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INTRODUCTION 
 
Liver cancer is one of the most common malignancies 
and the second most frequent cause of cancer-related 
mortality worldwide [1]. Hepatocellular carcinoma 
(HCC), the predominant form of liver cancer, is highly 
malignant due to its insidious onset, rapid progression 
and metastasis. Due to the difficulty of early diagnosis, 
most patients with HCC have reached middle- or late-
stage disease at diagnosis. Therefore, most have 
already missed the opportunity for surgery. Since 
radiotherapy and chemotherapy do not prolong overall 
survival (OS) in HCC [2], it is critical to explore other  

 

novel therapies, including targeted therapy and 
immunotherapy. 
 
Immunotherapy is a very promising treatment for other 
cancer types such as melanoma and non-small cell lung 
cancer [3–4] and has the potential to change the 
landscape of therapy for malignancies in the future. 
 
At present, immunotherapy-based immune checkpoint 
inhibitors are making big breakthroughs. Treatment of 
metastatic melanoma by monoclonal antibody 
destruction of immune checkpoints has become the new 
standard treatment and has replaced traditional 

www.aging-us.com AGING 2020, Vol. 12, No. 6 

Research Paper 

Prognostic values of immune scores and immune microenvironment-
related genes for hepatocellular carcinoma 
 
Peng-lei Ge1, Shi-fang Li1, Wei-wei Wang2, Chun-bo Li1, Yu-bin Fu1, Zheng-kai Feng1, Lin Li1, Gong 
Zhang1, Zhi-qiang Gao1, Xiao-wei Dang1, Yang Wu1 
 
1Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, 
Zhengzhou, Henan Province, China 
2Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 
China 
 
Correspondence to: Peng-lei Ge, Yang Wu; email: doc677@126.com, sunny2000@yeah.net 
Keywords: immune score, tumour microenvironment, immune-related gene, hepatocellular carcinoma 
Received: November 19, 2019 Accepted: February 5, 2020  Published: March 25, 2020 
 
Copyright: Ge et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 
(CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and 
source are credited. 
 
ABSTRACT 
 
It is crucial to grasp the characteristics of tumour immune microenvironment to improve effects of 
immunotherapy. In this study, the immune and stromal scores of 371 cases were calculated for quantitative 
analysis of immune and stromal cell infiltration in the tumour microenvironment of hepatocellular carcinoma 
(HCC). The weighted gene co-expression network analysis and protein–protein interaction network were 
analysed to identify immune microenvironment-related genes. The results showed that patients with high 
immune scores had a higher 4-year recurrence-free rate. TP53, CTNNB1, and AXIN1 mutations significantly 
varied with immune scores. In immune score-related modules analysis, Kyoto encyclopaedia of genes and 
genomes pathways and gene ontology terms were closely related to immune processes, tumorigenesis, and 
metastasis. Twelve new immune microenvironment-related genes were identified and had significantly positive 
correlations with seven immune checkpoint genes. In prognostic analysis, eleven immune microenvironment-
related genes exhibited high expression, nine of which were validated in the GSE62232 dataset and were 
significantly associated with a good prognosis. Our findings suggest that calculating immune score and stromal 
score could help to determine tumour purity and immune cell infiltration in the tumour microenvironment. Nine 
immune microenvironment-related genes identified in this study had potential as prognostic markers for HCC. 
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chemotherapy. This may become the main therapy for 
other malignant tumours in the future [5]. However, due 
to the complexity of immunotherapy and tumour 
heterogeneity, this method is only effective for some 
patients. To match patients suffering from cancers to 
new promising treatments or clinical trials, genomic 
analysis of tumor samples could be performed [6]. 
Thus, it is important to determine the characteristics of 
the tumour immune microenvironment and to identify 
patients eligible for immunotherapy to improve the 
effects of immunotherapy [7]. 
 
The tumour microenvironment consists of immune 
cells, stromal cells, endothelial cells, inflammatory 
mediators, and extracellular matrix molecules, among 
which immune cells and stromal cells are the two main 
types of non-tumour components [8]. The purity of 
tumour tissue is an important feature of tumour 
heterogeneity. The prognostic evaluation is valuable, 
and these non-tumour cells dilute the purity of tumour 
cells, which have an important role in tumour growth. 
By analysing these non-tumour cells, especially 
immune cells and stromal cells in the tumour 
microenvironment, clinicians can more accurately 
understand the purity and immunological characteristics 
of tumours, and may implement new approaches to 
personalized medicine. 
 
The immune and stromal scores calculated based on the 
ESTIMATE (Estimation of STromal and Immune cells 
in MAlignant Tumor tissues using Expression data) 
algorithm can promote the quantitative analysis of 
immune and matrix components in tumours [9]. This 
algorithm had been applied in breast cancer [10], colon 
cancer [11], and glioblastoma [12], in which immune 
and stromal scores were calculated by analysing 
specific gene expression profiles of immune and 
stromal cells to predict non-tumour cell infiltration. 
 
In this study, we took advantage of data from The 
Cancer Genome Atlas (TCGA) to analyse: (1) the 
content of immune cells and stromal cells infiltrating 
the tumour microenvironment of HCC; (2) the 
relationship between immune scores and prognosis; (3) 
the relationship between immune scores and TP53, 
CTNNB1, and AXIN1 mutations; and (4) immune 
microenvironment-related genes and their impact on 
prognosis. 
 
