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Identifying the ‘inorganic gene’ for
high-temperature piezoelectric perovskites

through statistical learning
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This paper develops a statistical learning approach to identify potentially new high-
temperature ferroelectric piezoelectric perovskite compounds. Unlike most computational
studies on crystal chemistry, where the starting point is some form of electronic structure
calculation, we use a data-driven approach to initiate our search. This is accomplished
by identifying patterns of behaviour between discrete scalar descriptors associated with
crystal and electronic structure and the reported Curie temperature (TC) of known
compounds; extracting design rules that govern critical structure–property relationships;
and discovering in a quantitative fashion the exact role of these materials descriptors. Our
approach applies linear manifold methods for data dimensionality reduction to discover
the dominant descriptors governing structure–property correlations (the ‘genes’) and
Shannon entropy metrics coupled to recursive partitioning methods to quantitatively
assess the specific combination of descriptors that govern the link between crystal
chemistry and TC (their ‘sequencing’). We use this information to develop predictive
models that can suggest new structure/chemistries and/or properties. In this manner,
BiTmO3–PbTiO3 and BiLuO3–PbTiO3 are predicted to have a TC of 730◦C and 705◦C,
respectively. A quantitative structure–property relationship model similar to those used
in biology and drug discovery not only predicts our new chemistries but also validates
published reports.

Keywords: inorganic gene; high-temperature piezoelectrics; statistical learning;
information theory; data-driven modelling

1. Introduction

Through many seminal papers, Alan McKay has expounded on the idea of a
framework for ‘Generalized Crystallography’ (Mackay 1966, 1974, 1977, 1986).
He has proposed that ‘the crystal is a structure, the description of which is much
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smaller than the structure itself’ and that this description of structure serves as
a ‘carrier of information’ about the structure on larger length scales (MacKay
2002). He went on to suggest that these components of description of structure
can help develop a ‘biological approach to inorganic systems’ and proposed
the construction of an ‘inorganic gene’. This paradigm serves as motivation
underlying the present study by exploring how fundamental pieces of information,
treated as discrete bits of data, can collectively characterize the stability and
properties of a given crystal chemistry. We show how the use of statistical learning
tools including fundamental concepts borrowed from information theory can be
used to characterize a crystal structure in terms of fundamental descriptors
of information (i.e. the ‘genes’) and how these pieces of information interact
or are ‘sequenced’ to guide the characteristics of that crystal structure and
in fact help to guide the development of new crystal chemistries and targeted
physical properties.

The challenge in defining the ‘gene’ in inorganic crystal chemistry is to
characterize the appropriate combination of discrete characteristics associated
with crystal chemistry that collectively define a particular property or set of
properties of the material. Normally, structure–property relationships are guided
by defined functional relationships (e.g. electronic structure calculations to define
energy landscapes associated with crystal chemistry). However, we propose an
approach to establish such a structure–property relationship where we do not
assume any specific formulation linking structure with property (Jóhannesson
et al. 2002; Curtarolo et al. 2003; Woodley et al. 2004; Dudiy & Zunger 2006;
Fischer et al. 2006; Sluiter 2007; Mohn & Kob 2009; Oganov & Valle 2009).
Rather, we take a data-driven approach where we seek to establish structure–
property relationships by identifying patterns of behaviour between known
discrete scalar descriptors associated with crystal and electronic structure and
observed properties of the material. From this, we extract design rules that allow
us to systematically identify critical structure–property relationships, resulting
in identifying in a quantitative fashion the exact role of specific combination
of materials descriptors (i.e. genes) that govern a given property. This is the
foundation of the concept of the quantitative structure–activity (or property)
relationship (QSAR/QSPR) widely used in the field of organic chemistry and
drug discovery. The mathematical underpinning of developing a QSPR-type
relationship is statistical learning (a term encompassing a broad range of tools
derived from statistics, data mining and machine learning). In our group, we
have applied this approach to explore a variety of questions associated with
crystal chemistry (Suh & Rajan 2005, 2009; Gadzuric et al. 2006; Rajagopalan &
Rajan 2007; George et al. 2009; Broderick et al. 2010; Rajan 2010, Zenasni
et al. 2010), and in this paper, we demonstrate that by using the QSPR
concept, we can identify through the tools of statistical inference, how discrete
bits of information that define a robust QSPR relationship can be sequenced
to help identify new materials with new and targeted properties. The specific
objective of the present study is identifying, through the sole use of statistical
learning methods, new high-temperature piezoelectric ferroelectrics. However,
this paper also serves as a generic template for an information science-based
materials discovery and design strategy, in the spirit of Mackay’s proposition of
an inorganic gene.
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2. Background

(a) Materials chemistry of high-temperature piezoelectrics

Historically, the design of materials chemistry for high-temperature piezoelectric
behaviour has been guided by an apparent linear relationship between
Goldschmidt’s tolerance factor (t) and Curie temperature (TC) at the
morphotropic phase boundary (MPB) composition of the PbTiO3 (PT)-based
end-member solid solutions (Eitel et al. 2001; Duan et al. 2004). However, the
use of the tolerance factor as a ‘figure of merit’ has had limited impact in
developing or identifying new materials via experiment (Eitel et al. 2001; Duan
et al. 2004) or computation (Baettig et al. 2005), owing to the fact that it
captures only a very limited set of variables (i.e. ionic radii) describing a given
perovskite crystal chemistry (Thomas 1997). The motivation of our work is to
find alternative computational based methods that can help to refine the chemical
search space and identify potentially new and promising piezoelectric materials
for high-temperature applications.

