sizes well beyond N = 1000 to obtain comparable significance at higher 

levels. These results help us gauge how smaller longitudinal studies may truly compare 

to larger cross-sectional ones, and also suggest that truly effective scores may appear less 

impactful when validated on datasets where only scalar phenotypes are available.
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5. Linking FDA-based PRSs to Childhood Obesity

In this section we present the main findings obtained applying our proposed pipeline 

to the data from the INSIGHT children cohort. We assessed the in-sample association 

between growth curves and our FDA-based polygenic risk scores fitting function-on-scalar 

linear models (Kokoszka and Reimherr, 2017). The significance of the PRSs as predictors 

of the growth curves was determined based on three tests (Choi and Reimherr, 2018) 

employing different types of weighted quadratic forms. One employs a simple L2 norm of 

the parameter estimate (L2), another uses principal components to reduce dimension prior 

to a Wald-type test (PCA), and the last blends the two through the addition of a weighted 

scheme in the PCA (Choi). We reported the more conservative of the three values, which 

in this case was Choi. We complemented results on growth curves considering alternative 

phenotypes, including curves based on BMI rather than the weight-for-length/height ratio, 

the scalar conditional weight gain score, and the binary rapid infant weight gain (see Section 

1.1). To demonstrate generalizability, we validated results on two independent cohorts. 

For both, PRSs were calculated using the score function in PLINK v1.9 (Purcell et al., 

2007, Chang et al., 2015), and proxies for missing SNPs were determined using LDLink 

(Machiela and Chanock, 2015) (see Table S5). We also analyzed the relationship between 

other PRSs proposed in prior literature and the growth curves in our INSIGHT cohort. 

Finally, we studied the contributions of environmental, behavioral, and clinical covariates 

when considered jointly with our scores.

5.1. Main results

A screening procedure (Chu, Li and Reimherr, 2016) (see Section 2.1) was used prior to 

FLAME (Parodi and Reimherr, 2018) (see Section 2.2) to reduce the analysis from 79,498 

to the top 10,000 potentially relevant SNPs (Fig. S2). FLAME then identified 24 SNPs as 

significant predictors of children’s growth curves (Table 2). Using information from the 24 

selected SNPs, we constructed our novel FDA24 PRS as a weighted sum of allele counts 

(see Section 2.3).

Our FDA24 PRS is indeed a strong predictor for growth curves, with a significant positive 

effect on weight-for-length/height ratios across time, especially between ~10 and ~30 

months of age (Fig. 4a) (function-on-scalar regression, in-sample R2=0.52, p=9.2 × 10−5 

– note that, as with any study and GWAS studies in particular, in-sample R2 values must be 

taken with caution as they are unrepresentative of true predictive power, see below and in 

Section 5.2 for “prediction” R2 evaluated through a sub-sampling scheme and validation 

datasets). This can also be observed noting that growth curves of children with high 

PRS values are concentrated above the mean curve (Fig. 1b). Moreover, FDA24 PRS is 

significantly larger for children with rapid infant weight gain compared to those without 

(one-tailed t-test, p=3.3 × 10−8 ; Fig. 4b), and is positively correlated with conditional 

weight gain (in-sample R2=0.16, p<1 × 10−05 ; Fig. 4c) as well as with weight-for-length/

height ratio at one (in-sample R2=0.50, p<1 × 10−5), two (in-sample R2=0.53, p<1 × 10−5), 

and three (in-sample R2=0.46, p<1 × 10−5) years of age (Fig. S5).