RESULTS 
 
Relationship of ESTIMATE scores with immune 
infiltration 
 
A flowchart of the analysis procedure for this study is 
shown in Figure 1. We used four different methods to 

analyse the correlation of scores of all immune-related 
cell types. As shown in Figure 2A, the mean correlation 
of different immune cells was larger than 0.5. The ten 
most correlated immune cell scores with other scores 
were LCK (R=0.69), Co_stimulation (R=0.62), 
dendritic (R=0.62), Tfh (R=0.61), Co_inhibition 
(R=0.61), cytolytic (R=0.6), CD8_Tcell (R=0.59), 
ImmuneScore (R=0.59), ESTIMATEScore (R=0.58), 
and cytotoxic lymphocytes (R=0.57). The 
concentrations of immune-related cells calculated with 
different methods had a certain consistency. In 
hierarchical clustering heat maps of various scores 
(Figure 2B), we found immune cell scores in each 
sample by different methods were also consistent. 
 
We further tested the average correlations between the 
immune scores calculated by the four methods and other 
types of scores (Figure 2C). It could be seen that 
immune scores calculated by ESTIMATE that were 
larger than 0.54 had the highest average correlation than 
that using the other three methods. This indicated that 
ImmuneScore, StromalScore, and ESTIMATEScore 
calculated by the ESTIMATE method were closely 
related to components of immune cells in the tumour 
microenvironment. 
 
Relationship between ESTIMATE immune scores 
and HBV/HCV/molecular subtypes 
 
Based on the three scores generated by the 
ESTIMATE algorithm, we analysed the relationship 
between immune scores and HBV/HCV/molecular 
subtypes that had been reported in previous 
comprehensive genomic analysis of liver cancer [13] 
(Supplementary file 1). As shown in Figure 3, we 
could see that HBV and HCV factors had no 
significant effect on ImmuneScore, StromalScore, and 
ESTIMATEScore (all P>0.05). However, the three 
scores in the three molecular types of expression 
profiles were significantly different, and iCluster3 had 
the lowest score (all P<0.001), suggesting a difference 
in the immune scores among the molecular subtypes in 
liver cancer. 
 
Recurrent analysis of immune scores 
 
To observe the relationship between ESTIMATE scores 
and recurrence, we classified all the samples into high- 
and low-score subgroups according to the median 
ESTIMATE immune score, then the Kaplan-Meier 
method was used for recurrent difference analysis. As 
shown in Figure 4A–4C, patients in the high-score 
group had a higher 4-year recurrence-free rate than the 
low-score group, especially for progression-free 4-year 
survival, indicating that the immune scores were 
potential predictive recurrent markers. 
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Figure 1. Flowchart describing the procedure of analyzing and validating the prognostic values of immune scores and 
immune microenvironment-related genes. 
 

 
 

Figure 2. Correlations between three ESTIMATE scores and other types of immune-related scores. (A) Clustering heat map 
analyzed Spearman’s rank correlation coefficient. (B) Hierarchical clustering heat map using correlation to calculate distance. (C) Mean 
correlations of four methods using to calculating immune scores. 
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Relationship between ESTIMATE immune scores 
and TP53, CTNNB1, and AXIN1 mutations 
 
Many previous reports indicated that TP53, CTNNB1 
(β-catenin), and AXIN1 mutations are closely related to 
liver cancer development. Therefore, we analysed the 
relationship between mutations of these three genes and 
ESTIMATE’s immune scores. Firstly, the mutation data 
of TP53, CTNNB1, and AXIN1 were extracted from 
SNP data treated by Mutect in TCGA. Then, the 
relationship between the immune scores of the mutant 

and non-mutant group divided by the three genes was 
analysed separately (Figure 5A–5C). It could be seen 
that StromalScore had significant differences among all 
three of the mutated genes, with the mutation group 
being smaller than wild-type group (p=0.001 for TP53, 
p<0.001 for CTNNB1, p=0.005 for AXIN1). 
ImmuneScore was significantly lower in the CTNNB1 
mutant group than in the wild-type group, while 
ESTIMATEScores were significantly lower in the 
CTNNB1 and AXIN1 mutant groups than in the wild-
type group. 

 

 
 

Figure 3. Differences of the three ESTIMATE immune scores respectively in (A) HCV-positive and -negative patients, (B) HBV-positive and -
negative patients, (C) three molecular subtypes based on mRNA expression profiles. 
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Figure 4. Kaplan-Meier curve for recurrent analysis of overall survival time and progression-free survival time by immune 
scores. (A) ESTIMATEScore, (B) ImmuneScore, (C) StromalScore. H (red solid line) and L (blue solid line) respectively represented high-score 
group and low-score group. The red dotted line and blue dotted line respectively represented upper and lower limit of 95% confidence 
intervals. The vertical dotted line was at 4 years. OS, overall survival time; PFS, progression-free survival time. 
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Immune score-related module analysis 
 
As shown in Supplementary Figure A, clustering analysis 
of samples was performed. Three hundred and ninety-six 
samples were finally obtained after excluding the 
outliers. To ensure it was a scale-free network, we chose 
β=12 (Supplementary Figure B, C). Finally, a total of 15 
modules was obtained (Supplementary Figure D). The 
grey module was a gene collection that could not be 
aggregated into other modules. The transcripts statistics 
of each module are shown in Table 1. It could be seen 
that 6,226 transcripts were assigned to 14 co-expression 
modules. The correlations between 15 module 
eigenvectors and the three immune scores were 
calculated (Supplementary Figure E). The blue and 
yellow modules had the highest correlation with the three 
immune scores, and the average correlation coefficients 
were 0.59 and 0.48, respectively. There were 319 and 
142 genes in these two modules, totalling 461 genes. 
 
