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Interferon-gamma (IFN-γ) regulates various immune responses that are often critical for vaccine-induced protection. In order to
annotate the IFN-γ-related gene interaction network from a large amount of IFN-γ research reported in the literature, a literature-
based discovery approach was applied with a combination of natural language processing (NLP) and network centrality analysis.
The interaction network of human IFN-γ (Gene symbol: IFNG) and its vaccine-specific subnetwork were automatically extracted
using abstracts from all articles in PubMed. Four network centrality metrics were further calculated to rank the genes in the
constructed networks. The resulting generic IFNG network contains 1060 genes and 26313 interactions among these genes. The
vaccine-specific subnetwork contains 102 genes and 154 interactions. Fifty six genes such as TNF, NFKB1, IL2, IL6, and MAPK8
were ranked among the top 25 by at least one of the centrality methods in one or both networks. Gene enrichment analysis
indicated that these genes were classified in various immune mechanisms such as response to extracellular stimulus, lymphocyte
activation, and regulation of apoptosis. Literature evidence was manually curated for the IFN-γ relatedness of 56 genes and vaccine
development relatedness for 52 genes. This study also generated many new hypotheses worth further experimental studies.

1. Introduction

In 1965 Wheelock et al. first reported Interferon-gamma-
(IFN-γ-) like virus inhibitor induced in supernatant fluid
of cultures of fresh human leukocytes following incubation
with phytohemagglutinin [1]. In early 1970s, IFN-γ was
further studied, and its name was eventually designated.
IFN-γ is the only type II IFN family member. It is secreted
by activated immune cells—primarily T and NK cells, but
also B-cells, NKT cells, and professional antigen presenting
cells. IFN-γ has been widely studied and found critical
in anti-infectious host defense, inflammatory conditions,
cancer, and autoimmune diseases [1, 2]. The most striking
phenotype from mice lacking either IFN-γ or its receptor
has increased susceptibility to the infections of bacterial
and viral pathogens [3]. IFN-γ is also critical for tumor
immunosurveillance as assessed using spontaneous, trans-
plantable, and chemical carcinogen-induced experimental

tumors. Additionally, IFN-γ is found important in leukocyte
homing, cellular adhesion, immunoglobulin class switching,
T helper cell polarity, antigen presentation, cell cycle arrest
and apoptosis, neutrophil trafficking, and NK cell activation
[1, 4, 5].

The induction of IFN-γ response is critical for successful
development of vaccines against various viruses and intracel-
lular bacteria, for example, human immunodeficiency virus
(HIV) [6, 7], Mycobacterium tuberculosis [8–10], Leishmania
spp. [11, 12], and Brucella spp. [13, 14]. The IFN-γ analysis
is widely used for the quantification and characterization of
the HIV-specific CD8+ T cell responses [6]. It is a marker
used as a representative function of cytotoxic T cells to
quantify the HIV-specific cellular immune response. IFN-
γ is required for protection against mycobacterial infection
[15]. M. tuberculosis-stimulated whole-blood production of
IFN-γ, although imperfect, is the best available correlate
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of protective immunity to M. tuberculosis in humans [8].
In humans, complete IFN-γR deficiency is associated with
frequent infection and ultimately death from the attenuated
M. tuberculosis BCG vaccine [16]. The inability to secrete
IFN-γ or the development of auto-antibodies neutralizing
endogenous IFN-γ resulted in the death of a patient by
overwhelming mycobacterium infection [17].

Today IFN-γ is ranked as one of the most important
endogenous regulators of immune responses. Thousands
of relevant papers have been published. However, a com-
prehensive understanding of how it works and what other
factors it interacts with is still largely unclear. Although IFN-
γ is essential for protective immunity, animal and human
studies have found that IFN-γ alone is not sufficient for the
prevention of TB disease [8]. Therefore, it would be very
interesting to investigate what other genes or gene interaction
networks are needed to stimulate protective immunity.
However, due to so-complicated roles of IFN-γ in different
conditions, it is challenging to annotate the interaction
network of IFN-γ such that it becomes increasingly suitable
to interpret its role in various diseases [1].

One of the greatest challenges that the researchers
in the biomedical domain face is that most of the
knowledge remains hidden in the unstructured text of
the published articles. Currently, there are over 19 mil-
lion publications indexed in PubMed (http://www.ncbi
.nlm.nih.gov/pubmed/) and both the total number of pub-
lications and the growth rate of the number of publications
are increasing exponentially [18, 19]. Given the current
amount and the growth rate of the biomedical literature,
it is difficult or impossible for biomedical scientists to
keep up with the relevant publications. For example, a
search in PubMed for “ifn-gamma OR interferon-gamma”
returned 75464 articles as of October, 2009. Even if a
researcher is only interested in the relatedness of IFN-γ to
vaccine development and restricts his search to “vaccine
AND (ifn-gamma OR interferon-gamma)”, the number of
articles retrieved was 7536, which is still too high for
reading manually. There are a number of manually curated
databases that store protein interactions, such as the Molec-
ular INTeraction database (MINT) [20], the Biomolecular
Interaction Network Database (BIND) [21], and the Human
Protein Reference Database (HPRD) [22]. Many databases
also summarize results from publications about gene-disease
relationships, such as the Online Mendelian Inheritance in
Man (OMIM) [23], the Brucella Bioinformatics Portal (BBP)
[24], and the Pathogen-Host Interaction Data Integration
and Analysis System (PHIDIAS) [25]. However, it usually
takes a lot of time and effort before new discoveries are
included in these databases.