As described in Section 3.3, in order to assess the robustness of our FDA-based SNP 

selection, we performed a sub-sampling stability analysis akin to a 20-fold cross-validation. 
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Notably, for the 24 SNPs included in our FDA24 PRS, the weights computed to construct 

the PRS correlate with the number of times the SNPs are selected in this sub-sampling 

scheme (Fig. 5). The frequency of selection captures how stable the effect of a genetic 

variant is amid the complex and combinatorial signals in this type of data. SNPs which 

have both the highest selection frequency and the largest weights may be the most important 

to interpret and validate in future studies. Furthermore, this sub-sampling scheme used for 

stability can also be utilized to assess out-of-sample prediction performance, computing 

average “prediction” R2 values over left-out folds. We follow the proposed procedure using 

20, 10, and 5 folds. There are benefits and drawbacks to each, given that more folds provide 

more instances to average over, but reduce the size of each test sample (making the function-

on-scalar regression more challenging). Averages and standard errors of “prediction” R2 

values with different numbers of folds are provided in Table 3. As mentioned in Section 

3.3, we provide comparable results in the Supplementary Materials (see Figure S4). The 

R2 values reported in Table 3 are an order of magnitude smaller than the in-sample R2 

summarized above. However, this reduction in explanatory power and the magnitudes of 

these “prediction” values are very much in line with those found in most GWAS studies 

concerning complex phenotypes such as weight gain (Felix et al., 2016, Goodarzi, 2018, 

Justice et al., 2019). Indeed, these are of the same magnitude as those found in our external 

validation results in Section 5.2.

In addition to calculating a PRS based on the full complement of 24 SNPs selected by 

FLAME (Parodi and Reimherr, 2018), we computed a PRS restricted to the top five SNPs 

in terms of selection frequency and weight magnitude, as highlighted by our stability 

analysis (Fig. 5; see also Table 2). These five SNPs are rs72815409, rs638348, rs9409226, 

rs113822101, and rs62475261, and we refer to the PRS calculated on them as FDA5 PRS. 

Like FDA24 PRS, FDA5 PRS also has a significant positive effect on weight-for-length/

height ratios across time (function-on-scalar regression, in-sample R2=0.21, p=4.3 × 10−5; 

Fig. 4d), a positive correlation with conditional weight gain (in-sample R2=0.045, p=0.002; 

Fig. 4f), and values that are significantly higher for children with rapid infant weight 

gain compared to those without (one-tailed t-test, p=0.001; Fig. 4e). We note here that 

explanatory power evaluated after model selection (in our case, post selection of SNPs) 

and in-sample can be highly inflated, just as in any GWAS. However, as part of the 

biological validation analysis presented in the following section, we confirmed the predictive 

performance of our scores on two completely independent data sets.

Based on the NHGRI-EBI GWAS catalog (https://www.ebi.ac.uk/gwas/), one of the FDA5 

PRS SNPs is located in a gene linked to a metabolic disorder: rs638348 is located within 

gene RHOU associated with type 2 diabetes (Table 2). Additionally, two other SNPs 

of the FDA5 PRS are downstream of genes also associated with diabetes: rs72815409 

is downstream of SHISA6 (associated with an insulin sensitivity measurement) and 

rs113822101 is downstream of HPCAL1 (associated with type 2 diabetes). The fourth 

SNP in FDA5 PRS, rs9409226, is upstream of FBXW2 (associated with BMI-adjusted 

hip circumference), PHF19 (associated with birth weight), and CDK5RAP2 (associated 

with asthma). The fifth SNP in FDA5 PRS (rs62475261) is located upstream of HIP1 
(associated with BMI) and downstream of RHBDD2 (associated with eosinophil counts, an 

asthma-related trait). Thus, rs9409226 and rs62475261 are located in the vicinity of genes 
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associated with obesity-related traits and asthma. There is unequivocal epidemiological 

evidence linking obesity with asthma (reviewed (Peters, Dixon and Forno, 2018)), but a 

shared genetic underpinning has been challenging to elucidate (Melén et al., 2010); our 

results suggest further investigation is warranted.

Among the 19 SNPs included in our FDA24 PRS but not in the FDA5 PRS (Table 2), twelve 

are located within genes linked to obesity-related traits such as BMI (rs4915535, rs471670, 

rs17648524, rs4969367, rs17626544, rs1701822), cholesterol levels (rs9837708 and 

rs16889349), body composition measurement (rs2389157), waist-to-hip ratio (rs10494802), 

hypertension (rs1539759), and estradiol measurement (rs58307428). Seven additional SNPs 

are located in the vicinity of other obesity-related genes: for example, rs72679478 is located 

just upstream of the leptin receptor gene (LEPR) which has been associated with early-onset 

adult obesity (Wheeler et al., 2013). In summary, while none of the SNPs we identified are 

located in the most typical and well-known obesity genes (e.g., FTO (Frayling et al, 2007, 

Fall and Ingelsson, 2014) and MC4R (Locke et al., 2015, Fall and Ingelsson, 2014)), all of 

them are located either within, or in the vicinity of, genes linked to obesity or metabolic 

disorders in previous studies.