The functions of genes in the modules most relevant  
to the immune score were enrichment analysed 

(Supplementary file 2). The blue module was enriched 
in 85 KEGG pathways, 712 biological processes, 75 cell 
components, and 53 molecular functions. Meanwhile, 
the yellow module was enriched in 61 KEGG pathways, 
280 biological processes, 35 cellular components, and 
29 molecular functions. The most significant of the top 
20 KEGG pathways and GO terms of the blue module 
are shown in Figure 6A–6D. We determined that: the 
KEGG pathways were mainly related to inflammation, 
biological processes were mainly related to T cell 
activation, cell compositions were mainly enriched in 
MHC class II protein complex, MHC protein complex, 
and other components, and molecular functions were 
mainly enriched in cytokine receptor activity, MHC 
class II receptor activity, and other functions. These 
pathways and GO terms were closely related to the 
immune process. 
 
The top 20 KEGG pathways and GO terms of the 
yellow module are shown in Figure 6E–6H. It could be 
seen that: the module-enriched KEGG pathways were 
mainly related to focal adhesion and the PI3K–AKT 

 

 
 

Figure 5. (A–C) Relationship between mutations of TP53, CTNNB1, AXIN1 and ESTIMATE’s immune scores. Mut, mutation group. WT, wild 
type group. 
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Table 1. Numbers of genes included in 15 modules. 

Modules Genes 
black 97 
blue 319 
brown 236 
cyan 32 
green 124 
greenyellow 44 
grey 5577 
magenta 57 
pink 90 
purple 44 
red 104 
salmon 34 
tan 44 
turquoise 4859 
yellow 142 

 

 
 

Figure 6. Enrichment analysis of genes in modules most relevant to immune scores. Top 20 (A) KEGG pathway, (B) GO BP, (C) GO 
CC, and (D) GO MF enriched by Blue module. Top 20 (E) KEGG pathway, (F) GO BP, (G) GO CC, and (H) GO MF enriched by Yellow module. (I) 
Intersections of KEGG pathway and GO Term enriched by Blue and Yellow modules. BP, biological processe. CC, cell component. MF, 
molecular function. 
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signalling pathway, biological processes were mainly 
related to angiogenesis process, cell compositions were 
enriched in proteinaceous extracellular matrix, cell–
substrate junctions, and other components, and 
molecular functions were mainly enriched in functions 
such as growth factor binding and transmembrane 
receptor protein kinase activity. These pathways and 
GO terms were closely related to tumorigenesis and 
metastasis. 
 
Further analysis of the relationship between the two 
modules enriched in KEGG pathways and GO terms is 
shown in Figure 6I. The blue and yellow modules had 
only a small number of common intersections, which 
suggested that genes in the two modules performed 
different functions. 
 
Module-related hub gene screening 
 
To select genes related to immune score, we calculated 
the weight of the relationship between genes in the two 
modules. We selected an inter-gene weight threshold 
greater than 0.2, and finally obtained a weight co-
expression network of the genes in the two modules. As 
shown in Figure 7A, the network consisted of 155 nodes 

and 1,475 edges, including 150 blue module genes and 
five yellow module genes. It could be seen that more 
relevant the module was, the closer the genes were to 
other genes in the network. 
 
The largest network module had 36 genes, and the 
degree distribution of the network was further analysed. 
As shown in Figure 7B, the degree of most nodes was 
small, and a small number of nodes were large, which 
was consistent with the characteristics of biological 
networks. We calculated the correlation coefficient 
between genes and modules in the two co-expression 
modules (Figure 7C). It was more than 0.7 for most 
genes, indicating that genes in the module had high 
expression similarity. We selected 36 genes as immune 
microenvironment-related genes, which belonged to the 
largest network module, and a correlation coefficient 
greater than 0.7 (Supplementary file 3). Ten LCK 
metagenes and 26 blue module genes were included. 
 
Network interaction analysis of immune 
microenvironment genes 
 
As shown in Figure 8A, a total of 74 edges and 25 
nodes were obtained. Fourteen (93.3%) of the genes 

 

 
 

Figure 7. (A) Weight co-expression network of genes in Blue and Yellow modules. (B) The degree distribution of the network. (C) The 
correlation coefficient between genes and modules. 
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interacted directly with LCK metagenes in the PPI 
network, except SASH3. We further compared genes 
that interacted directly with LCK metagenes in the PPI 
network with co-expressed genes (Figure 8B). Finally, 
we screened 12 genes that were co-expressed with 
immune scores and did not interact directly with LCK 
metagenes, which might be new genes associated with 
the immune microenvironment (Table 2). 
 
Relationship between 12 new immune 
microenvironment genes and immune checkpoint 
genes 
 
We further analysed the correlation between the 12 new 
immune microenvironment genes and eight immune 
checkpoint genes, including 
 
PDCD1, CD274, PDCD1LG2, CTLA4, CD86, CD80, 
CD276, and VTCN1. As shown in Figure 9, there were 
significantly positive correlations between the new 
immune microenvironment genes and seven immune 
checkpoint genes, except VTCN1. The average 
correlation coefficient was greater than 0.52, suggesting 
that these immune microenvironment genes might be 
potential targets for immunotherapy. 
 
