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ABSTRACT

In the light of recent advances in the immunotherapy field
for breast cancer (BC) treatment, especially in the triple-
negative subtype, the identification of reliable biomarkers
capable of improving patient selection is paramount,
because only a portion of patients seem to derive benefit
from this appealing treatment strategy. In this context,
the role of programmed cell death ligand 1 (PD-L1) as a

potential prognostic and/or predictive biomarker has been
intensively explored, with controversial results. The aim of
the present review is to collect available evidence on the
biological relevance and clinical utility of PD-L1 expression
in BC, with particular emphasis on technical aspects, prog-
nostic implications, and predictive value of this promising
biomarker. The Oncologist 2019;24:e1055–e1069

Implications for Practice: In the light of the promising results coming from trials of immune checkpoint inhibitors for breast
cancer treatment, the potential predictive and/or prognostic role of programmed cell death ligand 1 (PD-L1) in breast cancer
has gained increasing interest. This review provides clinicians with an overview of the available clinical evidence regarding
PD-L1 as a biomarker in breast cancer, focusing on both data with a possible direct impact on clinic and methodological pitfalls
that need to be addressed in order to optimize PD-L1 implementation as a clinically useful tool for breast cancer management.

INTRODUCTION

In the constantly evolving era of immunotherapy, the blockade
of the programmed cell death 1 (PD1)/programmed cell death
ligand 1 (PD-L1) immune checkpoint pathway represents one
of the most promising strategies to revert immune evasion in
the cancer immunoediting process. PD1 is a cell surface mem-
brane protein, member of the B7 family of immune check-
points, which is activated by its ligands PD-L1 and PD-L2.
Activated lymphocytes induce the expression of PD-L1 on the
surface of T cells, Natural Killer cells (NK), macrophages, and,
most importantly, tumor cells, through different mechanisms,
among which the secretion of interferon gamma (IFN-gamma)
is the most important. Once engaged, the PD1/PD-L1 pathway
leads to the mitigation of T-cell-mediated immune response
through the inhibition of T-cell activation and the promotion
of the regulatory function of T lymphocytes. In solid tumors,

this process may be exploited by the tumor microenviron-
ment to silence or at least attenuate the antitumor immune
response [1–3].

The use of immune checkpoint inhibitors led to striking
results in several solid tumors such as melanoma, bladder
cancer, and non-small cell lung cancer (NSCLC). Although
breast cancer (BC) is not traditionally considered immuno-
genic, a growing body of evidence suggests that certain BC
subtypes, namely, triple-negative (TN) and human epider-
mal growth receptor 2 (HER2)-positive (HER2+), may exhibit
a strong infiltration by immune cells with prognostic and
even predictive implications [4, 5]. This evidence also fos-
tered the evaluation of immune checkpoint inhibitors in BC,
with promising results, especially in the TN subtype. Impor-
tantly, a statistically significant progression-free survival
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(PFS) benefit with the combination of atezolizumab plus
nab-paclitaxel compared with placebo plus nab-paclitaxel in
patients with TN metastatic BC (MBC) has recently been
reported [6]. In this context, as a result of the growing
interest in the identification of reliable prognostic and/or
predictive biomarkers for patients treated with immuno-
therapy, the scientific interest focused on PD-L1 expression.
However, the clinical relevance of PD-L1 as a biomarker in
BC remains to be clearly defined.

We therefore conducted a review on the role of PD-L1
expression in BC with the aim of collecting available evi-
dence coming from clinical studies.

MATERIALS AND METHODS

Relevant studies were searched in the PubMed database with
the following keywords: “breast cancer,” “breast tumor,” “breast
neoplasm,” “programmed cell death ligand 1,” “programmed
cell death 1,” “PD-L1,” “PD-1,” “B7-H1,” “CD274,” “CD279,” and
“immune checkpoint.”

In addition, reference lists of retrieved articles were
manually reviewed.

In order to include the most recent data, we also searched
for relevant studies presented in the form of abstracts in
major international medical oncology conferences (American
Society of Clinical Oncology 2016, 2017, 2018; San Antonio
Breast Cancer Symposium 2016, 2017, 2018; European Society
for Medical Oncology 2016, 2017, 2018).

The language was restricted to English.

PD-L1 Expression in BC
PD-L1 expression by immunohistochemistry (IHC) or gene
expression has been observed in approximately 20%–40%
of all BCs across different studies, and it has been shown to
be significantly higher in invasive disease compared with
normal breast tissue [7–12] and premalignant lesions as in
situ carcinoma [13].

In addition, it has been reported that PD-L1 is differen-
tially expressed across different BC subtypes. In particular,
available evidence consistently reports greater expression
of PD-L1 in the TN subtype (up to 60% of PD-L1 expression)
compared with non-TNBC [14–21]. These data appear to be
coherent with the observation that PD-L1 tumor expression
is positively associated with stromal tumor-infiltrating lym-
phocytes (TILs) in this BC subtype [22–29], which is known to
be more frequently infiltrated by stromal TILs than non-TNBC
[5], as summarized in Table 1, thus possibly suggesting that
these two immune biomarkers tend to run parallel.

