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Effective emotion regulation strategies improve fMRI and
ECG markers of psychopathology in panic disorder:
implications for psychological treatment action
A Reinecke1, N Filippini1,2, C Berna1,2,3, DG Western4,5, B Hanson4, MJ Cooper6, P Taggart7 and CJ Harmer1

Impairments in emotion regulation are thought to have a key role in the pathogenesis of anxiety disorders, but the neurobiological
underpinnings contributing to vulnerability remain poorly understood. It has been a long-held view that exaggerated fear is linked
to hyperresponsivity of limbic brain areas and impaired recruitment of prefrontal control. However, increasing evidence suggests
that prefrontal–cortical networks are hyperactive during threat processing in anxiety disorders. This study directly explored limbic–
prefrontal neural response, connectivity and heart-rate variability (HRV) in patients with a severe anxiety disorder during incidental
versus intentional emotion regulation. During 3 Tesla functional magnetic resonance imaging, 18 participants with panic disorder
and 18 healthy controls performed an emotion regulation task. They either viewed negative images naturally (Maintain), or they
were instructed to intentionally downregulate negative affect using previously taught strategies of cognitive reappraisal
(Reappraisal). Electrocardiograms were recorded throughout to provide a functional measure of regulation and emotional
processing. Compared with controls, patients showed increased neural activation in limbic–prefrontal areas and reduced HRV
during incidental emotion regulation (Maintain). During intentional regulation (Reappraisal), group differences were significantly
attenuated. These findings emphasize patients’ ability to regulate negative affect if provided with adaptive strategies. They also
bring prefrontal hyperactivation forward as a potential mechanism of psychopathology in anxiety disorders. Although these results
challenge models proposing impaired allocation of prefrontal resources as a key characteristic of anxiety disorders, they are in line
with more recent neurobiological frameworks suggesting that prefrontal hyperactivation might reflect increased utilisation of
maladaptive regulation strategies quintessential for anxiety disorders.
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INTRODUCTION
Anxiety disorders are very common and disabling conditions that
cause a particularly high economic burden,1–4 and the problem
remains that not all patients show stable benefits in response to
first-line intervention approaches.5,6 To improve treatments and
their application, it is essential to define key mechanisms
underlying anxiety disorders, as these are likely to represent
important targets for treatment. Clinical models of anxiety
propose that impairments in the regulation of negative affect
have an important role in the pathogenesis of a disorder, as they
contribute to exaggerated fear responses.7,8 Following neuro-
biological accounts of emotion regulation, the processing of
threat involves signalling in limbic brain regions such as the
amygdala, a key area implicated in the fast automatic registration
of threat, whereas successful downregulation of this response is
thought to be associated with increased recruitment of prefrontal
areas of cognitive control.9,10 This is well supported by studies
showing that in healthy volunteers, deliberate downregulation of
negative affect is correlated with increased activation in medial
and lateral areas of the prefrontal cortex (PFC), and that such
activation dampens limbic signalling.11,12 In contrast, anxiety
disorders are proposed to be associated with hyperresponsivity of

limbic brain areas and impaired recruitment of prefrontal
control.13,14

However, a number of novel findings suggest that while
decreased allocation of lateral and ventral prefrontal resources
seems to be an important characteristic of participants with non-
clinical high trait anxiety or worry,15,16 activation in these areas is
more likely to be increased in clinical anxiety disorders during
threat processing. In particular, studies have reported increased
activation in the dorsal anterior cingulate cortex (ACC) and
dorsomedial PFC (dmPFC) in specific phobia,17 social anxiety
disorder,18,19 panic disorder20,21 and generalised anxiety
disorder.22 Similarly, anxiety-specific threat processing has increas-
ingly been associated with heightened activation in dorsolateral
(dlPFC),23,24 ventrolateral (vlPFC)20,21,25 and ventromedial PFC
(vmPFC).23,26,27

Recent neurobiological accounts of anxiety disorders argue that,
different from a view assuming reduced prefrontal cognitive
control, prefrontal hyperactivation might reflect increased utilisa-
tion of dysfunctional regulation attempts in anxiety disorders.28,29

This is in line with anxiety disorders being associated with the
development of avoidance and safety strategies, such as escaping
the anxiety-provoking situation, or mental distraction from the
threat stimulus. These avoidance-based strategies are believed to
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have a key role in maintaining the disorder and are targeted
during exposure-based cognitive-behaviour therapy (CBT).30,31

Experimental research has confirmed that during the presentation
of threatening images, anxious participants are more likely to use
dysfunctional regulation strategies such as suppression or
cognitive avoidance. In contrast, they are less likely to use
adaptive, successful techniques such as positive reappraisal.32,33 In
further support of the idea of anxiety disorders being associated
with an increase rather than a decrease in neural responses
associated with affect regulation, CBT has been shown to lead
to a decrease in responsivity in prefrontal brain areas usually
implicated in cognitive control, such as the dlPFC and
vmPFC.24,34,35