The chemical search space of known and predicted perovskite-based
ferroelectric compounds in BiMeO3–PbTiO3 solid solution is mapped in figure 1,
where Me is a single cation with charge 3+ or a combination of two different
cations (Me1/2Me1/2, Me2/3Me1/3 and Me3/4Me1/4) with an average charge 3+,
occupying the octahedral site of the perovskite lattice (Eitel et al. 2001;
Grinberg et al. 2005; Suchomel & Davies 2005; Stein et al. 2006; Grinberg &
Rappe 2007). The solid solutions were classified based on the chemical origin
of ferroelectric instability caused by Me cations. The distinction between
strong (filled red circles) and weak (filled green squares) ferroelectric activity
was made based on the degree of off-centring tendency of Me cations in
MeO6 octahedra. Clearly, the search space is sparse in the high-temperature
region, and our goal is to explore the vast combinatorial search space and
identify new high-temperature piezoelectric chemistries. In this work, we
have focused primarily on identifying a new Me3+ cation that satisfies the
following conditions:

— it must show weak ferroelectric activity;
— BiMeO3 must have a stable perovskite structure at ambient or non-ambient

(high-pressure/-temperature) conditions; and
— the resulting BiMeO3–PbTiO3 solid solution should have a high TC.

We explore a data-driven methodology that involves applying statistical
learning tools to analyse correlations between numerous scalar descriptors of
electronic and crystal structure parameters of known perovskite piezoelectric
compounds and using that information in turn to develop predictive models that
can suggest new structure/chemistries and/or properties based purely on the
formalism of statistical learning methods. This methodology is quite different
from the approach that is widely reported by many groups where large numbers
of high-throughput electronic structure computations are conducted to seek
compound chemistries with energy minima (where data mining-related techniques
are embedded in the computation to help the efficiency of the calculations);
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Figure 1. In this figure, we map the Curie temperature (TC) of known and predicted perovskite-
based ferroelectric compounds in the chemical space of BiMeO3–PbTiO3 solid solution, where
Me is a single cation with charge 3+ (e.g. Al, Sc, In, etc.) or a combination of two different
cations Me1/2Me1/2 (e.g. ZnTi, ZnZr, ZnSn, etc.), Me2/3Me1/3 (e.g. ZnNb, MgNb) and Me3/4Me1/4
(e.g. ZnW, MgW, ScGa) with an average charge 3+ and that occupies the octahedral site of the
perovskite lattice (Eitel et al. 2001; Grinberg et al. 2005; Suchomel & Davies 2005; Stein et al.
2006; Grinberg & Rappe 2007). The target design space represents the high-temperature regime
that is of interest to us, and, as it can be clearly seen, the chemical search space is sparse in
this region with as many as only three compounds being identified. For reference, TC of PbZrO3–
PbTiO3 solid solution is also indicated in this figure. Our objective is to systematically explore
the complex chemical search space and identify potentially new piezoelectric materials that have
high TC. In this article, we report our computational work, where we have focused particularly
on identifying a suitable Me3+ cation (which is weakly ferroelectrically active and occupies the
octahedral site of the perovskite lattice) that can significantly enhance the TC of BiMeO3–PbTiO3
solid solution. The distinction between strong and weak ferroelectric activity was made based on
the degree of off-centring tendency of Me cations in MeO6 octahedra. Filled circles, Me cations
that show strong ferroelectric activity; filled squares, Me cations that show weak ferroelectric
activity; filled triangles, Me cations that show strong and weak ferroelectric activity. (Online version
in colour.)

and then potentially new stable compounds are identified by identifying those
that have energy minima but not reported in known experimental databases
(Jóhannesson et al. 2002; Curtarolo et al. 2003; Woodley et al. 2004; Dudiy &
Zunger 2006; Fischer et al. 2006; Sluiter 2007; Mohn & Kob 2009; Oganov &
Valle 2009).

Our approach requires the need to carefully establish a dataset of descriptors
on which we directly apply statistical learning tools. The number of parameters
needed to predict even relatively simple structures can be large if one
has to capture both geometrical and bonding characteristics of that crystal
chemistry. One of the arguments we are trying to put forward in this paper
is that although the potential number of variables can in fact be large, data
dimensionality reduction and information theoretic techniques can help reduce
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Figure 2. (a) A network of corner-sharing BO6 octahedra with a large A-site cation occupying
the interstitial position is shown. (b) The simplified unit-cell representation of cubic perovskite
without showing coordination. (c) The geometry of the building units, AO12 cuboctahedra and
BO6 octahedra, with 12-coordinated A-site and 6-coordinated B-site, respectively. The description
of the crystal structure in the form of structural building units presents a number of diverse choices
to develop new descriptors based on the site chemistry and coordination. (Online version in colour.)

it to a manageable number. This paper describes a data mining strategy from
which effective classification and predictive models can be developed using
high-dimensional information.