Prognostic value of 12 immune microenvironment 
genes 
 
From Figure 10, we could see that, except for RCSD1, 
high expression of the other 11 genes was significantly 
associated with a good prognosis (P<0.05). 

External validation of the expression of the 12 
immune-related genes and their relationship with 
immune scores 
 
In the GSE62232 dataset, two immune 
microenvironment gene expression profiles were not 
detected, so the other 10 genes were used to calculate 
their correlation with immune scores. As shown in 
Figure 11A, nine genes, except TMC8, had significant 
correlations with the immune score (P<0.001), which 
was consistent with the analysis in TCGA cohort. 
 
In the validation of protein expression encoded by the 
genes using clinical specimens from Human Protein 
Profiles, we found that TMC8 was strongly positive, 
BIN2, GIMAP7, and SPOCK2 were moderately 
positive, and FYB1, RCSD1, and SASH3 were weakly 
positive in HCC tissues relative to their expression 
levels in normal liver tissues (Figure 11B). However, 
NAPSB, TRAC, TRBC2, GPSM3, and TRBV28 were not 
found on the website. 
 
Validation of expression of 3 immune-related genes 
in HCC tissues 
 
To further validate the results, qRT-PCR was applied to 
analyse the relative mRNA expression of TMC8 and 
BIN2 in fresh HCC and adjacent non-tumour tissues. 
The results showed that elevated expression of TMC8 
and BIN2 relative mRNA in tumor tissues compared to 
adjacent normal tissues (Figure 12A–12B). Our western 
blotting analysis demonstrated that HCC tissues 

 

 
 

Figure 8. (A) PPI network of the immune microenvironment genes. Red circle was LCK Metagenes. Light blue circle represented genes 
belonged to Blue module. (B) Venn diagram showing the number of genes in WGCNA, StringPPI and LCK Metagenes. WGCNA was from co-
expression network. StringPPI was from direct interaction with LCK Metagenes in protein interaction network. MetaGenes was a merger of 
13 set of MetaGenes. 
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Table 2. 12 potential immune microenvironment genes. 

ENSG Symbol corr.R Module 
ENSG00000131401 NAPSB 0.706393 blue 
ENSG00000082074 FYB1 0.869508 blue 
ENSG00000110934 BIN2 0.937472 blue 
ENSG00000179144 GIMAP7 0.775353 blue 
ENSG00000167895 TMC8 0.801026 blue 
ENSG00000277734 TRAC 0.855262 blue 
ENSG00000211772 TRBC2 0.813236 blue 
ENSG00000107742 SPOCK2 0.759702 blue 
ENSG00000213654 GPSM3 0.939374 blue 
ENSG00000211753 TRBV28 0.796667 blue 
ENSG00000198771 RCSD1 0.870759 blue 
ENSG00000122122 SASH3 0.896006 blue 

 

exhibited relative higher levels of TMC8, BIN2 and 
SPOCK2 protein expression than those in normal liver 
tissues (Figure 12C–12F). In addition, IHC analysis was 
also conducted to determine TMC8, BIN2 and SPOCK2 

protein expression level in HCC. From the 
immunostaining, we could observe the positive 
immunoreactivity were primarily localized in the 
cytoplasm (Figure 12G). The three proteins were all 

 

 
 

Figure 9. Correlation between the 12 immune microenvironment genes (blue green bar) and 8 immune checkpoint genes 
(light green bar). Lower panel was Pearson correlation coefficient between each gene. Upper panel was scatter plot of expressions 
between each gene. Diag panel was expression of each gene. 
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up-regulated in tumor tissues compared with the 
adjacent normal liver tissues (Figure 12H–12J). These 
results all indicated that TMC8, BIN2 and SPOCK2 
were overexpressed in HCC tissues. 
 
DISCUSSION 
 
The tumour microenvironment is crucial for the 
occurrence, development and prognosis of tumours and 
is one of the main causes of tumour heterogeneity [14]. 
In cancer treatment, different strategies should be 
adopted for different tumour subtypes. Due to the 
heterogeneity of tumours, even the same treatment 
modalities often lead to quite different results for 
patients with the same pathological tumour subtypes. 
Immunotherapy has gained more attention as a very 
promising treatment and is being studied more deeply. 
As the two major non-tumour components in the tumour 
microenvironment, the composition of immune cells 

and stromal cells is of great value for the prognosis of 
tumours. Therefore, identifying the correct tumour 
immune subtype has a very important role in guiding 
the clinical treatment for tumours and monitoring 
prognosis. 
 
The ESTIMATE algorithm uses immune genes and 
stromal genes to calculate tumour immune scores and 
stromal scores, respectively, which have been used to 
assess the immunological characteristics of gliomas 
[12]. It also reflects the purity of tumour cells. In this 
study, we applied various algorithms to test the 
correlation between the scores of immune-related cell 
types from HCC patients in TCGA database. In 
comparison, the ESTIMATE algorithm more accurately 
represented the tumour microenvironment than the other 
three methods. Understanding immune cell infiltration 
in the HCC microenvironment laid the foundation for 
the next analysis. 