These results question whether anxiety involves increased or
decreased engagement of prefrontal areas involved in cognitive
control, and how such activation patterns are functionally
connected with activation in limbic areas of the fear circuit. This
study therefore aimed to assess regional neural correlates of
emotion regulation in unmedicated patients with panic disorder
compared with healthy volunteers, and functional connectivity
between amygdala and prefrontal areas thought to be implicated
in cognitive control. We therefore used a well-established emotion
regulation paradigm12,36 that allows assessment of neural

responses to threat images during incidental emotion regulation
where pictures are viewed naturally, and intentional emotion
regulation where patients use previously learned strategies of
cognitive reappraisal similar to those typically taught in CBT.
Furthermore, we measured beat-to-beat heart-rate variability
(HRV), a measure of autonomic innervation of the brain to the
heart, as an additional indicator of emotion control.37,38 Increased
HRV in response to stressful stimuli reflects a dominance of the
parasympathetic over the sympathetic influence and therefore
successful emotion regulation.39 In line with this, reduced HRV
has been reported in patients with anxiety disorders.40,41 We
hypothesised that during incidental emotion regulation, patients
would draw on their maladaptive regulation strategies, reflected
in increased PFC activation, ineffective downregulation of limbic
activation and reduced HRV. In contrast, we expected these
limbic–prefrontal activation patterns and HRV reductions to be
dampened during intentional regulation, where alternative,
adaptive control strategies would be used.

MATERIALS AND METHODS
Participants
Following a priori power calculations, 18 unmedicated patients with panic
disorder (10 with/8 without agoraphobia) naive to psychological treatment
and 18 healthy controls without Diagnostic and Statistical Manual of
Mental Disorders (DSM-IV)42 axis-I history were recruited from the public
(Table 1). Statistical power information was derived from behavioural data
gained in a previous study using a faces dot-probe task in patients versus
healthy controls.43 These calculations suggested that with an alpha level of
5%, sample sizes of 18 per group would be sufficient to gain statistical
power of 80% (condition masked fearful faces: patients M= 31, s.d. = 54,
controls M=− 7, s.d. = 35). Diagnoses were assessed using the Structured
Clinical Interview for DSM-IV Axis I Disorders.44 Three patients fulfilled
criteria for comorbid-specific phobia, with panic disorder being the
primary diagnosis. General exclusion criteria were left-handedness,
magnetic resonance imaging (MRI) contraindications, epilepsy, history of
psychotic, bipolar or substance abuse disorder, and antidepressant
treatment during the last 6 months. Three patients having reported
occasional (but not regular) on-demand benzodiazepine or propranolol
intake were medication-free 48 h before scanning. Ethical approval was
obtained from the local research ethics committee.

Mood and subjective state
Participants completed the Hospital Anxiety and Depression Scale,46 Body
Sensations Questionnaire and Agoraphobic Cognitions Questionnaire.47

Before and after the scan, they completed Visual Analogue Scales
for the dimensions anxious, sad, calm and happy (0–100mm, not at
all—extremely) to assess state mood.

fMRI task design
Stimuli were 40 negatively valenced coloured IAPS images48 picturing
characteristic panic-related catastrophic expectations, such as accidents or
funerals (mean valence ratings 2.8 ± 1.7, mean arousal ratings 6.0 ± 2.2 on
9-point Likert scales ranging from 1=unpleasant/low arousal to 9 = plea-
sant/high arousal). Valence and arousal ratings as well as scene content
were matched between the two experimental conditions Maintain and
Reappraisal. The order of picture blocks remained constant across all
participants, with half of the subjects per group starting with a Maintain
and half starting with a Reappraisal block.
Pictures were presented in eight blocks of five images, one after another

for 5 s each, separated by 1-s blank screen interstimulus intervals. Picture
blocks alternated with grey fixation baseline blocks of 30 s, and
experiments started with a baseline block. For half of the blocks,
participants were instructed to passively view the images and naturally
experience the emotional state evoked, without attempting to regulate or
alter it (Maintain blocks). For Reappraisal blocks, they were instructed to
downregulate the provoked negative affect by using strategies of
cognitive reappraisal (for example, reframing, rationalising). These
strategies were trained before the scan using different images. Instructions
were given by presenting the word Maintain or Reappraise on screen for
4 s before a block. At the end of each picture block, a 4-point rating scale

Table 1. Socioeconomic, mood and anxiety self-report, negative
affect ratings and heart-rate variability scores in the two groups
(mean± s.d., independent-samples t-test/X2-test P-scores)

Panic patients Healthy controls P-score

Sociodemographic data
Age (years) 36.5± 13.8 32.3± 12.1 0.341
Gender 14 female/

4 male
14 female/
4 male

0.655

Years of education 16.6± 2.7 17.5± 4.2 0.473
Verbal IQ (NART45) 117.8± 5.1 118.8± 3.9 0.526