(b) Defining the chemical search space

The search for new high-temperature piezoelectric materials by chemical
modification of PbTiO3 perovskite at both Pb and Ti sites has been an area
of considerable interest in the last decade (Sághi-Szabó et al. 1998; Eitel
et al. 2001). While there are many crystal structures that may be suitable
for high-temperature piezoelectric application, such as perovskites, langasites
(Damjanovic 1998) and perovskite-like layered structures (Yan et al. 2009), we
are interested in perovskites because they have the best combination of high
temperature and piezoelectric properties compared with other structures, and
many perovskites are also ferroelectrics, which can be used as piezoelectric
materials when poled (Cohen 2008; Rödel et al. 2009). The crystal structure
of an ideal perovskite crystal is shown in figure 2. Following the discovery of the
crucial role of Bi in enhancing the ferroelectric properties in PbTiO3 (Íñiguez
et al. 2003), numerous experimental and theoretical studies focusing on BiMeO3–
PbTiO3 solid solutions were carried out (where Me represents a single cation
with charge 3+ or a combination of cations with an average charge 3+) with the
further objective of identifying a potential Me cation that can maximize both
Curie temperature and ferroelectric properties of the solid solution (Suchomel &
Davies 2004, 2005; Grinberg et al. 2005; Stein et al. 2006; Stringer et al. 2006;
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Chen et al. 2007, 2009; Grinberg & Rappe 2007). The key findings from the earlier
studies are summarized below:

— Enhancement of ferroelectric properties and Curie temperature owing to
the presence of strongly ferroelectrically active Me cations (e.g. Ti4+,
Zn2+, Fe3+, etc.). These strongly ferroelectrically active Me cations cause
hybridization of Me–O bonds in MeO6 octahedra, leading to distortions
resulting in significant ionic displacement from the ideal position (Cohen
1992, 2008; Rödel et al. 2009). The ionic displacements were responsible
for enhanced polarization and ferroelectric properties. Some examples of
compounds with strongly ferroelectrically active Me cations are BiFeO3–
PbTiO3 and Bi(ZnTi)O3–PbTiO3.

— On the other hand, it was found that the presence of weakly
ferroelectrically active Me cations (e.g. Sc3+, Mg2+ and Yb3+) can
also enhance the high-temperature ferroelectric properties. In this case,
the Me cations do not lead to hybridization of Me–O bonds, whereas
the steric effect causes the Pb/Bi cation to avoid the larger Me/Ti
cation owing to the larger wave-function overlap (therefore stronger
Pauli repulsion) and move towards the smaller cation. The stronger
repulsion leads to increased Pb/Bi cation displacement, which in turn
results in enhanced ferroelectric behaviour (Grinberg et al. 2005). Some
examples of compounds with weakly ferroelectrically active Me cations
are BiScO3–PbTiO3 and BiYbO3–PbTiO3.

Our chemical search space is defined in electronic supplementary material,
figure S1, and we have focused particularly on identifying a suitable BiMeO3
perovskite end member, where Me is a single cation that is weakly ferroelectrically
active with a formal charge 3+ and that can form a solid solution with PbTiO3
at ambient conditions.

3. Statistical learning computational strategy

(a) Introduction to tolerance factor–TC model

Eitel et al. (2001) first discovered the existence of an apparent linear
relationship between tolerance factor of ABO3 end-member compositions and
Curie temperature at MPB for a large number of ABO3–PbTiO3 solid solutions,
although there was some significant scatter (figure 3). Grinberg et al. (2005)
later addressed this scatter by identifying that the data fall into two clusters,
and they showed that both clusters exhibited a linear dependence of Curie
temperature on the end-member tolerance factor but had different slopes. The
physical reasons behind the two slopes were correlated to the differences in
the ferroelectric activity of various B-site cations of the ABO3 end-member
compositions. While both models can be applied to quantitatively predict the TC,
neither predicts the perovskite phase stability of the ABO3–PbTiO3 solid solution.
This is a major shortcoming because only those ABO3–PbTiO3 solid solutions
that form a pure perovskite phase at ambient conditions are technologically useful
(Grinberg et al. 2005).
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Figure 3. The univariate tolerance factor–TC model of Eitel et al. (2001) is shown here. The
shortcomings of the univariate tolerance factor–TC model are clearly noticeable as the data show
significant scatter owing to the presence of two clusters of compounds with different physics. This
indicates that the tolerance factor is only a necessary condition and not sufficient for modelling TC.
We have addressed the shortcomings of the tolerance factor–TC model by developing a multivariate
model that considers six key crystal chemical descriptors instead of only the tolerance factor.
Notation for chemical compounds and parameters are described in the electronic supplementary
material. (Online version in colour.)