 

 
 

Figure 10. Kaplan-Meier curve for prognostic analysis of the 12 immune microenvironment genes. The red dotted line and blue 
dotted line respectively represented upper and lower limit of 95% confidence intervals of gene expression. 



www.aging-us.com 5490 AGING 

Chronic HBV and HCV infection are two major viral 
risk factors for HCC. A total of 22.4% patients 
displayed evidence of HBV infection in TCGA dataset, 
especially those of African ethnicity, younger age, and 
male sex. Approximately 17.9% patients presented with 
HCV infection, mainly Caucasian and black individuals 
[13]. Our analysis found no significant effect of the 
virus on the patients’ immune scores. However, when 
dividing HCC patients into three iClusters according to 
demographic, pathologic, and molecular features [13], 
we found that the three types of immune scores were 
significantly different (P<0.001). This suggested that 
patients’ immune characteristics were variable under 
different ethnic backgrounds, pathological types, and 
molecular characteristics. 
 
In the predictive recurrent analysis, the three types of 
immune scores were divided into high and low scores. 
The 4-year recurrence-free rate was higher in the high 
immune score group than that in the low immune score 
group, especially for ImmuneScore and 
ESTIMATEScore. This indicated that the proportion of 
immune cells and tumour purity in the tumour 

microenvironment had an important effect on the 
prognosis of HCC. Patients with abundant immune cell 
infiltration in the microenvironment had better response 
to treatment and could predict the recurrent rate of 
patients for 4 years. Patients with preoperative low 
immune scores should receive a comprehensive 
therapeutic regimen that includes chemotherapy, 
targeted therapy, and immunotherapy after surgery to 
improve prognosis. For patients with high immune 
scores, we should mainly focus on administering 
different immunotherapies combined with conventional 
treatments to improve prognosis. 
 
In previous studies, it was found that TP53, AXIN1, and 
CTNNB1 were the three most frequently mutated genes 
that were closely related to the tumorigenesis and 
development of HCC, suggesting the wild-type genes 
have tumour suppressive roles [15–18]. TP53 is a 
tumour suppressor gene, and its mutation is a 
recognized carcinogenic factor. Studies have found that 
TP53 mutations are associated with the occurrence of 
liver cancer. TP53 induces growth arrest or apoptosis of 
tumours depending on the physiological settings and 

 

 
 

Figure 11. External validation of 12 immune-related genes. (A) Pearson correlation of expression and ImmuneScore using GSE62232 
dataset. TRBC2 and TRBV28 were not detected. 9 genes, except TMC8, had significant correlation. Y-axis represented expression level of the 
genes in each sample. (B) Representative immunohistochemical staining images of 7 genes in normal liver tissue and HCC specimen. Images 
were taken from the Human Protein Atlas (https://www.proteinatlas.org). TMC8 was strongly positive, BIN2, GIMAP7, SPOCK2 were 
moderately positive, and FYB1, RCSD1, SASH3 were weakly positive in HCC tissues relative to their expression levels in normal liver tissues. 

https://www.proteinatlas.org/
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Figure 12. Measurement of TMC8, BIN2 and SPOCK2 at mRNA and protein level in our cohort. (A, B) Relative mRNA levels of 
TMC8 and BIN2 in 10 HCC samples were both overexpressed compared with matched normal samples by qRT-PCR. (C) Representative 
western blotting images showed protein expression of TMC8, BIN2 and SPOCK2 were overexpressed in HCC tissue than those in normal liver 
tissue. (D–F) Western blotting analysis demonstrated that mean greyscale of TMC8, BIN2 and SPOCK2 were all higher in 10 fresh-frozen HCC 
tissues compared with those in matched adjacent normal liver tissues. (G) Representative immunohistochemical staining images of TMC8, 
BIN2 and SPOCK2, which were all mainly expressed in the cytoplasm. Original magnification: x200. (H–J) Mean protein expression of TMC8, 
BIN2 and SPOCK2 in 35 HCC were all significantly higher compared with those in adjacent non-tumour tissue by immunohistochemistry. 
MAD: mean areal density. 
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cell type [19, 20]. Furthermore, TP53 mutations in HCC 
patients are linked with worse clinical stage and 
prognosis [21]. Meanwhile, approximately 5%–19% of 
patients with HCC have AXIN1 mutations [17]. AXIN1 
can control the level of β-catenin and serve as a 
negative regulator of Wnt/β-catenin signalling. 
Overexpression of wild-type AXIN1 could suppress the 
proliferation of HCC cells and accelerate their 
programmed cell death, which implies that AXIN1 is a 
therapeutic target in HCC [22]. Approximately 11%–
41% of HCC harbours CTNNB1-activating mutations 
[17, 21]. β-catenin is an important component of the 
canonical Wnt signalling pathway. It anchors the actin 
cytoskeleton and might be responsible for 
communicating the contact inhibition signal that causes 
cells to halt division [19, 23]. We analysed the 
relationship between liver cancer immune scores and 
TP53, AXIN1, and TP53 gene mutations, and found that 
StromalScore was significantly smaller in the TP53 
mutant group than in the wild group (P<0.05). The three 
immune scores were significantly smaller in the 
CTNNB1 mutant group than that in the wild-type group, 
while in the AXIN1 mutation group, StromalScore and 
ESTIMATEScore were smaller than in the wild-type 
group. This meant that the three mutated genes might 
affect the immune status and immune response of the 
liver cancer, and the immune score was related to the 
mutation of the related gene [24]. 
 
The assessment of molecular profiling combined with 
clinical data had identified personalized therapies and 
clinical trials for a large proportion of patients with 
cancer [6]. As a new promising treatment, studies on 
genetic aspects related to immunotherapy were urgently 
required. Through the calculation of immune scores, we 
could relatively accurately determine the tumour purity 
and immune cell infiltration in the tumour 
microenvironment. Finding new genes related to the 
immune microenvironment could help us analyse the 
immune status of patients more deeply and in a more 
targeted way. 
 