To systemically analyze the network of IFN-γ with other
genes, an internally developed literature-based discovery
approach based on literature mining and network centrality
analysis was applied [26]. This literature-based discovery
methodology in [26] was shown to be effective in identifying
prostate cancer-related genes. To discover genes relevant to
IFN-γ and vaccine development, IFN-γ was used as the single
seed gene, and all the article abstracts available in PubMed
were used as the text knowledge source. The interactions

of IFN-γ and its neighbors from abstracts in PubMed were
first extracted using a natural language processing (NLP) and
machine learning (ML) based method. Two gene interaction
networks were eventually built using the automatically
extracted interactions. The first network is the generic IFN-
γ (IFNG) network, which is the network of interactions of
IFN-γ and its neighbors. The second network is the vaccine-
specific subgraph of the first network, which is built using
only the interactions that are extracted from vaccine relevant
sentences. Next, the topologies of the networks were analyzed
using the degree, eigenvector, betweenness, and closeness
network centrality measures.

To the best of our knowledge, this is the first study
that integrates text mining with network analysis in the
vaccine informatics domain. The literature-based discovery
approach that we have introduced in [26] has been suc-
cessfully adapted and expanded to discover genes related to
IFN-γ and vaccine development. The literature-mined IFN-
γ and IFNG-vaccine-mediated networks were systematically
analyzed using network centrality metrics. The results sup-
port our hypothesis that the central genes in the two IFN-
γ networks are related to the functions of IFN-γ and part
of the gene list is important for vaccine development. Many
predicted genes and gene networks are good candidates
for further IFN-γ and vaccine development studies. In
this paper, we describe the overall method design and
the results.

2. Methods

The high-level system description for predicting IFN-γ and
vaccine-associated genes is shown in Figure 1. The approach
is described in more detail in the following subsections.

2.1. Literature Corpus. To construct the literature-mined
IFN-γ gene interaction network, all article abstracts avail-
able in PubMed are used. The sentences of the abstracts
were obtained from the BioNLP database in the National
Center for Integrative Biomedical Informatics (NCIBI;
http://ncibi.org/), which were generated using the MxTermi-
nator [27] sentence boundary detection tool.

2.2. Gene Name Identification and Normalization. Genia
Tagger (http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/tagger/),
whose developers report an F-score performance of 71.37%
for biological named entity recognition [28], was used to
identify the gene names in the sentences. Consider the exam-
ple sentence “[IL-2] and [IL-15] induced the production of
[IL-17] and [IFN-γ] in a dose dependent manner by PBMCs”
taken from the abstract of [29]. The gene names, which were
correctly identified by Genia Tagger, are enclosed in square
brackets.

One of the greatest challenges in biomedical text pro-
cessing is that a gene might have several different synonyms.
For example, the IFN-γ gene can occur in text as IFN-
gamma, IFNG, IFNGamma, interferon-gamma, or inter-
feron gamma. Similarly, the IL2 gene can occur in text as IL2,
IL-2, or interleukin 2. If the gene names that correspond to
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Figure 1: Description of the literature-based discovery system for
identifying IFN-γ and vaccine-related genes.

the same gene are not normalized, each different synonym
will be represented as a separate node in the gene-interaction
network as shown in Figure 2. With five different synonyms
for IFN-γ and three different synonyms for IL2, 15 different
edges can be obtained although they actually represent
the same edge (interaction). Therefore, a dictionary-based
approach was used to normalize the gene names tagged by
Genia Tagger so that each gene is represented by a single
node in the interaction network. HUGO Gene Nomenclature
Committee (HGNC) database (http://www.genenames.org/)
[30] was used as the dictionary for gene names and their
synonyms. As of October, 2009 the database contains 28240
approved gene records. Each tagged gene name was unified
with its corresponding approved gene symbol. In the HGNC
database, the official gene symbol for the IFN-γ gene is listed
as IFNG, and the description is listed as “interferon, gamma”.
The database does not include any synonyms for the gene.
However, IFN-γ is frequently mentioned in text with the

names that are shown in Figure 2. Therefore, we included
these names to the HGNC dictionary as synonyms for IFN-γ.

2.3. Sentence Filtering. The potential interaction sen-
tences were selected from the abstracts in PubMed that
have “human” in the MeSH heading, before applying
the text mining method to extract the IFN-γ (IFNG)
gene-interaction network from the literature. A list of
826 interaction keywords such as binds, bound, inter-
acts, activates, inhibits, and phosphorylates was com-
piled from the literature (the list of interaction key-
words is available at: http://clair.si.umich.edu/clair/ifngnet/
interaction keywords.txt). Our assumption is that a sentence
that describes an interaction between a pair of genes should
contain an interaction keyword and at least two distinct
normalized gene names. The sentences that do not meet this
requirement were filtered out.