Depression and trait anxiety
HADS—anxiety 14.6± 4.1 2.0± 1.6 o0.001
HADS—depression 8.1± 3.4 0.7± 1.0 o0.001

Panic symptoms
BSQ 3.4± 0.7 1.4± 0.4 o0.001
ACQ 2.4± 0.6 1.1± 0.4 o0.001

Heart rate variability N = 15 N= 13
LF/HF Maintain 2.8± 2.2 1.4± 1.0 o0.047
LF/HF Reappraisal 2.0± 1.6 1.7± 1.1 NS

Negative affect ratings
Maintain 2.8± 0.6 2.9± 0.6 NS
Reappraisal 1.9± 0.6 1.9± 0.7 NS

State mood pre MRI scan
Anxious 67.7± 23.5 4.3± 6.1 o0.001
Sad 36.6± 28.9 7.7± 15.2 0.001
Calm 34.7± 23.5 85.0± 11.2 o0.001
Happy 49.3± 24.4 75.3± 12.8 o0.001

State mood post MRI scan
Anxious 29.9± 28.1 9.0± 21.6 0.017
Sad 31.2± 22.7 6.1± 10.9 o0.001
Calm 54.3± 27.4 79.7± 18.7 0.003
Happy 53.1± 20.3 70.8± 17.3 0.008

Abbreviations: ACQ, Agoraphobic Cognitions Questionnaire; BSQ, Body
Sensations Questionnaire; HADS, Hospital Anxiety and Depression Scale;
IQ, intelligence quotient; LF/HF, low-frequency/high-frequency heart-rate
variability ratio; MRI, magnetic resonance imaging; NART, National Adult
Reading Test.
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(1 = neutral, 4 = negative) was presented for 4 s, and participants indicated
the intensity of negative affect experienced throughout the block using a
keypad. The total task duration was ~ 10min.

ECG recording
Throughout functional scanning, three-electrode electrocardiogram (ECG)
was recorded to calculate HRV, separately for Maintain and Reappraisal
blocks, using Siemen’s PERU system (Erlangen, Germany). Signals were
processed using custom algorithms.49 In brief, heart beats were timed at
the instants of R-wave peaks in the ECG signal, and heart rate was
measured as the inverse of consecutive R-wave to R-wave interval period.
The timing of individual heart beats was automatically identified and
manually corrected. The intervals between beats were calculated to
construct a time series over the course of the experiment representing
variations in the subject's heart rate. This series was then used to calculate
low-frequency (LF; 0.04–0.15 Hz) and high-frequency (HF; 0.15–0.4 Hz) HRV
parameters, using the spectral averaging technique.50 These parameters
were calculated separately for Maintain versus Reappraisal blocks.

Image acquisition
Images were obtained using a 3-T Siemens Sonata scanner. Functional
imaging data were analysed using FEAT 6.0, part of FSL (FMRIB Software
Library; fmrib.ox.ac.ul/fsl) with Z42.3 and Po0.05, including multiple-
comparison corrections. T2*-weighted functional data were acquired for a
whole-brain field of view (64 × 64 × 40 matrix, 45 slices, voxel resolution
3mm3, gap 1.5 mm, repetition time=3000ms, echo time=30ms, flip
angle = 90o). Field maps were acquired using a dual-echo two-dimensional
gradient echo sequence with echos at 5.19 and 7.65ms, and a repetition
time of 500ms. High-resolution T1-weighted images were acquired for
subject alignment, using an MPRAGE sequence (174× 192× 192 matrix,
voxel resolution 1mm3, repetition time=2040ms, echo time= 4.7 ms,
inversion time= 900ms).

Image analysis
Event-related analysis. T2 pre-processing included motion correction,51

non-brain removal,52 spatial smoothing (Gaussian kernel full width at half
maximum=5.0mm), grand-mean intensity normalisation of the entire
four-dimensional data set by a single multiplicative factor, registration of
the functional space template to the anatomical space and the Montreal
Neurological Institute (MNI) 152 space, highpass temporal filtering
(Gaussian-weighted least-squares straight line fitting, with sigma= 50.0 s),
fieldmap correction. At the first-level, data were analysed using a general
linear model approach with local autocorrelation correction.53 Two
regressors of interest (Maintain, Reappraise) and two regressors of no
interest (instruction/rating periods) were included. Fixation blocks were the
implicit baseline reference. Contrast images were calculated for picture
blocks in general, Maintain blocks, Reappraisal blocks, Maintain versus
Reappraisal and Reappraisal versus Maintain. These individual activation
maps were then entered into the group level (patients and controls), using
a mixed-effects analysis across the whole brain.54 Due to strong evidence
implicating the periamygdala region in threat processing using an almost
identical task,55 region-of-interest (ROI) analyses were carried out for a 10-
mm radius spherical mask around a previously published peak voxel (−14/
− 6/− 8; and right-hemisphere counterpart).12 Significant whole-brain or
ROI interactions were explored by (i) extracting BOLD signal changes
within these areas and entering these into group× task mixed-design
analyses of variance (ANOVAs) and appropriate follow-up t-tests, and (ii)
running Pearson’s correlation analyses for the percent signal change and
panic symptom severity (calculated as the mean of the scores achieved
on the Agoraphobic Cognitions Questionnaire and Body Sensations
Questionnaire).