We performed co-expression analysis based on 
expression profile data. The results revealed that the 
KEGG pathways enriched by the blue model were 
mainly related to inflammation. The biological process 
and cell component enrichment analysis revealed  
that it was mainly about immune processes. The 
results of enrichment analysis of the yellow module 
suggested that it was closely related to the occurrence 
and development of tumours. Subsequently, we  
found 12 genes associated with the HCC immune 
microenvironment. 
 
To verify the accuracy of these genes, we analysed two 
external datasets: the GEO dataset and clinical 

immunohistochemistry specimens from Human Protein 
Profiles. By analysing the relationships between the 10 
immune-related genes in the GEO dataset and immune 
scores, we found that nine of these genes, including 
NAPSB, FYB1, BIN2, GIMAP7, TRAC, SPOCK2, 
GPSM3, RCSD1, and SASH3 had a high correlation 
with the immune score, which was consistent with our 
analysis in TCGA dataset. We also used data from 
Human Protein Profiles to demonstrate that the proteins 
encoded by seven immune-related genes were expressed 
at different degrees in HCC tissues, among which 
TMC8, BIN2, GIMAP7, and SPOCK2 were strongly to 
moderately positive in tumours. The two external 
datasets verified the accuracy of the results, and these 
genes might serve as potential markers for the immune 
status of HCC. 
 
As the main current tumour immunotherapy, immune 
checkpoint inhibitors could regulate the energy 
metabolism of tumour cells, the microenvironment, 
and tumour-specific immune responses [25]. The 
immune checkpoint is an immune molecule that 
regulates T cell immune response and is mainly 
distributed on the surface of antigen-presenting cells, 
T cells, and tumour cells [26]. Therefore, we verified 
the correlations between the tumour immune 
microenvironment and eight representative immune 
checkpoint genes, including PDCD1, CD274, 
PDCD1LG2, CTLA4, CD86, CD80, CD276, and 
VTCN1. The results showed that there was a 
significant positive correlation between immune 
microenvironment genes and all the immune 
checkpoint genes other than VTCN1. This suggested 
that these immune microenvironment genes might be 
potential immunotherapeutic targets. 
 
To better understand the effects of immune and stromal 
cell-related genes on prognosis, we also analysed the 
tumour microenvironment-related genes with poor 
prognosis to explore the underlying regulatory 
mechanisms. We identified 12 immune 
microenvironment-related genes and revealed that 
patients with high expression of immune 
microenvironment genes except for RCSD1 (P>0.05) 
would have a better prognosis (P<0.05). This also 
reflected to some extent that the immune 
microenvironment is an important component of 
immunotherapy. Detection of the immune 
microenvironment could help us better grasp the 
immune status of patients and might provide clinicians 
with more accurate treatment strategies. 
 
To further validate the accuracy, we selected three 
immune-related genes, TMC8, BIN2 and SPOCK2, to be 
evaluated using three different methods in our cohort 
recruited from the First Affiliated Hospital of 
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Zhengzhou University. The results revealed the 
overexpression of TMC8 and BIN2 mRNA in HCC 
tissues. Furthermore, TMC8, BIN2 and SPOCK2 protein 
levels were also consistently higher expressed in tumor 
tissues than those in normal liver tissues. 
 
In summary, we used the ESTIMATE algorithm to 
analyse the immune cell and stromal cell scores of the 
HCC microenvironment according to relative genes in 
TCGA database. Patients with high immune scores had 
a higher 4-year survival rate. Moreover, we revealed 
that mutations of TP53, CTNNB1, and AXIN1, having 
close relationships with the development of liver 
cancer, varied with various immune scores. We also 
applied the WGCNA to the analysis and identified 12 
genes related to the immune microenvironment of 
HCC. Through the validation of an external dataset, 
GSE62232, we found that the results of nine genes 
were consistent with that in TCGA dataset, and had 
potential as prognostic markers for HCC. However, 
the results should be further validated using large-scale 
clinical data. 
 
MATERIALS AND METHODS 
 
Data from TCGA cohort 
 
The transcriptome expression profiles and 
corresponding clinical information of HCC were 
downloaded from the Genomic Data Commons 
Application Programming Interface of TCGA 
(https://cancergenome.nih.gov/). Surgical resection 
samples were collected from patients who were 
diagnosed with HCC and did not receive prior  
adjuvant treatment for their disease. FPKM (fragments 
per kilobase million) data of RNA-Seq was first 
downloaded and then transferred to TPM (transcripts per 
million) expression data. The expression data also 
included single nucleotide polymorphism (SNP) 
expression data, containing 371 cases and 424 files as of 
February 2019. 
 
Data analysis 
 
Four different algorithms were used to calculated the 
scores of related immune cells. The expression levels of 
13 immune metagenes were listed, including 
ImmuneScore, LCK (lymphocyte-specific protein 
tyrosine kinase), TFH, Tregs, cytolytic, MHC1, MHC2, 
NK, macrophages, STAT1, IF_I, Co_stimulation, and 
Co_inhibition, which corresponded to various immune 
cell types and reflected various immune functions [10] 
(Supplementary file 2). Based on the gene expression 
levels of these metagenes, their scores were calculated 
using the median expression level of each gene in all the 
samples (Supplementary file 3). 