The IFNG gene-interaction network was built in two
steps. In the first step, the genes that interact with IFNG (or
called the neighbors of IFNG) were extracted. The number
of sentences that contain IFNG or one of its synonyms
(case-insensitive match) and are from abstracts that have
“human” in the MeSH headings is 73024. A filter program
was further performed to filter out those sentences that do
not have at least one interaction keyword and at least two
distinct normalized gene names, one of which is IFNG. As
a result, 26876 sentences were obtained with our interaction
extraction module for identification of the genes that interact
with IFNG. The interaction extraction module extracted
1059 neighbors of IFNG.

In the second step, the interactions among the neighbors
of IFNG were extracted. There are over 9 million sentences
that are from abstracts which have “human” in the MeSH
headings and contain at least one of the IFNG neighbors
or their synonyms. Out of these, the sentences for further
processing by the interaction extraction module are those
that have at least one interaction keyword, and at least
two distinct normalized gene names, which were identified
as neighbors of IFNG in the first step. In total, 422566
sentences met these criteria and were further processed by
the interaction extraction module, which is described in the
next subsection.

2.4. Gene Interaction Extraction from the Literature. The
interaction extraction task was formulated as a classification
task, where each sentence is classified as a possible interaction
between a given gene pair. The support vector machines
(SVMs) [31] were used as our classification algorithm with
features extracted from the dependency parse trees of the
sentences, which capture the semantic predicate-argument
dependencies among the words. The Stanford Parser
(http://nlp.stanford.edu/software/lex-parser.shtml) was used
to obtain the dependency parse trees of the sentences [32].

Figure 3 shows the dependency parse tree for the example
sentence “IL-2 and IL-15 induced the production of IL-17
and IFN-γ in a dose dependent manner by PBMCs”. The
nodes of the tree represent the words of the sentence and
the edges represent the types of the dependencies among the
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Figure 2: Gene name normalization example.

words. For example, “IL-2” is the noun subject “nsubj” of
“induced”. There are four gene names in the sentence. The
sentence describes an interaction between the gene pairs “IL-
2 and IL-17”, “IL-2 and IFN-γ”, “IL-15 and IL-17”, and “IL-15
and IFN-γ”. It does not describe an interaction between the
gene pairs “IL-2 and IL-15” and “IL-17 and IFN-γ”.

The shortest path between each gene pair from the
dependency tree of the sentence was used with SVM.
The motivating assumption is that the path between two
gene names in a dependency tree is a good description of
the semantic relation between them in the corresponding
sentence. For example, the path between the interacting gene
pair “IL-2 and IL-17” is “nsubj induced dobj production
prep of” and the path between the noninteracting pair “IL-2
and IL-15” is “conj and”.

The similarity between two dependency paths was
indicated based on the word-based edit distance, which is
defined as the minimum number of word insertion, deletion,
or substitution operations needed to transform the first
path to the second. For example, the edit distance between
the paths “nsubj induced dobj production prep of” and
“conj and” is five, since the first path can be transformed
to the second one by deleting four words (nsubj, induced,
dobj, and production) and substituting one word, that is,
substituting prep of with conj and. The more similar two
paths are (smaller edit distance), the more likely they belong
to the same class; that is, either both describe or both do not
describe an interaction for the corresponding gene pairs. The

path edit distance measure between two paths pi and pj was
converted into a path similarity function as follows:

edit sim
(
pi,pj

)
= e−γ(edit distance (pi, ,pj )). (1)

This path similarity measure was integrated as a kernel
function to SVM by plugging it in the SVMlight package
(http://www.svmlight.joachims.org/) [31].

This interaction extraction approach was introduced
in [33] and was shown that it achieves the state-of-the-
art results (55.61% F-score performance for the AIMED
data set (ftp://ftp.cs.utexas.edu/pub/mooney/bio-data/) and
84.96% F-score performance for the CB data set). We have
successfully applied this approach to extract the interactions
of the prostate cancer relevant genes in [26] and to provide
annotations for the BioCreative Meta-Server by classifying
abstracts as describing a protein interaction or not in [34].
To extract the interactions of IFNG and its neighbors,
the system was trained by combining the AIMED and the
CB data sets. The preprocessed data sets are available at
http://clair.si.umich.edu/clair/biocreative/datasets/.

2.5. Network Centrality Analysis. Gene interactions can be
represented as a network, where the genes are represented
as nodes, and an interaction between a pair of genes is
represented with an edge connecting the corresponding
nodes. This representation allows the analysis of interactions
from a graph theory and complex networks perspective,

http://www.svmlight.joachims.org/
http://clair.si.umich.edu/clair/biocreative/datasets/
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Figure 3: The dependency parse tree of the sentence “IL-2 and IL-15 induced the production of IL-17 and IFN-γ in a dose dependent
manner by PBMCs.”

which can give biologists a variety of new insights. For
example, Schwikowski et al. used a majority-rule method
that assigns to a protein the function that occurs most
commonly among its neighbors and reported an accuracy of
70% for the yeast protein interaction network [35]. Similarly,
Spirin and Mirny used the protein interaction networks to
discover molecular modules that function as a unit in certain
biological processes by identifying subgraphs that are densely
connected within themselves but sparsely connected with the
rest of the network [36].

Another network feature that can reveal important
principles underlying the biological systems is the centrality
of a node, which defines the relative importance of the node
in the graph. The importance of a node can be defined in
different ways. Degree centrality is defined as the number of
edges incident to the node (i.e., the number of neighbors that
a node has) [37]. It measures the extent of influence that a
node has on the network. The more neighbors a node has,
the more important it is.