Connectivity analyses. We closely based this analysis on previous work
showing that the onset of threat stimuli alters functional connectivity with
an anatomy-based amygdala functional cluster.56 For each participant, we
extracted a deconvolved time series for the functional cluster identified in
the anatomical (i) right amygdala mask (peak: 26,0,− 14; Z=6.3) and (ii) left
amygdala (peak: − 22,− 4,− 12; Z= 6.7), in the pictures versus baseline
contrast across groups, using small volume correction. These time courses
were entered in two FSL psychophysical interaction analyses, separated for
the functional right amygdala versus left amygdala cluster as seed region,
along with the two psychological regressors (Maintain and Reappraisal),
the two psychophysical interaction regressors (Maintain × time series and

Reappraisal × time series) and the regressors of no interest (instructions
and ratings). These individual contrast images were then entered into the
group level, using a mixed-effects analysis across the whole brain, in order
to identify brain areas that showed activity that covaried stronger with that
of the left and right amygdala in one of the two groups during Maintain
blocks, Reappraisal blocks or picture blocks in general. Pearson’s
correlations were computed for standardised betas (extracted from
significant clusters) and panic symptom severity (calculated as the mean
of the scores achieved on the Agoraphobic Cognitions Questionnaire and
Body Sensations Questionnaire).
Given previous research indicating increased amygdala–dmPFC con-

nectivity during the anticipation of threat56,57 and in anxiety disorders,58

strength of coupling between the amygdala seed regions and the dmPFC
was identified using a ROI approach. We extracted regression standardised
beta values reflecting coactivation between the amygdala seeds and a 10-
mm radius drawn around 12/42/54, a previously published peak voxel of a
dmPFC cluster relevant in emotion regulation using an identical task and
instructions,12 and entered these into group× task ANOVAs and Pearson’s
correlation analyses (panic severity).

Voxel-based morphometry. Voxel-based morphometry was carried out to
be able to add grey matter maps as covariates to the functional MRI (fMRI)
analysis model, to only identify group differences in functional activation
that reflect cognitive-emotional rather than grey matter differences. Brain
extraction and tissue-type segmentation were performed and resulting
grey matter partial volume images were aligned to standard space using
first linear (FLIRT) and then non-linear (FNIRT) registration tools. The
resulting images were averaged, modulated and smoothed with an
isotropic Gaussian kernel of 7 mm full width at half maximum to create a
study-specific template, and the grey matter images were re-registered to
this, including modulation by the warp field Jacobian. Threshold-free-
cluster-enhancing correction was applied. Finally, voxel-wise general linear
modelling was applied using permutation nonparametric testing (5000
permutations), correcting for multiple comparisons across space.

RESULTS
Affect ratings and behavioural data
Mood and anxiety measures. Patients reported significantly
higher trait anxiety and depression (Hospital Anxiety and
Depression Scale) levels than controls, and they showed more
fear of physical sensations (Body Sensations Questionnaire)
(Table 1). With respect to state mood, there were significant
group differences on all Visual Analogue Scales taken before and
after the scan (Table 1). Patients showed lower anxiety scores and
higher calm scores after the scan compared with baseline (both
t43.20, both Po0.005).

HRV and negative affect ratings during scan. Differences were
analysed performing group× task mixed-model ANOVAs. In
patients but not controls, LF/HF ratio was higher in Maintain
compared with Reappraisal blocks (Table 1; group × task F= 5.89,
df = 1/26, P= 0.023, d= 0.83; paired-samples t-test t= 2.14, df = 14,
P= 0.049). During Maintain blocks, patients showed higher LF/HF
ratios than controls (independent samples t= 2.09, df = 26,
P= 0.047, d= 0.82), suggesting reduced HRV and more sympa-
thetic compared with parasympathetic activation. Groups were
not significantly different in LF/HF ratio during Reappraisal
(t= 0.52, df = 26, P= 0.606).
Negative affect ratings were lower in Reappraisal versus

Maintain blocks in both groups, without between-group differ-
ences (Table 1; Task F= 45.26, df = 1/34, Po0.001; group/group ×
task both Fo0.04, both P40.855).