There were large numbers of immune cell-specific genes 
highly expressed in the tumor microenvironment. The 
scores of six immune cell types of liver cancer, including 
B cells, CD4 T cells, CD8 T cells, neutrophils, 
macrophages, and dendritic cells, were downloaded  
from the Timer (https://cistrome.shinyapps.io/timer/) 
database, which used constrained least squares fitting on 
the informative immune signature genes to detect the 
immune cell infiltration in tumour tissue [27] 
(Supplementary file 4). 
 
ESTIMATE is an algorithmic tool for predicting tumour 
purity, which uses the gene expression profiles of 141 
immune genes and 141 stromal genes to generate 
ESTIMATE scores [9]. The presence of infiltrated 
immune cells and stromal cells in tumour tissues were 
calculated using related gene expression matrix data, 
represented by ImmuneScore and StromalScore, 
respectively (Supplementary file 5). 
 
The abundance of eight immune cell types, including T 
cells, CD8 T cells, cytotoxic lymphocytes, NK cells, B 
lineage, monocytic lineage, myeloid dendritic cells, 
neutrophils, and other two types of cells, including 
endothelial cells and fibroblasts, in each sample were 
estimated with MCPcounter software (Supplementary 
file 6). 
 
To explore the relationship of ESTIMATE scores with 
other immune scores, we analysed the scores of several 
immune-related cell types using the four different 
algorithms. 
 
Relationship between ESTIMATE’s immune score and 
TP53, CTNNB1, and AXIN1 mutations was also analysed. 
 
Mining immune score-related modules 
 
To further explore prognostic markers related to the 
immune microenvironment of liver cancer, we obtained 
423 expression profiles of all samples. More than 75% 
transcripts, totalling 11,803 TPM >1 and median 
absolute deviation greater than the median were 
selected in these samples. Firstly, hierarchical clustering 
analysis of the samples was undertaken, and outliers 
with a height over 100,000 were excluded. Distances 
between each transcript were calculated with Pearson’s 
correlation coefficient. WGCNA was constructed using 
the R package WGCNA. 
 
The co-expression network conformed to a scale-free 
network, which was to say log(k) of the node with 
connection degree k was negatively correlated with 
log(P(k)) of probability of the node, and the correlation 
coefficient was greater than 0.85. To ensure it was a 
scale-free network, we chose β=12 (Supplementary 

https://cancergenome.nih.gov/
https://cistrome.shinyapps.io/timer/
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Figure). Then, the expression matrix was converted into 
an adjacency matrix, which was converted into a 
topological matrix. Hierarchical clustering analysis of 
genes was performed by the average linkage 
hierarchical clustering method. According to criteria of 
the hybrid dynamicTreecut software package, each 
lncRNA network module had a minimum of 30 genes. 
After confirming the gene modules, we calculated the 
eigengenes of each module in turn, then clustered the 
modules, and merged the closer modules into new ones 
by setting height=0.25, deepSplit=2, and 
minModuleSize=30. We further analysed the functions 
of genes that were most correlated with the immune 
score in the modules. KEGG and GO enrichment 
analysis of the genes were performed with FDR <0.05 
using R package clusterProfiler. 
 
Constructing the PPI network 
 
We analysed PPI network of these 36 immune 
microenvironment-related genes using R package. We 
mapped the 36 genes from STRING database, selected 
interaction scores greater than 0, and then obtained the 
network relationship among these genes. 
 
Prognostic value of 12 immune microenvironment-
related genes 
 
To analyse the prognostic value of 12 immune 
microenvironment-related genes, all samples were 
divided into high and low expression groups according 
to their expression profiles. Then, prognostic 
differences between the two groups were analysed by 
the K-M method. 
 
External validation in GEO datasets and Human 
Protein Profiles 
 
To ensure the accuracy of results from TCGA cohort, 
Gene Expression Omnibus (GEO, https://www.ncbi.nlm. 
nih.gov/geo/) datasets were analysed to verify the 
relationship between the 12 genes and immune scores. 
GSE62232, containing 81 liver cancer samples and 10 
normal samples, was selected. The standardized 
expression matrix and sample information files were 
downloaded, and immune scores for each sample were 
calculated using R ESTIMATE package. We also 
extracted the gene expression profiles of the 12 
immune-related genes, and then calculated Pearson’s 
correlation coefficient between the genes and the 
immune scores. 
 
To further verify the accuracy of the results, we analysed 
the expression of the proteins encoded by the 12 
immune-related genes using clinical specimens from The 
Human Protein Atlas (https://www.proteinatlas.org) [28]. 

The data from TCGA, GEO and The Human Protein 
Atlas were all publicly available and open access, so no 
approval was needed from the ethics committees. 
 
Quantitative real-time polymerase chain reaction 
(qRT-PCR) evaluation 
 
From January 2017 to December 2018, 10 HCC patients 
who underwent curative resection and didn’t receive 
neoadjuvant therapy before surgery at the First 
Affiliated Hospital of Zhengzhou University 
(Zhengzhou, China) participated in this study in 
accordance with the provisions of Helsinki Declaration. 
 