We have collectively addressed the above-mentioned shortcomings of the
tolerance factor–TC model in a couple of ways. Firstly, by considering additional
crystal chemical descriptors, a reasonably accurate multivariate model was
developed (described in §4b) using linear manifold methods for quantitatively
predicting the TC at MPB of ABO3–PbTiO3 solid solutions. To reduce the scatter,
instead of including all ferroelectric ABO3–PbTiO3 chemistries that contain both
strongly and weakly ferroelectrically active cations, we have typically considered
end members that belong to Pb(B1B2)O3 and BiMeO3 perovskites, where B1,
B2 and Me are cations that occupy the octahedral site of the perovskite lattice
and Me cation is weakly ferroelectrically active. By clearly defining our chemical
search space in this manner, we focus on the relevant physics that best describes
our objective.

Secondly, in order to determine the perovskite phase stability of the ABO3–
PbTiO3 solid solution, we have developed an independent classification model
based on information theory concepts (e.g. Shannon entropy) that tracks which
combination of parameters influences the perovskite structural stability by
partitioning a high-dimensional dataset. As noted by Karnani et al. (2009),
natural data structures, such as genomes, books, file systems and data servers, are
repositories of information that share common characteristics. Also, they display
skewed distributions and hierarchical organization, which certainly applies to
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crystallographic data. The physical representation of information allows us to
understand that these ubiquitous characteristics are consequences of the second
law. Thus, by combining the linear manifold methods with the information theory
concepts, we can identify new high-temperature piezoelectric materials.

(b) Informatics-based computational strategy

Our computational logic for designing new high-temperature piezoelectric
chemistries is summarized in the form of a flow chart in the electronic
supplementary material, figure S2. The logic involves three steps. (i) Identification
of a relevant descriptor set that fully describes the high-temperature behaviour
of ABO3 perovskites. Thirty attributes were screened using principal component
analysis (PCA) and a reduced set of six key attributes was identified that showed
high correlation with the transition temperature. (ii) Development of a robust
multivariate model using partial least squares (PLS) that predicts TC at MPB
of ABO3–PbTiO3 solid solutions. By applying the PLS model, new candidate
chemistries were identified that are suitable for high-temperature applications.
(iii) Screening for the piezoelectric behaviour in the new candidate chemistries
by testing the perovskite structural stability of ABO3 end members. For this
purpose, new classification models were developed using a recursive partitioning
strategy. The outcome of this analysis is important for determining whether it is
possible to synthesize a pure perovskite phase in the ABO3–PbTiO3 solid solution.
Only those ABO3 end members that were classified to have a stable perovskite
structure-type by recursive partitioning were chosen and identified as potential
high-temperature piezoelectric materials. The mathematics of PCA, PLS and
recursive partitioning in the context of our specific datasets is summarized in the
electronic supplementary material.

Before elaborating on the data mining methods, we need to address the
obvious concern that at first glance the statistical learning methods do not in
themselves explicitly solve the energy minimization problem that the physics-
based calculations do. However, this concern is addressed collectively in a couple
of ways. The first is that we are searching for a high-dimensional correlation
between attributes of compounds that already exist and hence are by definition
stable. In fact, a corollary to this point is that mathematically we are using
convex optimization methods that help to ensure we have a global minimum
(Izenman 2008). Second, we test the validity of our models with respect to the
target materials properties (i.e. Curie temperature in this case) by using well-
established and robust methods for being able to reproduce the known data, to
give us the statistical confidence of the models we develop.

4. Results and discussion

(a) Identifying the relevant descriptor set: the inorganic genes

As noted above, the tolerance factor as the sole figure of merit to design new
high-temperature piezoelectric perovskite compounds appears to be insufficient.
To look beyond the tolerance factor to predict new high-temperature piezoelectric
materials, we have surveyed over 30 different attributes (table 1) associated with
crystal geometry, bonding, thermodynamics and electronic structure of 22 simple
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Table 1. Enumeration of 30 descriptors used in the principal component analysis (PCA) for
identifying the relevant inorganic gene is given in this table. The underlying rationale behind
choosing these different attributes associated with crystal geometry, bonding, thermodynamics
and electronic structure was to fully describe the crystal chemistry of perovskite-based compounds
that is relevant for modelling the ferroelectric behaviour, and the search was motivated by the past
experimental and theoretical work of Abrahams et al. (1968), Igarashi et al. (1987), Singh et al.
(1988), Ravez et al. (1997), Goudochnikov & Bell (2007) and Grinberg & Rappe (2007).