5.2. Biological Validation of the FDA-based Polygenic Risk Score

BMI in our cohort—To provide an initial biological validation of the FDA24 PRS 

constructed using weight-for-length/height ratio growth curves, we considered growth 

curves for the children in our INSIGHT cohort constructed using a different (albeit highly 

related) measure of weight gain, i.e. BMI. As mentioned above, weight-for-length/height 

ratio is recommended for children under two years of age by the American Academy 

of Pediatrics (Daniels and Hassink, 2015), however, our cohort is also observed at ages 

two and three, when BMI is recommended as the most meaningful measurement (Daniels 

and Hassink, 2015). Notably, our weight-for-length/height FDA24 PRS is also a strong 

predictor for the BMI growth curves (R2=0.40, p=2.9 × 10−5, function-on-scalar regression)

—suggesting a reasonable consistency between the information conveyed by the two 

measurements, at least up to the age of three years. FDA5 PRS is a strong predictor for 

BMI-based growth curves as well (R2=0.18, 9.1 × 10−5).

BMI in two independent cohorts—Among freely publicly available datasets, none 

provides genome-wide SNP data and longitudinal weight and length or height measurements 

for children under the age of three. Notwithstanding the unavailability of a good match to 

our study design, we were able to successfully validate FDA5 PRS on two independent 

dbGaP cohorts consisting of older children and adults. The first dataset consists of 283 

children between the ages of 8 and 9 from the Philadelphia Neurodevelopment Cohort 

(dbGaP study phs000607.v3.p2 (Glessner et al., 2010, Calkins et al., 2014, Calkins et 

al., 2015)) who are identified as European Americans. The average FDA5 PRS, when 

individuals are grouped according to BMI deciles, exhibits an increasing trend as BMI 

increases (Fig. 6a). Moreover, the FDA5 PRS of children in the highest BMI decile 

is significantly higher than in the lowest one (p=0.041, one-tailed t-test), and there is 

a marginally significant, positive correlation between FDA5 PRS and BMI (R2=0.011, 

p=0.081).
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The second dataset consists of 2,486 adults (≥18 years of age) from the eMERGE 

study (dbGaP study phs000888.v1.p1) who identify as white. We see again a significant 

difference in average FDA5 PRS between the lowest and highest deciles of BMI (p=0.03, 

one-tailed t-test; Fig. 6b). The correlation between FDA5 PRS and BMI, though still 

marginally significant, is weaker in this adult cohort than in the Philadelphia children’s 

cohort considered above (R2=0.0012, p=0.087)—perhaps due to the larger difference in age 

with individuals in our study. Nevertheless, and remarkably, the FDA5 PRS based on our 

children’s weight gain patterns is predictive of extreme obesity much later in life.

Considering the broader FDA24 PRS comprising all 24 SNPs instead of the FDR5 PRS, 

we did find a significant and in fact more pronounced difference between the first and 10th 

BMI decile in the eMERGE adults’ cohort. However, we did not find a significant difference 

between those BMI deciles in the Philadelphia children’s cohort (Table S6). The latter result 

may be due to the difficulty of validating a score based on a larger number of SNPs on small 

cohorts; for the 283 Philadelphia children, there are fewer allele counts across all 24 SNPs—

in fact, some of the FDA24 PRS SNPs are completely missing. This issue does not arise 

for the 2,486 eMERGE adults. Notably, if we do not filter based on race and analyze the 

full cohort of 3,098 extremely obese and non-obese adults from eMERGE, decile differences 

and correlations are even more significant (Table S6). We conducted a number of other 

tests on these two validation cohorts (e.g., contrasting underweight and obese individuals), 

which further demonstrated the presence of a predictive signal in our scores (see Table S6). 