BOLD fMRI
Whole-brain analysis
Main effect of task (Reappraise versus Maintain, across groups):
Reappraisal was associated with increased activation in
bilateral dorsal ACC, dmPFC, dlPFC, vlPFC, angular gyri, superior
lateral occipital cortices, orbitofrontal cortices/subcollosal
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cortices/caudate, cerebellum/occipital fusiform/inferior temporal
gyrus, and left middle temporal gyrus. Reappraisal also led
to significant deactivation in bilateral precuneus/lingual gyrus
(Figure 1a; Table 2A).
Main effect of group (picture blocks versus baseline): Compared
with controls, patients showed significantly higher activation in

bilateral dmPFC and dlPFC, left dorsal ACC and right supplemen-
tary motor area, as well as left inferior frontal gyrus, left middle
temporal gyrus, left inferior and superior lateral occipital cortex,
left occipital fusiform gyrus and left angular gyrus during the eight
picture blocks versus the fixation screen baseline (Figure 1b;
Table 2B; all d41.19). Percent signal change in these clusters was
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Figure 1. Whole-brain fMRI results. All images thresholded at Z42.3, Po0.05, corrected. (a) Main effect of task: across both groups,
Reappraisal (versus Maintain) led to greater BOLD signal response in bilateral dorsal anterior cingulate cortex, dorsomedial, dorsolateral, and
ventrolateral PFC, orbitofrontal cortex, lateral occipital cortex, angular gyrus, cerebellum and occipital fusiform and inferior temporal gyri, and
left middle temporal gyrus, and to a decrease in activation in bilateral precuneus ext. lingual gyrus. (b) Main effect of group: compared with
controls, patients showed increased activation in prefrontal, temporal and occipital areas, including bilateral dorsomedial and dorsolateral
PFC, left dorsal anterior cingulate cortex, right supplementary motor area, left inferior frontal and middle temporal gyri, left lateral occipital
cortex and occipital fusiform gyrus, and left angular gyrus during picture blocks (versus fixation baseline block). (c) Group× task interaction:
maintaining negative affect (versus Reappraisal) was associated with increased signal response in patients compared with controls in a right
frontal pole cluster including the vlPFC, vmPFC and dmPFC (top panel), and a limbic cluster including parts of the right hippocampus,
posterior cingulate cortex, precuneus and lingual gyrus (bottom panel). In controls, Maintain (versus Reappraisal) was related to decreased
activation in this limbic cluster. For both clusters, BOLD% signal change during Maintain minus Reappraisal blocks was significantly correlated
with symptom severity in patients. MNI coordinates 14,− 42,− 2. Error bars show s.e.m. *Significant difference between conditions or groups.
dmPFC, dorsomedial PFC; ext., extending into; HC, healthy control; L, left; PD, panic disorder patient; PFC, prefrontal cortex; R, right; vlPFC,
ventrolateral PFC; vmPFC, ventromedial PFC.

Table 2. (A) Areas of significant increase and decrease in BOLD response during voluntary emotion regulation (Reappraisal versus Maintain) across
both groups. Areas of significant increase in BOLD response in patients versus controls during (B) picture blocks versus fixation baseline blocks, and
(C) Maintain versus Reappraisal blocks. MNI coordinates refer to the peak activation voxel of the cluster and main sub-regions within the same cluster
(significant group differences are in bold)

BA Side Cluster size (voxels) MNI (x, y, z) Z-score P-score

(A) Main effect of task across groups
Increased activity during reappraisal (R4M)
Dorsal ACC ext. dorsomedial PFC 6/8/32 L 14 701 −4,20,50 5.86 o0.001
Dorsal ACC ext. dorsomedial PFC 6/8/32 R 4,28,40 4.99
Ventrolateral ext. dorsolateral PFC 9/45/46 R 36,46,12 4.9

Cerebellum ext. occipital fusiform/inferior temporal gyri 19/37 L 7 274 −36,−64,−28 4.30 o0.001
Middle temporal gyrus 20/21 L − 60,− 32,0 4.2
Angular gyrus 39/40 R 44,− 60,42 4.18
Superior lateral occipital cortex 5/7 R/L 0,− 68,68 4.06
Angular gyrus 39/40 L − 60,− 44,34 4.06

Cerebellum ext. occipital fusiform/inferior temporal gyri 19/37 R 2 184 36,−60,−52 4.46 o0.001
Frontal orbital cortex 11/38 R 544 16,22,−16 3.92 0.006
Subcallosal cortex ext. caudate 25 R 6,20,− 12 3.89
Subcallosal cortex ext. caudate 25 L − 4,8,− 10 3.29

Decreased activity during reappraisal (M4R)
Precuneus ext. lingual gyrus 19 R 477 26,−32,22 3.67 0.014
Precuneus ext. lingual gyrus 19 L 434 −20,−42,24 3.90 0.024