In degree centrality each neighbor contributes equally to
the centrality of a node. However, all the connections of a
node are not always equally important. This notion is defined
as “prestige” in social networks. The prestige of a person does
not only depend on the number of acquaintances he has but
also on who his acquaintances are (i.e., how prestigious they
are). Eigenvector centrality assigns each node a centrality that
not only depends on the quantity of the connections but also
on their importance. The eigenvector centrality of a node is

proportional to the sum of the centralities of its neighbors
[38].

Closeness centrality of a node is defined as the inverse
sum of the distances from the node to the other nodes in the
network [37]. The closer a node to the other nodes in the
network, the more important it is.

Betweenness centrality of a node is defined as the
proportion of the shortest paths between all the pairs of
nodes in the network that pass through the node in interest
[37]. A node is considered important if it occurs on many
shortest paths between other nodes. This characterizes the
control of a node over the information flow of the network.

Centrality measures have originally been developed and
used in nonbiological domains. For example, the web pages
in the popular search engine Google are ranked by using the
Pagerank algorithm, which is based on eigenvector centrality
[39]. A number of recent studies have successfully applied
centrality measures in biological domains. For example,
Jeong et al. used degree centrality to predict lethal mutations
in the yeast protein interaction network [40]. They showed
that the network is tolerant to random errors, whereas errors
related to the most central proteins cause lethality. Similarly,
Joy et al. [41] and Hahn and Kern [42] have found that there
is an association between the betweenness centrality and the
essentiality of a gene, where an essential gene is a gene that
causes the organism to die when it malfunctions. Recently,
we have applied centrality measures to predict genes relevant
to prostate cancer [26]. We were able to identify genes, which
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Figure 4: Summary of the IFNG network and its vaccine-specific subnetwork.

are not marked as being related to prostate cancer by the
curated databases such as the Online Mendelian Inheritance
in Man (OMIM) and the Human Prostate Gene Database
(PGDB) [43] even though there are recent articles that
confirm the association of these genes with the disease.

In this study the IFNG interaction network was analyzed
from graph centrality perspective. IFNG and its neighbors
are represented as nodes and there is an edge between two
genes if an interaction between them from the literature has
been extracted. The gene names in the network are normal-
ized and represented with their official HGNC symbols. The
vaccine-specific subgraph of this network contains only the
interactions that have been extracted from sentences that
contain the term “vaccin”, which is the root form of the
vaccine-related terms such as vaccine, vaccines, vaccination,
and vaccinated. Therefore, the edges in this subgraph are
all vaccine specific. Analysis of this IFNG-vaccine network
helps us to understand the genes and interactions that play
important roles in both the vaccine and IFNG network. Since
IFNG is one of the most important immune factors and
critical for vaccine development, we hypothesized that genes
central in the generic IFNG and IFNG-vaccine networks
might be important for vaccine development. The results
presented in the next section support the hypothesis.

2.6. Gene Annotation Enrichment Analysis. The web-based
DAVID bioinformatics program was used to perform the
gene annotation enrichment analysis [44].

3. Results

3.1. Topological Properties of the Networks. Our program
detected 1060 nodes (genes including IFNG and its neigh-
bors) linked by 26313 edges (interactions) (Figure 4). Since
all the genes in the IFNG network are connected to IFNG,
the diameter of the network (the longest of the shortest paths
between the pairs of genes in the interaction network) is
2 and the average shortest path length (the average of the
shortest paths between all genes in the network) is 1.95. The
clustering coefficient of the network is 0.4933, which is an
order of magnitude higher than the clustering coefficient of a
random network with the same number of nodes (0.0473).

The clustering coefficient [45] of a node describes how
well connected a node’s neighbors are and is defined as
the number of connections between this node’s neighbors
divided by the number of possible connections between
them. The clustering coefficient of a network is the average
of the clustering coefficients of the nodes in the network. The
IFNG network is a small-world network [45], characterized
by having a small average shortest path length and a
clustering coefficient that is significantly higher than that of a
random network with the same number of nodes. The IFNG
network is a scale-free network, which is characterized by
having a power-law degree distribution, P(k) ∼ k−γ, where
P(k) is the probability that a randomly selected node will
have a degree (i.e., number of connections) of k [46].

In scale-free networks most nodes make only a few
connections, while a small set of nodes (known as hubs) have
very large number of links. This is different from random
networks, which follow Poisson distribution, where majority
of the nodes have degrees close to the average degree of
the network. The exponent (γ) of the power-law degree
distribution of the IFNG network is 2.15. The graph of the
IFNG network is shown in Figure 1 of the supplementary
material available online at doi:10.1155/2010/426479