BMI groups were determined using sex-specific, BMI-for-age percentiles as described by 

the Centers for Disease Control and Prevention.

5.3. Other Polygenic Risk Scores

While our FDA5 PRS based on children’s weight gain trajectories does validate in 

independent cohorts of older children and adults, PRSs based on adult GWASs do not 

validate in our cohort of children. First, we considered Belsky PRS—a weighted PRS based 

on 29 SNPs identified through adult obesity GWAS as described by Belsky and colleagues 

(Belsky et al., 2012). This PRS was shown to correlate with BMI outcomes from age three 

to 38, so we hypothesized it may also be a good predictor of weight outcomes in very 

early life. However, Belsky PRS is not a significant predictor of our children’s growth 

curves from birth through age three (R2=0.0032, p=0.35, function-on-scalar regression, Fig. 

4g). Furthermore, Belsky PRS is not significantly larger for children with rapid infant 

weight gain compared to those without (one-tailed t-test, p=0.22; Fig. 4h) and does not 

display significant correlations with conditional weight gain (R2=0.0009, p=0.66; Fig. 4i) 

and weight-for-length/height ratio at one (R2=0.0064, p=0.25), two (R2=0.0036, p=0.37), 

and three (R2=0.0009, p=0.71) years of age (Fig. S6).

In addition to Belsky’s PRS, we considered four other previously published PRSs specific 

to childhood obesity—Elks PRS (Elks et al., 2010), den Hoed PRS (den Hoed et al., 

2010), Li PRS (Li et al., 2018), and the recent “life-long” Khera PRS (Khera et al., 2019). 

Similar to the Belsky PRS, the den Hoed, Li, and Khera PRSs were not significantly 

associated with our children’s growth curves (Fig. S7d,g, j), were not significantly different 

between children with vs. without rapid infant weight gain (Fig. S7e,h,k), and did not have 
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a significant correlation with conditional weight gain (Fig. S7f,i,l). The Elks PRS showed 

weak but significant association with our children’s growth curves (R2=0.021, p=0.019; 

Fig. S7a) and correlation with conditional weight gain scores (R2=0.02, p=0.032; Fig. S7c), 

but no significant difference between children with vs. without conditional weight gain 

(two-tailed t-test, p=0.20; Fig. S7b).

5.4. Contributions of environmental, behavioral, and clinical covariates

In addition to genetics, children’s weight gain patterns can be affected by a variety of 

environmental and behavioral factors. To evaluate their potential effects on our results, we 

considered a regression of conditional weight gain (Taveras et al., 2009) on FDA24 PRS 

plus 11 potential confounding covariates, namely: maternal pre-pregnancy BMI, paternal 

BMI, child’s birthweight, maternal gestational weight gain, maternal gestational diabetes, 

maternal smoking during pregnancy, mode of delivery, the child’s sex, mother-reported 

child’s appetite score, INSIGHT intervention group, and family socioeconomic status (Table 

1).

We applied best subset selection (Hastie, Tibshirani and Friedman, 2009) to the regression 

of conditional weight gain scores (Savage et al., 2016) on these potentially confounding 

covariates via the leaps package in R (Lumley and Lumley, 2013). The size of the best 

subset was tuned using the Bayesian Information Criterion (BIC). We included (separately) 

Belsky PRS, FDA24 PRS, or FDA5 PRS as a 12th predictor in the selection procedure. 

Only the FDA24 PRS (p=8.5 × 10−8) and appetite score (p=2.4 × 10−3) were identified 

as significant predictors. A regression comprising these two features had an R2 of 0.22 

(Table S7), only six percentage points higher than the one obtained with FDA24 PRS alone 

(R2=0.16). Very similar results were obtained using FDA5 PRS in place of FDA24 PRS 

(see Table S7). However, and not unexpectedly given its lack of association with children’s 

growth patterns, when we reran the analysis using the Belsky PRS in place of the FDA24 

PRS, we did not identify it as a significant predictor. Best subset selection for the regression 

of conditional weight gain on the Belsky PRS plus the 11 environmental and behavioral 

covariates retained only appetite score as a positive and significant predictor (p=5.53 × 

10−5); all other predictors, including the Belsky PRS itself, were eliminated.