To evaluate the gene expression of TMC8 and BIN2, 10 
pairs of fresh HCC and adjacent normal samples were 
collected and tested using qRT-PCR method. Total RNA 
was extracted with Trizol reagent (Invitrogen, USA) and 
reverse-transcribed into cDNA using RevertAid First 
Strand cDNA Synthesis Kit (Thermo, USA) according 
to the manufacturer’s instruction. qRT-PCR was 
performed with the FastStart Universal SYBR Green 
Master (Rox) (Servicebio, China). The quantitative 
levels of gene expressions in HCC and adjacent 
paracancerous tissue were evaluated using the 2-ΔΔCt 
relative quantification method. The primers were as 
follows: TMC8: forward primer, 5′-GACTCTGCTGGG 
TCAGGGCTAT-3′, reverse primer, 5′-TCCACCTTGA 
ACTCGTTGCTG-3′; BIN2: forward primer, 5′-ACGA 
GGAGAAACTGGCTGACC-3′, reverse primer, 5′-CAC 
TGTCATAGTCCACGAGTTTCC-3′; β-actin (used as 
control): forward primer, 5′-GGAAGCTTGTCATCAA 
TGGAAATC-3′, reverse primer, 5′- TGATGACCCTT 
TTGGCTCCC-3′. 
 
Western blotting analysis 
 
Proteins were isolated from these 10 pairs of fresh-frozen 
HCC and adjacent normal tissues as previously described 
[29]. Protein concentrations of TMC8, BIN2 and 
SPOCK2 were measured using bicinchoninic acid assay. 
Equal amounts of proteins were separated by sodium 
dodecyl sulfate polyacrylamide gel electrophoresis (SDS-
PAGE) and transferred to a polyvinylidene difluoride 
(PVDF) membrane (Millipore, USA). After blocking 
with 5% skimmed milk, the membrane was incubated 
with primary rabbit polyclonal antibodies (TMC8, BS-
13116R, 1:500, Bioss, China; BIN2, BS-9727R, 1:500, 
Bioss, China; SPOCK2, AB217044, 1:1000, Abcam, 
UK) and ACTIN (GB11001, 1:3000, Servicebio, China) 
overnight at 4 °C, respectively. After washing the 
membrane, it was then incubated with a horseradish 
peroxidase-conjugated goat anti-rabbit secondary 
antibody (GB23303, 1:3000, Servicebio, China). Finally, 
the bound immunocomplexes were detected using ECL 
methods. 

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.proteinatlas.org/
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Immunohistochemical (IHC) validation of the 
immune-related genes 
 
All haematoxylin and eosin stained slides of tumor and 
adjacent non-tumour samples from another 35 HCC 
patients, confirmed by two experienced pathologists, 
were collected. Three immune-related genes, TMC8, 
BIN2 and SPOCK2, were selected to be further 
validated with immunohistochemical method. All 
formalin-fixed paraffin-embedded HCC samples were 
collected to examine the protein levels of the three 
immune-related genes. 
 
Slides with 4um sections from the paraffin-embedded 
specimens were deparaffinized and rehydrated. After 
conducting heat-mediated antigen retrieval, endogenous 
peroxidase activity was blocked by incubating the 
sections with 3% hydrogen peroxide at room 
temperature for 25 min. Then the slides were washed 
with phosphate buffered saline (PBS) three times and 
incubated with bovine serum. They were further 
incubated with primary and secondary antibodies. After 
washing with PBS and incubating with 3.3′-
diaminobenzidine solution for 5 min, each section was 
counterstained with hematoxylin. All IHC slides were 
analyzed using Image-pro plus 6.0 software (Media 
Cybernetics, USA). The results were tested by two 
pathologists. For TMC8, BIN2 and SPOCK2 expression 
analysis, the relevant primary antibodies (BS-13116R, 
1:400, Bioss, China; BS-9727R, 1:200, Bioss, China 
and AB217044, 1:200, Abcam, UK) were used. The 
results were all expressed with mean areal density 
(MAD). 
 
Statistical methods 
 
All analyses were conducted using R software  
(version 3.5.2). ImmuneScore, StromalScore and 
ESTIMATEScore of each sample were calculated with 
R package ESTIMATE. The abundance of eight 
immune cell types, endothelial cells, and fibroblasts in 
each sample were estimated with MCPcounter software. 
Distances between each transcript were calculated with 
Pearson’s correlation coefficient. WGCNA was 
constructed using the R package WGCNA. The 
relationships between immune scores and 
HBV/HCV/molecular subtypes were tested by Analysis 
of Variance test. Survival R package was used for 
Kaplan-Meier curve analysis. Wilcox test was 
performed to analyze relationships between 
ESTIMATE immune scores and TP53, CTNNB1, 
AXIN1 mutations. Correlations between immune-
related genes and immune checkpoint gene, 
ImmuneScores were studied by corrgram R package. 
The two-tailed paired t-test was used for data of TMC8, 
BIN2 and SPOCK2 expression at mRNA and protein 

level. All statistical tests were two sided and p values 
<0.05 were considered as statistically significant. 
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SUPPLEMENTARY MATERIALS 
 
Supplementary Figure 
 

 
 

Supplementary Figure. (A) Clustering analysis of all samples. 396 samples finally obtained after deleting outliers with height larger than 
100000. (B, C) Analysis of network topology for various soft-thresholding powers to ensure it being scale-free network. (D) Results of gene 
dendrogram and module colors. 15 modules were obtained. (E) Module-trait relationship between the 15 modules eigenvectors and the 
three immune scores. 
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Supplementary Files 
 
Please browse Full Text version to see the data of Supplementary Files 1–6. 
 
Supplementary File 1. Samples.icluster. 

Supplementary File 2. ImmuneScore.genes.ids. 

Supplementary File 3. Immune.meta.score. 

Supplementary File 4. Immune.immu.score. 

Supplementary File 5. Immune.est.score. 

Supplementary File 6. Immune.MCPcounter.score. 