abbreviation description

rA(Å) Shannon’s (1976) ionic radii of A-site (12-coordination)
rB(Å) Shannon’s ionic radii of B-site (6-coordination)
t tolerance factor calculated using ionic radii
dA–O(Å) ideal A–O bond distance (Brese & O’Keeffe 1991)
dB–O(Å) ideal B–O bond distance
tBV tolerance factor calculated using dA–O and dB–O
AEA(kJ mol−1) A-site electron affinity (Hotop & Lineberger 1985)
AEFF–S A-site effective nuclear charge—Slater scale (Slater 1930)
AEFF–C A-site effective nuclear charge—Clementi scale (Clementi & Raimondi 1963)
AEFF–F A-site effective nuclear charge—Froese-Fisher scale (Froese-Fischer 1972)
BEFF–S B-site effective nuclear charge—Slater scale
BEFF–C B-site effective nuclear charge—Clementi scale
BEFF–F B-site effective nuclear charge—Froese-Fisher scale
AWS(Å) A-site Wigner–Seitz cell radius (Skriver 2004)
BWS(Å) B-site Wigner–Seitz cell radius
AEN–P A-site electronegativity—Pauling scale (Pauling 1960)
AEN–AR A-site electronegativity—Allred–Rochow scale (Allred & Rochow 1958)
AEN(eV) A-site electronegativity—absolute scale (Pearson 1988)
BEN–P B-site electronegativity—Pauling scale
BEN–AR B-site electronegativity—Allred–Rochow scale
BEN(eV) B-site electronegativity—absolute scale
DA(Å) ionic displacement (Grinberg & Rappe 2007) of A-site
DB(Å) ionic displacement of B-site
DHf

AO(J mol−1) enthalpy of formation (Saxena 1993) of A oxide

DHf
BO(J mol−1) enthalpy of formation of B oxide

DHf
ABO3(J mol−1) enthalpy of formation of ABO3

a(Å) lattice constant (Matsui & Nomura 1981)
b(Å) lattice constant
c(Å) lattice constant
V /Z (Å3) volume of unit cell/coordination number
Tt(K) transition temperature

ABO3 perovskite chemistries with known transition temperatures (Shannon 1976;
Matsui & Nomura 1981; Saxena 1993; Emsley 1998; Brown 2002; Suh & Rajan
2005; Goudochnikov & Bell 2007; Grinberg & Rappe 2007; Makov et al. 2009;
Pettersson et al. 2009; Rajan 2010). The transition temperature of an ABO3
compound is defined as the temperature when the crystal structure of ABO3
changes from low symmetry to the highest possible symmetry. While not all of
the ABO3 compounds assessed are ferroelectric, the objective of this work is
unaffected, since the final goal is to suggest new perovskite-based end members
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Figure 4. Loadings plot between PC1 and PC2 showing the interactions of 30 descriptors captured
by PCA. Based on the angle q, the degree of correlation between the target variable and other
attributes is established. Two zones are marked in the figure that show a strong correlation with the
target variable (Tt): the red zone (with stripes) signifies attributes that show positive correlation
with Tt and the green zone (no stripes) signifies variables that show negative correlation with Tt.
The abbreviations of the attributes are provided in table 1. (Online version in colour.)

forming solid solutions with PT. Alloying an ABO3 perovskite compound with
PbTiO3 has the potential to lead to a high piezoelectric characteristic in the
resulting ABO3–PbTiO3 ceramic (Grinberg & Rappe 2004).

To identify the complex relationships between physical properties and
crystal chemistry and geometry from the existing knowledge base, PCA is
employed (Ericksson et al. 2001; Rajan 2005; Ringnér 2008). The input X =
{x1, x2, x3, . . . , xn} ∈ Ren×d (where n = 22 and d = 30 denote the number of
ABO3 compounds and the number of physical attributes quantifying each
ABO3 compound, respectively) is initially preprocessed by mean-centring and
standardization. PCA reduces the dimensionality of the data by identifying new
latent variables (called principal components, PCs) that capture the largest
amount of variation in the data. Each PC is a linear combination of the weighted
contribution of each attribute. By comparing the magnitude and direction of
the weighted contribution from each attribute, the correlation structure in the
high-dimensional data is discovered).

Figure 4 (referred to as a loading plot) shows the uncovered correlations
between the physical attributes for the first two PCs. The transition temperature
(Tt) is the target variable against which all correlations are computed. As we are
using linear manifold methods, we have employed Euclidean geometrical mapping
to help interpret these plots. The degree of correlation between any attribute and
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Tt is determined by the cosine of the angle (q) between the attribute and Tt (angle
between attribute origin–Tt) within the loading plot. If q = 0◦, the attribute and
Tt are highly positively correlated, if q = 180◦, then they are highly negatively
correlated and if q = 90◦, there is no correlation between the attribute and Tt. In
figure 4, two zones that show the strongest correlation of the attributes with Tt
are explicitly marked, with the assumption that the first two PCs capture such a
high percentage of the data’s information that the other PCs do not need to be
explicitly considered. The attributes rB (ionic radii of B-site), dB–O (ideal B–O
bond distance based on the bond-valence model), DHfBO (enthalpy of formation
of BO oxide) and b (lattice constant) correlate positively with Tt, while rA (ionic
radii of A-site), dA–O (ideal A–O bond distance based on the bond-valence model),
t (tolerance factor calculated using ionic radii), tBV (tolerance factor calculated
using the bond-valence method), BEN (B-site electronegativity—absolute scale),
BEff (B-site effective nuclear charge) and V /Z (volume of unit cell/coordination
number) correlate negatively with Tt. Our PCA model reproduces the well-
known inverse linear relationship between tolerance factor (t) and Tt. Based
on the removal of redundancy and consideration of available data, we have
determined that six attributes (rA, t, BEN, dA–O, rB and dB–O) are appropriate
for describing Tt. By identifying these attributes, we can more fully describe
the high-temperature behaviour than possible by only considering the tolerance
factor (t), and the selection of only the highly correlated attributes ensures the
robustness of the model.