Obviously a high polygenic risk score does not deterministically imply that an individual 

will develop a particular disease, and our study does not establish causal links between any 

particular SNP and childhood obesity. However, one can assess whether an intervention on 

individuals with a high PRS can be successful in mitigating disease progression. Due to the 

nature of our cohort (collected for a randomized, early-life intervention clinical trial for the 

prevention of obesity (Paul et al., 2014)), this question can be answered in a retrospective 

manner. We found that, among children with an above-average FDA24 PRS, those who were 

part of the intervention group (N = 115) had a significantly lower conditional weight gain 

than those who were part of the control group (N = 111) (two-sided t-test, p-value = 0.036). 

This suggests that a screen based on the FDA24 PRS could potentially be used in future 

studies proposing intervention to identify individuals for whom it would be most beneficial.
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6. Discussion

Genetics of childhood and adult obesity

In this study, we used FDA techniques to construct a novel polygenic risk score (FDA24 

PRS) which includes 24 SNPs selected based on children’s longitudinal weight gain 

patterns. Among our study participants, this score explains approximately 52% of the in-
sample variability in growth curves from birth to the age of three years, and approximately 

16% of the in-sample variability in conditional weight gain. We also assessed the stability of 

our SNP selection and constructed a second score (FDA5 PRS) using the 5 most stable SNPs 

among the 24. This restricted score explained approximately 21% and 4% of the in-sample 

variability in growth curves and conditional weight gain, respectively.

As with all genetic studies, our in-sample figures for explained variability are inflated and 

do not reflect predictive performance at large. When we assess predictive performance 

through our proposed sub-sampling scheme and external validation datasets, the predictive 

performance decreases substantially – by as much as an order of magnitude. However, these 

values are still comparable to other GWAS regarding complex phenotypes, given that signals 

in these problem settings are expected to be weak. We were in fact able to validate our 

FDA5 PRS and FDA24 PRS in two independent datasets comprising older children and 

adult individuals, but our results should still be considered preliminary. Replication in a 

large, prospective infant cohort would be of great benefit to show the generalizability of our 

risk scores as clinical markers for childhood obesity.

Interestingly, while our risk scores did validate on older individuals, none of the published 

PRSs based on adult BMI SNPs showed a significant association with growth curves and 

conditional weight gain measurements in our children cohort— with the exception of the 

Elks PRS (Elks et al., 2010), which did show a weak but detectable association signal. 

Notably, Elks PRS was based on SNPs identified in adult BMI GWAS but sub-selected 

specifically for their association with weight in children, which may explain its improved 

performance over other adult PRSs. Previous studies also supported only a weak relationship 

between PRSs based on adult BMI SNPs and childhood weight gain status (den Hoed 

et al., 2010, Elks et al., 2010, Belsky et al., 2012, Li et al., 2018)—and pointed out 

that the relationship became weaker the younger the age of the children (Llewellyn, 

Trzaskowski, Plomin and Wardle, 2014, den Hoed et al., 2010, Belsky et al., 2012). In 

fact, Belsky and colleagues (Belsky et al., 2012) found no relationship between their PRS 

and BMI at birth and a very weak relationship at three years of age. Similarly, Khera and 

colleagues (Khera et al., 2019) documented relatively weak (albeit significant) associations 

between their PRS and birth weight and stronger, more significant associations at age 

eight. These PRSs based on adult SNPs are consistent in that they show increasing effects 

on obesity-related phenotypes as individuals age, but almost no effect on the very young 

children comprising our cohort. In contrast, our FDA PRSs based on childhood SNPs 

show a significant association with obesity-related phenotypes later in life. Even though, 

based on the validation datasets at our disposal, the association appears to weaken with 

increasing age, SNPs affecting weight gain in early childhood (i.e. those included in our 

scores) do retain some predictive power. This is consistent with the notion that early life 
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weight gain, and hence its genetic underpinning, predispose to obesity across the lifecourse 

(Cunningham, Kramer and Narayan, 2014).