(B) Pictures vs baseline/patients vs controls
Dorsal anterior cingulate cortex 32 L 1 352 −8,28,38 3.99 o0.001
Dorsomedial PFC 8/9 L − 24,38,46 3.65
Dorsomedial PFC 8/9 R 4,42,46 3.56
Supplementary motor area 6 R/L 4,14,72 3.55

Dorsolateral PFC 45 L 799 −46,30,28 3.90 o0.001
Inferior frontal gyrus 44/48 L − 54,16,14 3.88
Dorsolateral PFC 46 L − 40,34,26 3.65
Dorsolateral PFC 9 L − 42,18,44 3.50

Middle temporal gyrus ext. inferior lateral occipital cortex 20/21 L 535 −56,−28,−12 3.77 0.003
Occipital fusiform gyrus 37 L − 48,− 66,− 12 3.53
Inferior lateral occipital cortex 19 L − 44,− 74,− 14 3.33

Superior lateral occipital cortex 7 L 493 −32,−68,40 3.97 0.006
Angular gyrus 40 L − 50,− 52,54 3.61

Dorsomedial PFC 9 R 459 20,36,54 3.30 0.009
Dorsolateral PFC 44 R 50,18,38 3.28
Dorsolateral PFC 8/9 R 42,18,50 3.19

(C) Maintain vs reappraise/patients vs controls
Ventrolateral PFC 46/47 R 417 48,56,−2 3.98 0.030
Ventromedial/dorsomedial PFC 10/11 R 32,68,2 3.15

Hippocampus ext. precuneus/posterior cingulate 27/29/30/37 R 387 14,−42,4 3.80 0.044
Hippocampus 27 R 24,− 34,− 12 3.65
Lingual gyrus 37 R 26,− 42,− 8 3.16
Precuneus 30 R 12,−52,10 3.04

Abbreviations: ACC, anterior cingulate cortex; BA, Brodmann area; ext., extending into; L, left; M4R, Maintain versus Reappraisal; MNI, Montreal Neurological
Institute; PFC, prefrontal cortex; R, right; R4M, reappraisal versus maintain.
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not correlated with panic symptom severity in any of the groups
(all ro0.26, P40.293).
Group× task interaction (Maintain versus Reappraise): Results
showed a significant group × task interaction in a frontal pole
cluster spanning the right vlPFC and the right dmPFC and vmPFC,
as well as a limbic cluster including parts of the right dorsal
hippocampus and posterior cingulate, precuneus and lingual
gyrus (Figure 1c; Table 2C). Post hoc analyses on BOLD signal
change extracted from each of the two clusters indicated that the
PFC interaction was driven by a group difference in response to
pictures during Maintain blocks (ANOVA task × group F= 14.79,
df = 1/34, P= 0.001, d= 1.32), with patients showing significantly
higher activation than controls (Maintain t= 2.77, df = 34, P= 0.009,
d= 0.80; Reappraise t= 1.60, df = 34, P= 0.119, d= 0.55). The
group× task interaction in the hippocampal cluster was based
on patients showing an increase in activation in this area in the
Maintain condition and a decrease during Reappraisal (group×
task interaction F= 14.83, df = 1/34, Po0.001, d= 1.32; post hoc
t-tests Maintain t= 2.05, df = 34, P= 0.048, d= 0.63; Reappraise
t= 2.93, df = 34, P= 0.006, d= 1.14). In patients but not controls,
BOLD activation in both these clusters during Maintain minus
Reappraisal blocks was positively correlated with panic severity
(PFC: patients r= 0.49, P= 0.038, controls r= 0.36, P= 0.142;
hippocampus: patients r= 0.49, P= 0.038; controls r=− 0.23,
P= 0.369). However, these do not survive conservative Bonferroni
correction (that is, required Po0.025).
ROI analysis: A hemisphere × group× task ANOVA for the BOLD
percent signal change extracted for the left (Maintain: patients
0.40 ± 0.44, controls 0.15 ± 0.17; Reappraise: patients 0.11 ± 0.36,
controls 0.19 ± 0.22) and right amygdala (Maintain: patients
0.37 ± 0.55, controls 0.13 ± 23; Reappraise: patients 0.10 ± 0.37,

controls 0.17 ± 0.24) spheres revealed a significant group × task
interaction (F= 6.82, df = 1/34, PBonferroni = 0.026, d= 0.90), without
any laterality differences (all Fo0.10, all PBonferroni40.998). This
effect was driven by patients showing higher activation than
controls in Maintain blocks (t= 2.43, df = 34, PBonferroni = 0.042,
d= 0.81). In patients (r= 0.42, P= 0.043) but not controls (r=− 0.13,
P= 0.613), Maintain minus Reappraisal BOLD percent signal
change in the amygdala was positively correlated with panic
symptom severity.