(b) Identifying new high-temperature perovskites: developing a ‘QSPR’

To test for high-TC piezoelectric materials, we have applied PLS regression
(Ericksson et al. 2001) to predict TC at the MPB of the end-member PbTiO3
solid solution. PLS is particularly suitable for handling sparse data with strongly
correlated attributes. The piezoelectric materials database for predicting TC as
a function of six attributes (rA, t, BEN, dA–O, rB and dB–O) is taken from the
published work of Eitel et al. (2001) and Grinberg et al. (2005). This new QSPR
formulated using PLS is given by

TC = −(789.912 × t) − (153.932 × rA) + (1013.981 × rB) + (796.5864 × dB–O)

− (138.9 × dA–O) − (55.6076 × BEN) − 526.537.

Fifteen compounds were used for training the model and an independent set of
five compounds (not used during the training) was used for testing (figure 5).
Our QSPR model takes into account the physics of mismatch of bond lengths
(t), ionic size (rA and rB), bond lengths (dA–O and dB–O) and chemical bonding
at the B-site (BEN), thereby accounting for a far greater diversity of attributes
in comparison to the previous model where only mismatch of bond lengths was
considered. Some of the descriptors captured in our QSPR model are also in the
original description of the tolerance factor. However, only two (rB and rA) of the
six descriptors are explicitly used in the tolerance factor formulation,(

t = rA + rO√
2(rB + rO)

)
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Figure 5. Multivariate predicted model (abscissa) in comparison with the measured TC as reported
in the literature (Eitel et al. 2001; Grinberg et al. 2005) is shown for the PbTiO3 end members.
The model was developed by using 15 chemistries and tested for five chemistries. The new figure of
merit is TC = −(789.912 × t) − (153.932 × rA) + (1013.981 × rB) + (796.5864 × dB–O) − (138.9 ×
dA–O) − (55.6076 × BEN) − 526.537. Based on the new figure of merit, the TC of new piezoelectric
chemistries BiTmO3–PT and BiLuO3–PT were predicted to be 730◦C and 705◦C, respectively
(labelled red in the figure). It should be noted that the TC of BiTmO3–PT and BiLuO3–PT
plotted in the figure is only the predicted value and needs to be experimentally validated. Notation
for chemical compounds and parameters are described in the electronic supplementary material.
Filled circles, training set; filled triangles, test set; plus symbols, new predictions. (Online version
in colour.)

while the other four descriptors are not explicitly used. For end members that
had more than one cation in the octahedral site, such as Pb(B1B2)O3, we
considered the arithmetic mean value of B1 and B2. It should be noted, although
not elaborated in this paper, that the classification of Me ions into weakly
and strongly ferroelectric active species can be accomplished by exploring more
descriptors such as polarizability, ionic valence and ionic size.

The additional diversity of the QSPR model has a clear advantage as compared
with the model based solely on tolerance factor. For many compounds, the QSPR
model is in reasonable agreement with the tolerance factor model. However, in
some cases, the mismatch of bond length is not sufficient for modelling the physics
of the system. For the systems predicted here, BiLuO3–PbTiO3 is predicted to
have a higher TC than any systems included in the training dataset; however,
this result is not found when using the tolerance factor model. Therefore, we
conclude that our developed QSPR is highly robust in predicting the TC of
unknown compounds (figure 5) and has a more broad significance when applied
to new materials. Based on this QSPR model, a search of all the elements in the
periodic table that best satisfy the correlation criterion involving the combination
of attributes was performed. The search has resulted in generating four new
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ABO3 chemistries (BiTmO3, BiLuO3, BiHoO3 and BiErO3) as potential high-
TC materials. Having identified the new chemistries, we then tested them for
their crystal structure-type.

(c) Screening for piezoelectric behaviour: ‘sequencing the gene’

To test for the perovskite structural stability, a new classification model was
developed using a recursive partitioning strategy (Witten & Frank 2000; Hall
et al. 2009) on a large database (taken from the work of Zhang et al. 2007 and
references therein) of 355 ABO3 stoichiometric compounds (227 perovskites and
128 non-perovskites) to track which combination of parameters influences the
perovskite structural stability by partitioning a high-dimensional dataset. The
outcome of this analysis is important for determining whether it is feasible to
synthesize a pure perovskite phase in the BiBO3–PbTiO3 solid solution (where
B = Tm, Lu, Ho, Er). Our hypothesis is, if BiTmO3, BiLuO3, BiHoO3 and BiErO3
compounds are predicted to have a stable perovskite structure-type at ambient
or non-ambient (high pressure/temperature) condition, then we propose that it
is possible to experimentally obtain a pure perovskite phase in BiBO3–PbTiO3
solid solution (where B = Tm, Lu, Ho, Er). Here, we explain the relevance of this
hypothesis using a few examples based on experimental observations.