The 24 SNPs identified by our study do not appear in prior PRSs for either childhood or 

adult obesity, except for the genome-wide Khera PRS, which contains 13 of our SNPs (as 

part of their set of 2,046,991 SNPs). However, all 24 are located in, or in the vicinity of, 

genes linked to obesity-related or metabolic disorder phenotypes in previous GWAS studies 

(Table 2). As with all GWAS, it is important to note that some of the identified SNPs may 

not be truly “causal”, but may be in linkage disequilibrium with causal SNPs—and the genes 

in the immediate vicinity of such SNPs may not be those through which the phenotype is 

influenced (e.g., rs72679478 located upstream of the leptin receptor gene). Additionally we 

showed that there were performance differences between the FDA24 PRS (with 24 SNPs) 

and FDA5 PRS (with only the five most stable SNPs from FDA24 PRS). Comparing the 

two, the FDA24 PRS was more effective on the growth curves and conditional weight gain 

score within our study sample as well as the adult validation cohort. However, FDA5 PRS 

successfully validated on both child and adult cohorts in spite of the smaller sample size (N= 

283 for children vs 2486 for adults).

An important advantage of using a score comprising a small number of SNPs, such as ours, 

is that it is much more practical to compute on individuals belonging to other studies (for 

comparison purposes) as well as in clinical settings (for screening and potential intervention 

purposes). If some, potentially several, of the SNPs included in a PRS are not available for 

an individual, one must choose to either omit them from the calculation or identify and use 

proxies in their place. The larger the number of SNPs included in a score, the more SNPs 

may need to be omitted or proxied, reducing the fidelity of the calculation (Chagnon et al., 

2018) and the usefulness of the score for prediction. For instance, even having as many 

as 12.5 million imputed SNPs for our study cohort, we were only able to build the Khera 

PRS with 37% of the 2 million SNPs included in that score. In principle, this could be one 

explanation as to why this score did not validate in our dataset.

The power of FDA-based GWAS

Our results demonstrate a key advantage of GWAS employing longitudinal information 

and FDA techniques over traditional GWAS. We faced an ultra-high dimensional problem—

with many more predictors (i.e. SNPs) than observations (i.e. individuals). By integrating 

FDA techniques into every step of the analysis, from the screening and selection of 

SNPs through the construction of the PRS, we were able to utilize a more dynamic and 

information-rich phenotype than the ones used in traditional cross-sectional analyses. In 

turn, this allowed us to unveil subtler, more complex effects with a limited sample size. We 

illustrated this with simulations built upon our actual data—to guarantee realistic settings. 

Using longitudinal data and FDA techniques, a sample size around 200 can be as effective 

as a cross-sectional study with more than four or five times as many individuals. This 

potentially expands the scope of GWAS to studies that do not comprise tens of thousands 

of individuals—but instead hundreds of deeply characterized participants (Reimherr and 

Nicolae, 2014). With FDA we exploit a series of observations collected longitudinally 

for each individual, with benefits that include a better understanding of within-subject 
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variability, an estimation of time-varying effects in the form of smooth curves (which 

reduces noise in the phenotype measurements), and a substantial gain in power. This can 

be very useful for investigating populations that are difficult to sample—of course with the 

drawback that collecting longitudinal data requires low participant dropout and may induce 

other costs or complications. Even so, this approach can provide an effective alternative to 

traditional GWAS, in light of the costs and benefits of collecting a single measurement on 

hundreds of thousands of individuals versus longitudinal measurements on a fraction of the 

subjects.

Other contributing factors and perspectives

Behavioral and environmental factors are important variables to consider when investigating 

the etiology of complex diseases. In our study we considered 11 such factors that could 

influence child weight gain trajectories and found that, while the FDA24 PRS is by far 

the dominant predictor, an appetite score computed on our cohort (see Section 1.1) has a 

significant effect. It has been shown that a child’s appetite behavior impacts early weight 

gain and may have a strong genetic basis (Llewellyn and Fildes, 2017, Wardle et al., 2008). 