The IFNG and vaccine-associated network (IFNG-
vaccine network) is a much smaller subset of the generic
IFNG network. This small subnetwork contains 102 genes
and 154 interactions (Figure 4). Since the IFNG-vaccine
network is built by removing the edges that are not associated
with “vaccine” from the IFNG network, some of the genes
that were connected in the IFNG network are not connected
in the IFNG-vaccine network. In total, the IFNG-vaccine
network contains 84 genes that are interconnected and
18 genes that are separated from this largest connected
component of 84 genes (Figure 5). Also, the diameter of
the IFNG-vaccine network and the average shortest path
length are larger than those of the IFNG network. The
diameter of the IFNG-vaccine network is 9 and the average
shortest path length is 3.55. The IFNG-vaccine network still
possesses the small-world property with a relatively small
average shortest path length and a clustering coefficient
(0.2218) that is significantly higher than the clustering
coefficient of a random network with the same number of
nodes (0.0388). The network is scale-free with a power-law
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Figure 5: The graph of the IFNG-vaccine network extracted from the literature. The network consists of 102 nodes (genes) and 154 edges
(interactions). All the edges in the network are associated with the term “vaccine” and its variants. The purple nodes are the genes that are
central in both the generic and the IFNG-vaccine networks. The red nodes are the genes that are central only in the IFNG-vaccine network.
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degree distribution with exponent 2.37. The small-world
and scale-free characteristics of the generic IFNG and the
IFNG-vaccine networks are consistent with the topological
properties of previously studied biological networks [26, 40,
47, 48] and nonbiological networks such as the Internet [49]
and social networks [45].

3.2. Lists of Genes Are Predicted and Sorted by Centrality
Analyses. All the genes in the two networks (generic IFNG
network and IFNG-vaccine network) are sorted based on
centrality analyses. Supplementary File 1 lists the rankings of
all the genes in the generic IFNG network and Supplemen-
tary File 2 lists the rankings of all the genes in the IFNG-
vaccine network. IFNG is not included in these rankings,
since it is trivially ranked highest by all the centrality
measures in both networks due to the fact that the networks
are specific to IFNG. The most central genes (the genes
ranked among the top 25 by at least one of the centrality
measures) are analyzed in more detail in Table 1. These genes
(a total of 56 genes) are predicted to be associated with IFNG
and relevant for vaccine development. Literature evidence
was manually curated for the IFNG association (IFNG-Ref
column in Table 1) and the vaccine development relatedness
(Vaccine-Ref column in Table 1) of these genes.

It is interesting that in the generic IFNG network, all
centrality measures find the same 23 genes among the top
25, although the ranking might change slightly (Table 1).
For example, IL10 is ranked 5th by degree and closeness
centralities, but 4th by eigenvector and betweenness cen-
tralities. Since all the genes in the generic IFNG network
are connected to IFNG, the distance (shortest path length)

between a pair of genes is at most two. In other words, the
distance between a pair of genes is one if they are directly
connected to each other and it is two if they are not directly
connected to each other (i.e., they are connected through
IFNG). Therefore, in this network, the more genes a gene is
connected to (higher degree centrality), the less distant it is
to the other genes (higher closeness centrality). So, the degree
and closeness centralities produce the same rankings for the
generic IFNG network. For the IFNG-vaccine network, the
top 25 genes sorted based on centrality analyses overlapped
with the sorted results from the generic IFNG network.

Three different levels of prediction are available based on
the comparison between the generic IFNG network and the
more specific IFNG-vaccine network.

(1) Genes Ranked High in Both Networks. Thirteen genes
were ranked among the top 25 in both networks by at least
one of the centrality measures. Among these 13 genes, 8 genes
are central by all centrality measures in both networks: TNF,
IL6, IL8, IL10, IL4, IL2, CSF2, and CD4. These genes are well
studied in both generic IFNG research and vaccine specific
research. The ranking may change in both networks. For
example, IL2 was ranked top 1 in the IFNG-vaccine network,
while it was ranked top 7-8 in the generic IFNG network
based on different centrality scores. This is probably due to
the fact that the role of IL2 in vaccine research has widely
been recognized and studied in more depth in the vaccine
context.

Among the 13 genes in this group, five genes (NFKB1,
MAPK8, INS, IFNA1, and CCL5) were ranked high in the
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Table 1: Predicted 56 genes related to IFN-γ and vaccine networks.