It is well known that obtaining a pure Bi-based perovskite is difficult under
conventional processing methods at ambient conditions. For example, a pure
perovskite phase in BiScO3 is synthesized only at 6 GPa pressure and 1140◦C
temperature (Belik et al. 2006a,b) and in BiMnO3 a pure perovskite phase is
obtained only at pressures greater than 4 GPa and 750◦C temperature (Montanari
et al. 2005). However, solid solutions of BiScO3–PbTiO3 (Zhang et al. 2003)
and BiMnO3–PbTiO3 (Woodward & Reaney 2004) have been experimentally
synthesized and are shown to have a pure perovskite phase. Even in the case
of very low tolerance factor end members such as BiYbO3 (tolerance factor =
0.857), there are experimental reports that confirm the limited solubility of
BiYbO3 in PbTiO3. Feng et al. (2009) using conventional ceramic processing
methods synthesized a solid solution of 0.05BiYbO3–0.95PbTiO3 with the highest
perovskite phase purity of 97.83 per cent. Obtaining a pure perovskite phase in
BiYbO3 when synthesized at ambient conditions is extremely difficult (Drache
et al. 2004), and we note that there is no experimental or theoretical study on
structural phase transitions in BiYbO3 at high-pressure/-temperature conditions.
In this work, we have identified for the first time the existence of a stable
perovskite structure-type in BiYbO3 via a recursive partitioning strategy at
high-pressure/-temperature conditions, and this structural stability at high-
pressure/-temperature conditions explains the limited solubility of BiYbO3 in
PbTiO3 at ambient conditions. Alloying BiYbO3 with PbTiO3, which has a large
c/a ratio, can help stabilize a perovskite phase by applying chemical pressure
(Ahart et al. 2008).

In this work, we apply our classification model to qualitatively determine the
feasibility of synthesizing a pure perovskite phase in the BiBO3–PbTiO3 solid
solution (where B = Tm, Lu, Ho, Er). In order to capture the physics of perovskite
stability at high-pressure/-temperature conditions, we have included ABO3
perovskite compounds such as BiScO3 (Belik et al. 2006a,b), BiMnO3 (Montanari
et al. 2005), BiAlO3 (Belik et al. 2006a,b), NaSbO3 (Mizoguchi et al. 2004) and
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YInO3 (Shannon 1967) that are experimentally known to have a stable perovskite
structure-type only at extreme pressure/temperature conditions. Therefore,
the design rules that we extract from our classification model are applicable
to identify new perovskites at both ambient and high-pressure/-temperature
conditions. Using the Shannon entropy as a selection criterion, a hierarchical
set of design rules was formulated to develop classification schemes that hitherto
have been approached by empirical observation (Plenio & Vitelli 2001; Shell 2008;
Karnani et al. 2009).

The expected information required to classify an ABO3 compound solely based
on its proportion in the database D is given by the Shannon entropy H (D), which
is defined as

H (D) = −
m∑

i=1

pi log2(pi),

where pi is the probability that an arbitrary tuple in ‘D’ belongs to perovskite
crystal structure or not. A log function of base 2 is used, because the information is
encoded in bits and m is an integer with distinct values defining m distinct classes
(Han & Kamber 2006). We formulated our recursive partitioning as a binary
classification problem. Further details on the construction and interpretation of
the dendrogram are provided in the electronic supplementary material.

The aim of the classification is to track precisely which and how variables
contribute to perovskite structural stability. The output from a recursive
partitioning analysis is a dendrogram (or a tree diagram) with branches grown on
each node (attribute) to classify whether a particular ABO3 compound forms a
perovskite crystal structure. The advantage of the recursive partitioning method
is that it can efficiently model nonlinear relationships in any arbitrary form
even when the attributes show strong interactions (Hawkins et al. 1997). Our
recursive partitioning model classified 336 out of 355 compounds accurately (95%
accuracy), and the model was validated by a standard 10-fold cross-validation
technique used in statistics.

The dendrogram model used for predicting new perovskites is shown in figure 6.
According to the dendrogram, dA–O (ideal A–O bond length calculated based on
the bond-valence method) is the most significant attribute impacting the phase
stability of perovskite compounds, followed by the tolerance factor. The leaf
nodes that are labelled ‘yes’ and ‘no’ indicate compounds that may have a stable
perovskite structure-type or not a perovskite, respectively. From the dendrogram,
design rules were extracted for predicting new potentially stable perovskite
compounds. Of the 227 perovskite compounds, 184 obeyed the following rule: if
dA–O > 2.453 and tIR ≤ 1.090863 and rA/rB > 1.509872 and BEN–OEN > 1.42 and
rA/rB ≤ 2.5625, then the ABO3 compound is a perovskite, where dA–O is the
ideal bond length based on the bond-valence model, tIR is the tolerance factor
calculated using ionic radii, rA/rB is the ionic radii ratio of A-site to B-site and
BEN–OEN is the electronegativity difference (Pauling scale) between B-cation and
O-anion. A total of 11 design rules were formulated for testing the perovskite
structural stability.