Connectivity analyses
Whole-brain results: In patients versus controls, activity in each
amygdala during picture blocks (versus baseline) was significantly
more strongly correlated with activity in the left and right occipital
cortices, occipital poles, occipital fusiform gyri and lingual gyri
(right amygdala: right (R) cortical cluster: 591 voxels, MNI
14,− 84,4, Z= 3.86/left (L) cortical cluster: 511 voxels, MNI
− 10,− 84,− 4, Z= 3.61; left amygdala: R cortical cluster: 578 voxels,
MNI 28,− 80,2, Z= 3.67/L cortical cluster: 461 voxels, MNI
− 10,− 84,− 2, Z= 3.47; all d41.25). In patients but not controls,
the magnitudes of right amygdala–occipital clusters and left
amygdala–occipital clusters coupling were positively correlated
with symptom severity (patients: L/R amygdala–occipital clusters
both r40.42, both Po0.042; controls: L/R amygdala–occipital
clusters both r40.35, both P40.078) (Figure 2).
Amygdala–dorsomedial PFC coupling: For the right amygdala
seed, we found a significant group × task interaction driven by
patients showing higher right amygdala–right dmFC connectivity
than controls during Maintain blocks (ANOVA group× task
F= 7.17, df = 1/34, PBonferroni = 0.022, d= 0.92; t-test t= 2.39, df =
34, PBonferroni = 0.046, d= 0.80). For the left amygdala seed, the

Figure 2. Whole-brain psychophysical interaction analysis with a right amygdala (a) and left amygdala (b) functional cluster (picture blocks
versus baseline, across groups) as the seed region: patients showed higher connectivity of the right and left amygdala with left and right
occipital pole, occipital fusiform gyrus, lateral occipital cortex and lingual gyrus. In patients, coupling between right amygdala seed and
occipital cortex clusters and left amygdala seed and occipital cortex clusters was positively correlated with panic severity. Images thresholded
at Z42.3, Po0.05, corrected. *Significant difference between groups. Error bars show s.e.m. HC, healthy control; L, left; PD, panic disorder
patient; R, right.
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ANOVA yielded no group× task interaction (F= 0.27, df = 1/34,
PBonferroni = 0.904). In patients but not controls, the magnitudes of
right amygdala–dmPFC coupling and left amygdala–dmPFC
coupling during Maintain minus Reappraisal blocks were posi-
tively correlated with panic symptom severity (patients: L/R
amygdala–dmPFC clusters both r40.55, both Po0.010; controls:
L/R amygdala–dmPFC clusters both ro0.20, both P40.214)
(Figure 3).
Voxel-based morphometry: No group differences were observed
in grey matter concentration. Furthermore, BOLD group contrast
differences were not affected by adding individual grey matter
maps as covariates to the fMRI analysis model, and they survived
as clear differences between the two groups, suggesting that they
reflect cognitive-emotional differences rather than being driven
by sub-threshold grey matter differences between groups.

DISCUSSION
We believe this is the first study to simultaneously explore
regional neurofunctional activation and limbic–prefrontal con-
nectivity in patients with an anxiety disorder during incidental
versus intentional emotion regulation. In line with our hypotheses,
we found a pattern of increased brain activation in patients
compared with controls in both limbic and prefrontal areas during
incidental emotion regulation (Maintain) and in response to
images in general. These differences were reduced, or even
reversed, during intentional regulation (Reappraisal). The differ-
ences in brain activity were accompanied by significantly reduced

heart rate variability in patients versus controls during incidental
regulation only, highlighting patients’ ability to regulate emotional
response given appropriate cognitive strategies. Although these
results challenge influential models of fear that propose impaired
allocation of PFC resources as a neurobiological basis for the
development of an anxiety disorder,13,14 they are well in line with
more recent frameworks.28,59

In the neurobiological hypervigilance-avoidance model, Hoff-
man et al.28 postulate that threat processing in anxiety is
associated with two different sets of functional activation patterns:
hypervigilance processes and maladaptive, avoidant emotion
regulation processes. The hypervigilance processes are thought
to include amygdala hyperactivation in response to the detection
of threat, which in turn facilitates visual processing in the occipital
cortex. This is thought to enhance processes of selective attention
and monitoring in the dmPFC while recruiting the hippocampus
to provide information about memory associations with the
potential threat stimulus.28,59 The maladaptive regulation pro-
cesses are thought to include hyperactivation in a range of ventral
and lateral prefrontal–cortical regions known to be implicated in
regulating negative emotional reactivity.
In line with the assumed hypervigilance circuit, our patients

showed increased activation in occipital areas, dorsal mPFC and
ACC, and increased amygdala–occipital connectivity when view-
ing threat images in general. They also demonstrated amygdala
and hippocampus hyperactivation and increased amygdala–
dmPFC connectivity during Maintain (versus Reappraisal) blocks.
Most of these parameters correlated positively with symptom