In agreement with this, a recent study found a positive relationship between a childhood 

obesity PRS and appetite (Llewellyn et al., 2014). In our study, a child’s appetite behavior 

was reported by their mother—which could have introduced some biases. Because appetite 

is emerging as an interesting predictor of child weight gain status, it should be explored in 

more detail in future studies.

In addition to the type of environmental and behavioral factors considered in our study, other 

factors may interact with genetics in shaping obesity risks. These include the microbiome, 

the metabolome, and the epigenome. We found previously that children’s oral microbiota 

composition is associated with growth curves (Craig et al., 2018) and that metabolites such 

as butyrate are linked to child weight outcomes (Nandy et al., 2021). Moreover, we are 

collecting data on the epigenomes of the children in our study cohort. Our overarching 

goal is to develop a multi-omic model to comprehensively understand the development of 

childhood obesity and identify a combination of risk factors that can be used for accurate 

identification of children who would benefit most from early life intervention programs.

Our FDA-based polygenic risk score was computed considering the longitudinal change in 

weight-for-length/height ratio from birth through three years of age. An ongoing follow-up 

of our study participants, with weight and height collected at later time points, will allow us 

to further evaluate the predictive power of the FDA24 PRS as age progresses. Additionally, 

we note that our cohort (Table 1), as well as the cohorts of older children and adults 

used for validation, consisted predominantly of individuals of European ancestry. It will 

be important to conduct similar analyses on individuals of non-European ancestries, and 

identify differences and commonalities in the genetic factors contributing to obesity risks 

among different ethnicities.

The critical advantage of a PRS based on childhood vs. adult weight gain information is 

that the former is potentially more actionable. While INSIGHT (Paul et al., 2014) was 

not designed to test an obesity intervention on individuals with high genetic risk, we were 

able to observe a significant weight gain pattern difference between individuals with high 
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genetic risk in the INSIGHT intervention vs. control groups. To fully understand the clinical 

implications of using a PRS as a screening tool for obesity intervention additional clinical 

trials are needed that would combine genetic screening with early life intervention.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Growth curves. Growth curves from birth to three years for 210 children enrolled in the 

INSIGHT study are shown (a) color-coded by participant’s ID, and (b) color-coded based on 

a gradient corresponding to our FDA-based Polygenic Risk Score composed of 24 SNPs (i.e. 

FDA24 PRS). The dashed black line is the mean curve.
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Fig. 2. 
Average F-scores and median screening ranks across sample sizes (simulated data). Average 

F-scores and standard error bounds (note the bounds are tight) as a function of sample 

size, from 100 replications of a simulation procedure with (a) 100 and (b) 1000 potential 

features, of which only 5 affect the outcome. Median screening rank of the 5 “true” features 

(out of 10000) and standard MAD error bounds (on the logarithmic scale) as a function 

of sample size are based on (c) function-on-scalar and (d) scalar regression models. In 

this simulation exercise, synthetic growth curves, as well as cross-sectional responses, are 

regressed on artificial features representing SNPs. Dashed black horizontal lines correspond 

to the average F-score obtained at a sample size of 200 (similar to that of the INSIGHT 

cohort) in (a)-(b), and denote the 1300th rank in (c)-(d) (1300/10000 is proportional to the 

threshold of 10000/79498 used in our main analysis).
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Fig. 3. 
Significance curves from simulations across sample sizes. Average significance (−log(p-

value)) and standard error bands as a function of the sample size, from 100 replications of 

a simulation procedure. Synthetic growth curves, as well as cross-sectional responses with 

varying levels or noise, are regressed on an artificial feature representing a polygenic risk 

score. The dashed black horizontal line corresponds to a p-value of 7 × 10−9, which is the 

one obtained using growth curves and a sample size of 200 (similar to that of our study).
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Fig. 4. 
Polygenic risk scores (PRSs) and children’s growth patterns. Estimated effect coefficient 

for a PRS as a predictor of children’s growth curves in a function-on-scalar regression for 