By applying the dendrogram to the four candidate ABO3 compounds,
only two compounds, BiTmO3 and BiLuO3, were identified as having a
stable perovskite crystal structure at high-pressure/-temperature conditions.
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Figure 6. The dendrogram (or tree diagram) classification model developed based on the recursive
partitioning method for identifying new potentially stable perovskite compounds is shown. We
used the Shannon entropy as a selection criterion to identify key descriptors, and a hierarchical
set of design rules were formulated to develop classification schemes that have been approached by
empirical observation. The leaf nodes that are labelled ‘yes’ or ‘no’ indicate compounds that may
have a stable perovskite structure-type or not a perovskite, respectively. From the dendrogram,
11 design rules were formulated for testing the perovskite structural stability. By applying the
dendrogram to the four candidate high-temperature materials BiErO3, BiHoO3, BiTmO3 and
BiLuO3, only two compounds, BiTmO3 and BiLuO3, were identified as having the stable perovskite
crystal structure at high-pressure/-temperature conditions. As a result, BiTmO3–PbTiO3 and
BiLuO3–PbTiO3 solid solutions were identified as new perovskite compounds with a significantly
high TC while having piezoelectric behaviour. The dendrogram application of other Bi-based
systems BiMEO3, where ME = Cr, Co, Ga and Ni, also identifies them as having the perovskite
crystal structure in agreement with the literature (Ishiwata et al. 2002; Baettig et al. 2005; Goujon
et al. 2008; Oka et al. 2010). In the dendrogram, dA–O is the ideal A–O bond length calculated
based on the bond-valence method, tIR is the tolerance factor from ionic radii data, rA is ionic radii
(Shannon’s scale) of the A-site cation with coordination number 12, rB is the ionic radii (Shannon’s
scale) of the B-site cation with coordination number 6, BEN–OEN is the electronegativity difference
(Pauling’s scale) between B-site and O-site, A-ionicity is the product of rA/rO and AEN–OEN,
B-ionicity is the product of rB/rO and BEN–OEN and GII is the global stability index (Zhang et al.
2007). (Online version in colour.)

Experimental synthesis of BiTmO3 and BiLuO3 compounds at ambient pressure
has been attempted in the past but was unsuccessful in synthesizing a pure
perovskite phase (Drache et al. 2005); however, there are no data available on
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synthesizing BiTmO3 and BiLuO3 compounds at high-pressure/-temperature
conditions. Therefore, we predict for the first time the existence of a stable
perovskite phase in BiTmO3 and BiLuO3 compounds at high-pressure/-
temperature conditions. This result indicates that Tm3+ (thulium) is the largest
cation (with an ionic radius of 0.88 Å in sixfold coordination) that can occupy
the octahedral site of a BiMeO3 perovskite lattice without impacting its phase
stability. The dendrogram also predicts the existence of a stable perovskite
phase in BiYbO3 at high-pressure/-temperature conditions. BiYbO3–PbTiO3 is
known as a potential high-temperature piezoelectric material (Eitel et al. 2001;
Feng et al. 2009), and there are experimental reports that confirm the limited
solubility of BiYbO3 in PbTiO3, thereby forming a solid solution (Feng et al.
2009). Thus, we conclude that it is possible to experimentally obtain a pure
perovskite phase in BiLuO3–PbTiO3 and BiTmO3–PbTiO3 solid solutions. Based
on the QSPR and the recursive partitioning model, two new perovskite end
members were identified (BiTmO3–PbTiO3 and BiLuO3–PbTiO3) and predicted
to have a high TC of 730◦C and 705◦C at the MPB, respectively, while having
piezoelectric behaviour.

The focus of this report has been solely on identifying new BiMeO3–PbTiO3
materials chemistries with higher Curie temperatures, where Me is a weakly
ferroelectrically active cation with a formal charge 3+. We fully realize that other
electronic structure parameters such as polarizability and other microstructural
parameters play a critical role in defining a useful high-temperature piezoelectric
material. This involves exploring a larger and more diverse chemical space that
includes more than one Me cation that is strongly ferroelectrically active, which
is presently being done, as well as experimental verification of our results, which
will be reported in upcoming publications.

5. Summary

We have identified two new perovskite-based piezoelectric crystal chemistries,
BiTmO3–PbTiO3 and BiLuO3–PbTiO3, with significantly higher Curie
temperature using a highly efficient and robust computational strategy based on
statistical learning and information theory concepts. The data mining strategy
we have developed also permits us to identify key physical attributes that appear
to govern the properties of a given crystal chemistry (e.g. piezoelectrics with a
high Curie temperature), providing a mechanistic-based discovery process and
not just a heuristic strategy. Finally, this paper helps to establish the efficacy
of informatics as an approach to refine the chemical search space for materials
discovery and to hence serve as a broader template for materials design in
other applications.
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