Gene
Generic IFNG Network IFNG-vaccine Network

D E B C IFNG-Ref D E B C Vaccine-Ref

TNF 1 1 1 1 3132506 2 3 2 7 16446013

NFKB1 2 2 2 2 9888423 — 23 — — 16971487

IL6 3 3 3 3 1719090 3 4 7 3 10225849

IL8 4 5 6 4 8473010 10 13 10 9 11378044

IL10 5 4 4 5 8102388 6 8 11 2 10930151

IL4 6 6 5 6 2136895 4 2 4 4 8519092

MAPK1 7 9 9 7 15307176 — — — — 19428911

IL2 8 7 8 8 6429853 1 1 1 1 8459207

VEGFA∗ 9 10 10 9 12816689 — — — — 17502972

TP53∗ 10 8 7 10 16391798 — — — — 18846387

BCL2∗ 11 13 13 11 11064392 — — — — 19389797

AKT1∗ 12 11 12 12 11135576 — — — — 19107122

MAPK8 13 14 14 13 18950753 — — 15 — 19428911

INS 14 12 11 14 8383325 — — — 16 19203100

MAPK14 15 15 18 15 10700460 — — — — 19428911

CSF2 16 18 17 16 11665752 7 6 6 6 19459853

FAS 17 17 16 17 10895367 — — — — 15979942

CCL2 18 19 19 18 9407497 — — — — 19833737

IFNA1 19 16 15 19 11449378 — — — 13 19667099

EGFR∗ 20 20 23 20 17362940 — — — — 19178753

JUND∗ 21 21 22 21 10070035 — — — — 19124729

KITLG∗ 22 24 — 22 7540064 — — — — -

CCL5 23 23 21 23 8921438 — 24 — — 15827150

CD4 24 22 20 24 15173593 9 5 3 12 17298856

EGF∗ 25 25 — 25 18160214 — — — — 16357522

CRP — — 24 — 10675363 — — — — 16395099

STAT3∗ — — 25 — 7488223 — — — — -

IL5 — — — — 9432015 5 7 20 8 11138639

IL13 — — — — 12670721 8 9 5 5 12232042

IL7 — — — — 7594482 11 14 12 17 17496983

EIF2AK2 — — — — 11342638 12 10 8 — 19596385

CD28 — — — — 7634349 13 12 — — 12594842

HSPD1 — — — — 12407015 14 19 16 14 12218165

SILV — — — — 11839572 15 20 17 23 11459172

IL21 — — — — 14657853 16 17 — — 16785513

IL18 — — — — 8666798 17 — — 10 19467215

HBEGF — — — — 9062364 18 25 — 21 10729731

CD46 — — — — 15307176 19 11 9 — 11757799

CD40 — — — — 7554483 20 16 — — 11403919

PSG2 — — — — 2516715 21 — 22 — 11155821

GAD1 — — — — 9703171 22 — — 18 12421990

IL15 — — — — 9834271 23 — — 22 16785513

C3 — — — — 1337336 24 15 — — 19477524

PRF1 — — — — 19651871 25 22 19 — 15214037

ZAP70 — — — — 11034358 — 18 23 — —

CD40LG — — — — 10769003 — 21 18 — 11403919

GNLY — — — — 17382591 — — 13 19 10644038

PTPN11 — — — — 12270932 — — 14 — —

CD86 — — — — 9836505 — — 21 — 12594842
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Table 1: Continued.

Gene
Generic IFNG Network IFNG-vaccine Network

D E B C IFNG-Ref D E B C Vaccine-Ref

CCR5 — — — — 9616137 — — 24 — 16672545

HSPA4 — — — — 18442794 — — 25 — 11779704

TPBG — — — — 16630022 — — — 11 16630022

KLK3 — — — — 16000955 — — — 15 19171173

CD8A — — — — 1904117 — — — 20 18425263

CD80 — — — — 7537534 — — — 24 10498243

LTA — — — — 3102976 — — — 25 15908422

Note: The genes ranked among the top 25 by the centrality measures (D: Degree; E: Eigenvector; B: Betweenness; C: Closeness) in the generic IFNG network or
the IFNG-vaccine network. The genes are represented with their official HGNC symbols. Literature evidences for the relatedness of the genes to IFNG (IFNG-
Ref) and to vaccine development (Vaccine-Ref) are manually curated. “—” indicates that the gene is not ranked among the top 25 by the corresponding
centrality measure in the corresponding network or no literature evidence was found.

IFNG network by all measures but only high in the IFNG-
vaccine network by certain centrality measures. For example,
MAPK8 (mitogen-activated protein kinase 8; Aliases: JNK,
JNK1, SAPK1) was ranked high by all centrality metrics
in the IFNG network, whereas it was ranked high by
only the betweenness centrality metric in the IFNG-vaccine
network (Table 1). The high betweenness score was reflected
by the fact that MAPK8 connects the two genes (ZAP70
and MAPK1) to the rest of the network (Figure 5). In
the generic IFNG network, 322 other genes are directly
connected to MAPK8 (Figure 6). Many of these genes (e.g.,
NFKB1, IL4, and CD40) also exist in the IFNG-vaccine
network (Figure 5) although they do not directly interact
with MAPK8. However, the majority of these 322 genes (e.g.,
TLR4 and IL1B) are not in the IFNG-vaccine network. It
is reasonable to suggest that many of these genes that were
found in the IFNG-MAPK8 network (Figure 6) but not in
the IFNG-vaccine network (Figure 5) may also be important
for vaccine specific network through an interaction with
MARK8. Therefore, the comparison between these two
networks may lead to hypothesis of new genes involved in
vaccine specific immune network, some of which deserve
further experimental verifications.

(2) Genes Ranked High in the Generic IFNG Network but Not
in the IFNG-Vaccine Network. In total 14 genes are included
in this group. Nine out of these 14 genes were not found
in the IFNG-vaccine network (Supplementary File 2). These
genes are labeled with “∗” in Table 1. These genes have not
been well studied in the vaccine context. However, since
these genes are strongly associated with IFNG, it is likely
that each of these genes may also play an important role in
vaccine-induced protective immune network. For example,
as one of the 14 genes, the serine/threonine kinase AKT1
is a key regulator of cell proliferation and death. AKT1
regulates lymphocyte apoptosis and Th1 cytokine propensity
[50]. IFNG is a representative cytokine in Th1 response
that is crucial for induction of vaccine-induced protection.
Therefore, it is reasonable to hypothesize that AKT1 plays
an important role in regulated vaccine-induced protective
immune responses.