(a) FDA24 PRS, (d) FDA5 PRS, and (g) Belsky PRS. Boxplots comparing a PRS between 

children with vs. without rapid infant weight gain (RIWG vs. no-RIWG) for (b) FDA24 

PRS, (e) FDA5 PRS, and (h) Belsky PRS. Scatterplot of conditional weight gain vs. a PRS 

using (c) FDA24 PRS, (f) FDA5 PRS, and (i) Belsky PRS.
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Fig. 5. 
Statistical validation of FDA-based SNP selection. The frequency with which the 24 SNPs 

included in the FDA24 PRS are re-selected in a 20-fold sub-sampling scheme is plotted 

against their absolute statistical weight in the FDA24 PRS—showing a strong positive 

association. The SNPs with both the largest weights and the highest re-selection frequency 

(top five SNPs marked by arrows) may be the most important to interpret and validate in 

future studies.
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Fig. 6. FDA-based Polygenic Risk Score and obesity in adolescent and adults validation cohorts.
(a) Distributions of FDA5 PRS in adolescents (age 8 and 9 years) from The Philadelphia 

Neurodevelopment Cohort by BMI decile (N=28 per decile). (b) Distributions of FDA5 

PRS in adults (over 18 years of age) either classified as normal or extremely obese in the 

eMERGE study by BMI decile (N=284 per decile).
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Table 1

Description of the study participants

Rapid infant weight gain
(N=104)

Non-rapid infant weight gain
(N=122)

Children (N=226)

Sex: # males/ # females 53/51 67/55

Birth weight (g): mean(S.D.) 3486 (449) 3420 (412)

Delivery Mode: Vaginal (%) 36 (35) 33 (27)

Weight-for-Length (kg/m) at 1 year: mean (S.D.) 13.67 (0.98) 12.23 (0.93)

Weight-for-Height (kg/m) at 2 years: mean (S.D.)
15.13 (1.18)

1 13.79 (1.21)

Weight-for-Height (kg/m) at 3 years: mean (S.D.)
16.06 (1.29)

2
14.70 (1.14)

3

Appetite score: mean (S.D.)
4.011 (0.92)

4
3.38 (1.00)

5

Mothers (N=226)

Pre-pregnancy BMI: mean (S.D.) 25.90 (5.75) 25.14 (4.97)

Gestational weight gain status: did not gain enough/met 
guidelines/gained excess

16/29/59 25/43/54

Gestational diabetes: had gestational diabetes (%) 6 (5.8) 7 (5.7)

Smoked during pregnancy: smoked (%) 8 (7.7) 5 (4.1)

Fathers (N=209)

BMI: mean (S.D.)
29.53 (6.28)

6
27.72 (4.79)

7

Ethnicity of the children (as reported by their mothers)

Black 6 (5.8) 5 (4.1)

White 94 (90.4) 109 (89.3)

Native Hawaiian or Pacific Islander 1 (0.4) 0 (0)

Asian 2 (0.9) 5 (4.1)

Other 1 (0.4) 3 (1.3)

Annual 
Household 
Income

< $10,000 2 4

$10,000 - $24,999 6 9

$25,000 - $49,999 13 8

$50,000 - $74,999 30 34

$75,000 - $99,999 25 23

$100,000 or more 24 38

1.
Missing 3 measurements

2.
Missing 9 measurements

3.
Missing 7 measurements

4.
Missing 16 measurements

5.
Missing 20 measurements

6.
Missing 9 measurements
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7.
Missing 8 measurements
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Table 3

Average and standard errors of “prediction” R2 values with different choices of the 
number of folds in our sub-sampling scheme.

Average “prediction” R2 values and their standard errors (in parentheses) using the sub-sampling scheme 

proposed in Section 3.3. The number of folds utilized varies (20, 10, and 5 folds). The corresponding numbers 

of samples in training and test sets are given for reference.

No. Folds ntrain ntest R2 (se)

20 200 10 0.049 (0.025)

10 189 21 0.031 (0.013)

5 168 42 0.024 (0.013)
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