Figure 3. Psychophysiological interaction analyses exploring connectivity of activity within the right amygdala (a) and left amygdala (b) as
seed regions and a right dorsomedial prefrontal cortex (R dmpfc) region of interest. The right amygdala showed a task × group interaction in
connectivity with the dmpfc, with amygdala–dmpfc coupling being significantly greater in patients relative to controls during Maintain
blocks. No such significant interaction was found for the left amygdala seed. In patients, higher right amygdala–dmpfc coupling, as well as
higher left amygdala–dmpfc coupling during Maintain minus Reappraisal blocks were associated with higher panic severity. *Significant
difference between groups. HC, healthy control; L, left; MNI, Montreal Neurological Institute; PD, panic disorder patient; R, right.
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severity. These results also fit in well with other recent
imaging studies, suggesting that threat processing in anxiety
disorders is associated with increased activity in amygdala,
hippocampus21,25,26,60,61,62 and occipital cortex,27,62 or in dorsal
ACC and mPFC,17–22 areas that have been implicated in selective
attention, threat bias and monitoring.56,63–68

The results are also in line with prior studies demonstrating
increased functional amygdala–dmPFC connectivity during the
anticipation of threat in healthy volunteers,56,57 with additional
increases in subjects with higher trait anxiety, neuroticism or
anxiety disorders.56–58 Furthermore, increased attentional bias
magnitude derived from behavioural tasks has been shown to be
correlated with increased amygdala–dorsal ACC connectivity in
healthy volunteers,69 providing further evidence that such brain
activation patterns might predispose patients to selectively focus
their attention to threat information in their environment. The
potential role of these proposed areas of hypervigilance in the
psychopathology of anxiety disorders is further supported by
clinical research showing a reduction of activation in
amygdala,17,70 hippocampus,24 dorsal mPFC and ACC17 following
successful CBT.
The assumption that hyperactivation in lateral and ventral

prefrontal–cortical regions might reflect anxiety-specific dysfunc-
tional regulation strategies is supported by our findings of
patients showing increased activation in dorsal and ventral lateral
PFC in response to threat images in general. Furthermore, they
showed increased response in vmPFC and vlPFC during incidental
regulation, with activation strength correlating positively with
panic severity. Lateral prefrontal activation has previously been
implicated in intentional emotion regulation11,71,72 and inhibitory
control,73,74 and the vmPFC has particularly been associated with
automatic conflict and emotion regulation75–77 in healthy
volunteers. In line with our observations, other imaging studies
exploring threat processing in anxiety disorders have reported
heightened activation in the dlPFC,23,24 vlPFC20,21,25 and
vmPFC,23,26,27 and CBT has been shown to significantly reduce
such hyperactivation.34,35

Taken together, our results provide evidence in favour of recent
models of anxiety, which propose that psychopathology might be
underpinned by hyperactivation in both limbic and prefrontal–
cortical brain regions in response to threat.28,59 Such findings
contradict previous frameworks postulating that impaired emo-
tion regulation in anxiety is correlated with reduced recruitment of
PFC areas of top–down control.13,14 Strikingly, these early models
were greatly based on research investigating neural processing in
high trait anxiety or post-traumatic stress disorder (PTSD), which
appear to characteristically be associated with decreased recruit-
ment of PFC resources during threat processing.29 Neurobiological
activation patterns in high trait anxiety in response to threat might
still be adaptive and as such distinctive from activation patterns in
anxiety disorders. Notably, PTSD is not classified as an anxiety
disorder in DSM-V (APA, 2013) anymore, as the key symptom is the
re-experience of a de facto trauma rather than arbitrary fear, and
as fear is not the only and not necessarily the predominant
emotion.78,79 It appears plausible that these differences in
aetiology and symptomatology between PTSD and anxiety
disorders might be underpinned by differences in neurobiological
pathophysiology, and future research will have to address these
issues explicitly. It is also possible that differences in paradigms
used between studies might contribute to contrary findings in
prefrontal–cortical activation, with previous studies in trait anxiety
often tapping into rapid resolution of emotional conflict13 rather
than emotion processing and regulation per se.
It might appear puzzling why we rarely found group differences

in functional activation for reappraisal blocks. However, reapprais-
al is one of the key strategies taught during CBT80 to which
patients with panic disorder have been shown to be particularly
responsive, even after only one treatment session.81 It is possible

that having trained patients to successfully use reappraisal before
scanning has provided them with sufficient, healthy regulation
strategies. Furthermore, our results allow no final conclusions with
respect to the exact role of the panic-specific processing patterns
observed here in the onset and maintenance of an anxiety
disorder. Future studies will have to establish whether these
patterns of activity are sensitive to treatment, and whether any
changes in these parameters are causally related to clinical
improvement, which would confirm their proposed role as key
mechanisms in the pathogenesis of anxiety.
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