Among the 14 genes in this group, five genes (MAPK1,
MAPK14, FAS, CCL2, and CRP) were found in the IFNG-
vaccine network but not ranked high based on any centrality
analysis. For example, FAS is a critical gene in regulation
of programmed cell death through the FAS pathway. FAS
(TNF receptor superfamily, member 6; Aliases: CD95, APO-
1) has been found to play an important role in promoting an
appropriate effector response following vaccinations against
Helicobacter pylori [51], hepatitis C virus [52], and cancer
[53]. Since FAS is well studied and ranked top in the generic
IFNG network, more knowledge about its interactions with
other genes shown from the generic IFNG network provides
valuable basis for further analysis of FAS-related, vaccine-
specific interaction network.

(3) Genes Ranked High in the IFNG-Vaccine Network but
Not in the Generic IFNG Network. In total, 29 genes that
were ranked among the top 25 in the IFNG-vaccine network
based on at least one of the centrality scores are not ranked
among the top 25 in the generic IFNG network (Table 1).
These genes may be more vaccine-specific and play relatively
less important roles in many other IFNG-regulated immune
systems (e.g., cell cycle). It is also possible that some of these
genes are very important for other IFNG-related immune
functions. In that case, the data for these genes obtained
from vaccine research may provide supportive results for
expanded studies. One important set of these 29 genes
cover many interleukins including IL5, IL7, IL13, IL15,
IL18, and IL21. For example, interleukin-18 (IL18) is a
newly discovered cytokine with profound effects on T-cell
activation. IL18 can possibly be used as a strong vaccine
adjuvant [54]. The new knowledge obtained from IL18
in vaccine research may be applied to other IFNG-related
immune systems.

3.3. Gene Annotation Enrichment Shows Various Immune
Responses Regulated by IFN-γ. The 56 genes ranked among
the top 25 by at least one of the centrality methods in one or
both networks were used for gene enrichment analysis using
DAVID [44]. These genes were classified in various immune
mechanisms such as response to extracellular stimulus,
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Table 2: Gene annotation enrichment among top predicted genes in the generic IFNG and the IFNG-vaccine networks.

Category Term Count P-Value FDR

GOTERM BP ALL GO:0050896∼response to stimulus 43 2.99E − 22 5.71E − 19

GOTERM BP ALL GO:0007154∼cell communication 39 5.74E − 13 1.10E − 09

GOTERM BP ALL GO:0007165∼signal transduction 35 9.70E − 11 1.86E − 07

GOTERM BP ALL GO:0006950∼response to stress 29 7.14E − 20 1.37E − 16

GOTERM BP ALL GO:0030154∼cell differentiation 28 6.94E − 13 1.33E − 09

GOTERM BP ALL GO:0006952∼defense response 26 7.12E − 23 1.36E − 19

GOTERM BP ALL GO:0006955∼immune response 26 8.88E − 18 1.70E − 14

GOTERM BP ALL GO:0008283∼cell proliferation 23 9.37E − 16 1.70E − 12

GOTERM BP ALL GO:0008219∼cell death 23 2.28E − 15 4.46E − 12

GOTERM BP ALL GO:0006915∼apoptosis 22 9.38E − 15 1.78E − 11

GOTERM BP ALL GO:0007242∼intracellular signaling cascade 19 4.85E − 07 9.27E − 04

GOTERM BP ALL GO:0001775∼cell activation 18 5.86E − 19 1.12E − 15

GOTERM BP ALL GO:0006954∼inflammatory response 17 8.26E − 16 1.49E − 12

GOTERM BP ALL GO:0046649∼lymphocyte activation 14 1.77E − 14 3.38E − 11

GOTERM BP ALL GO:0006468∼protein amino acid phosphorylation 14 2.60E − 07 4.98E − 04

GOTERM BP ALL GO:0006807∼nitrogen compound metabolic process 13 4.47E − 08 8.56E − 05

GOTERM BP ALL GO:0042110∼T cell activation 12 9.02E − 14 1.73E − 10

GOTERM BP ALL GO:0048534∼hemopoietic or lymphoid organ development 12 4.57E − 11 8.74E − 08

GOTERM CC ALL GO:0005576∼extracellular region 29 5.33E − 18 8.27E − 15

GOTERM MF ALL GO:0005125∼cytokine activity 19 5.30E − 21 9.51E − 18

GOTERM MF ALL GO:0008083∼growth factor activity 12 6.77E − 12 1.21E − 08

KEGG PATHWAY hsa04060:Cytokine-cytokine receptor interaction 23 7.90E − 16 9.77E − 13

KEGG PATHWAY hsa04620:Toll-like receptor signaling pathway 13 3.12E − 10 3.91E − 07

KEGG PATHWAY hsa04660:T cell receptor signaling pathway 12 2.04E − 09 2.57E − 06

KEGG PATHWAY hsa04630:Jak-STAT signaling pathway 11 2.99E − 06 0.003745

lymphocyte activation, and regulation of apoptosis (Table 2).
These gene annotation enrichment results are correlated
with current knowledge about IFN-γ [1, 4, 5]. It further
demonstrates the capability of our literature-based discovery
approach in correctly extracting genes related to IFN-γ.

4. Discussion

Our method is different from many other literature mining
approaches. To extract the gene interactions from the
text, an SVM classifier was used in our approach with
features extracted from the dependency parse trees of
the sentences [33]. A dependency parse tree captures
the semantic predicate-argument relationships among
the words of a sentence. Compared to the traditional
cooccurrence and pattern-matching-based information
extraction methods, our method allows us to make more
syntax-aware inferences about the roles of the genes in
a sentence. Our method of integrating literature mining
with network analysis was first introduced in 2008 to
study prostate cancer [26]. In that study, 15 genes related
to prostate cancer were chosen as seed genes, and 48245
articles from PubMed Central (PMC) Open Access
(http://ncbi.nlm.nih.gov/pmc/about/openftlist.html) were
processed to build the network of their interactions. Genes

that are not marked as being related to prostate cancer by
the curated OMIM or PGDB [43] databases were identified
even though there are recent articles that confirm their
association to the disease. In this current study, only one
gene (IFNG) was used as the seed gene, and 19 million
papers in PubMed were analyzed. Therefore, our method
of literature-based discovery can be generalized and used in
different applications. Since the vaccine is emphasized, the
vaccine term and its variation terms in our NLP analysis
were used (act like gene in our approach). This approach is
new in this type of analysis.

Our analysis discovered a large number of genes that
interact with IFNG and genes important for both IFNG
and vaccine. Many of these genes have been studied but
never been collected for systematic network analysis. Current
databases contain limited information about IFNG gene
interaction network. The Michigan Molecular Interactions
(MiMI) is a repository that includes interaction data from
over 10 databases such as the Database of Interacting Proteins
(DIP), the Human Protein Reference Database (HPRD),
and the Biomolecular Interaction Network Database (BIND)
[55]. As of October 2009, MiMI contains only 12 genes that
interact with IFNG and 27 interactions among these genes.
Our IFNG gene interaction network contains more than 80-
fold of genes that interact with IFNG. While the correct-
ness of all these interactions require further confirmation,

http://ncbi.nlm.nih.gov/pmc/about/openftlist.html)
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Figure 6: Interactions of MAPK8 with other genes in the generic IFNG network. MAPK8 is shown in purple. The two genes (ZAP70 and
EIF2AK2) that MAPK8 also interacts in the IFNG-vaccine network are shown in red.

our manual confirmation of selected 56 interactions
(Table 1) has already demonstrated the power of our
literature-based discovery method. Since IFNG is an
important immune regulator for vaccine-induced protec-
tive immunity, the systematical analysis of vaccine-induced
IFNG-regulated gene network is critical to understand
vaccine-induced immune mechanism and support rational
vaccine design. Our selective analyses of the IFNG-vaccine
subnetwork showed that genes potentially important for
vaccine research can be predicted. Many predicted genes and
gene networks deserve further experimental verifications.

Our study demonstrated that MAPK8 is an important
component of the generic IFNG network (Table 1, Figures 5
and 6). MAPK8 is a member of the mitogen-activated protein
(MAP) kinase family. MAPK8 is important for many cellular
processes such as cell proliferation, apoptosis, and differenti-
ation. IFNG and MAPK8 regulate each other depending on
different experimental conditions [56–60]. For example, the
IFNG inhibits the activation of MAPK8 in macrophages and
many other cells through the production of nitric oxide [56].
However, IFNG activates JNK activation and both contribute
to apoptosis in lymphocyte cells through the regulation of the
reactive oxygen species (ROS) production [57]. Meanwhile,
the JNK stress-activated MAPK signal transduction pathway
is required for IFNG production for T helper 1 (Th1) effector

cells [58]. The inhibition of MAPK8 results in marked
reduction of IFNG transcription in activated Jurkat T cells
[59]. The activation of JNK pathway also mediates the
production of IFNG in human breast tumor cells [60]. Our
study shows that MAPK8 interacts with 322 genes which
also interact individually with IFNG in the generic IFNG
network (Figure 6). The finding of such a large number
of interactive genes suggests that the interactions among
MAPK8, IFNG, and the other genes may regulate many
different biological processes. Based on our GO enrichment
analysis (data not shown), the 322 genes that interact with
both MAPK8 and IFNG (Figure 6) cover a variety of different
biological processes, such as response to external stimulus,
inflammatory response, cell proliferation, programmed cell
death, and cytokine activity. It is interesting that only two
genes (ZAP70 and EIF2AK2) among the 323 genes in the
IFNG-MAPK8 network were found to connect to MAPK8
in the IFNG-vaccine network (Figure 5). Since many other
genes (e.g., NFKB1, IL4, and CD40) in the IFNG-MAPK8
network also exist in the IFNG-vaccine network (Figure 5),
it is possible that more genes act in the vaccine-specific gene
network through their interactions with both MAPK8 and
IFNG. It is also likely that many genes shown in the IFNG-
MAPK8 network but not in the IFNG-vaccine network may
contribute to vaccine-induced protective immunity.
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Future work includes development of a web server to
store the analyzed data and provide a user-friendly web
interface to query and visualize the analyzed data. We expect
to provide such a user-friendly web interface for the analyses
of IFNG and IFNG-vaccine gene networks in 2010. It is noted
that the interactions shown in our networks may be specific
for certain conditions. The interactions may not be true
when experimental conditions change. One future research
is to link individual interactions to specific conditions. It
will provide us a more comprehensive view of the IFNG
and vaccine networks. Our literature mining method will
also be applied to analyze other IFNG and vaccine-related
interaction networks in other animal species (e.g., mouse,
rat, and cattle).
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