Data on PD-L1 expression in HER2-positive BC are more
controversial. In fact, whereas in some studies HER2 positiv-
ity has been correlated with higher expression of PD-L1
(up to 50%) compared with HER2-negative BC [10, 14, 18,
20], others failed to report any difference [9, 15–17, 19, 30].

Results from two meta-analyses including partially over-
lapping studies confirmed the greater PD-L1 expression in
TNBC [31, 32] compared with non-TN subtypes but were
not consistent in reporting the association between HER2
status and PD-L1 expression.

However, when considering molecular intrinsic BC subtypes
by gene expression profiling rather than IHC, both basal-like

and HER2-enriched subgroups were found to be enriched in
PD-L1 expression with respect to luminal BC [10, 25, 33–35],
thus possibly highlighting that a more subtle classification in
BC subtypes may help better capture the relevance of immune
microenvironment for TN and HER2-positive BC.

Association with Clinicopathological Characteristics
Several studies evaluated PD-L1 expression according to base-
line clinicopathological features of patients with BC, consis-
tently reporting a correlation between higher PD-L1 expression
and unfavorable classic prognostic factors, particularly poorer
histological grade [10, 11, 14, 18, 30, 36–45], higher prolifera-
tive index [10, 38, 39, 46, 47], more advanced N stage [14, 30,
44, 48], larger tumor size [10, 11, 14, 30, 44, 48], and younger
age at BC diagnosis [14, 39, 40, 48].

A possible explanation for such observations may be
attributable to the immune escape phenomenon. Indeed, a
high expression of PD-L1 may reflect the activation of the
immune checkpoint PD1/PD-L1 pathway leading to the miti-
gation of the host's antitumor immune response, thus ulti-
mately resulting in increased tumor aggressiveness [31].
Although intriguing, further evidence is needed in order to
confirm this hypothesis. In addition, it should be considered
that aggressive clinicopathological characteristics are typical
features of the TN subtype, thus possibly posing a bias in
the interpretation of these data.

Association with Prognosis
Several authors explored the possible prognostic role of PD-
L1 expression in early BC, reporting conflicting results, as
shown in Table 2.

PD-L1 expression evaluated by IHC on untreated primary
BC has been associated with both better and poorer clinical
outcome. In particular, several authors reported poorer disease-
free survival (DFS)/recurrence-free survival (RFS) and/or overall
survival (OS) in cases of higher PD-L1 expression on primary BC
[14, 19, 30, 49–53], especially in the TN subtype [19, 50, 53].
These results seems to be consistent with the previously men-
tioned correlation between PD-L1 expression and unfavorable
clinicopathological BC features, thus possibly indicating that PD-
L1 expression may be part of the immune evasion process tak-
ing place in the context of tumor microenvironment [14].

Counterintuitively, a prognostic role in the opposite direc-
tion has also been suggested.

In particular, PD-L1 expression has been positively and
independently associated with DFS/RFS and/or OS in several
unselected primary BC cohorts [16, 21, 22, 24, 25, 40, 44, 46,
48, 54–58]. In addition, when considering specific BC sub-
types, it has been suggested that PD-L1 protein expression
may retain a positive prognostic role in TNBC [21, 22, 24, 46,
55, 56] and in HER2+ BC, in both trastuzumab-treated and
untreated patients [44, 57].

Such inconsistency may reflect the fact that in the above-
mentioned studies, PD-L1 expression was assessed at the
protein level by IHC. However, it should be considered that
the assessment of PD-L1 by IHC on BC tissue lacks standardi-
zation, thus possibly impairing the reproducibility of results
across different studies. Interestingly, when considering the
prognostic role of PD-L1 assessed at mRNA expression level,
available evidence is consistent in suggesting an association
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between PD-L1 and better outcome in terms of both metas-
tasis-free survival/DFS and OS, especially in TN/basal-like BC
[10, 12, 59]. Actually, although the positive prognostic value
of PD-L1 may appear paradoxical, it has been reported that
mRNA expression of immunosuppressive checkpoint mole-
cules such as PD-L1 strongly correlates with other immune
markers with proimmune activity [27]. In addition, a positive
correlation between higher PD-L1 mRNA expression and an
immune signature of genes associated with a strong cytotoxic
activity has been reported [10]. In this context, PD-L1 expres-
sion may reflect a negative feedback mechanism following the
activation of cytotoxic antitumor immune response, rather
than an isolated immunosuppressive process. Indeed, this
hypothesis may also be biologically plausible if considering
that the expression of immune checkpoint molecules is also
triggered by activated T cells through an interferon-gamma-
mediated feedback mechanism [60].

Although the positive prognostic value of PD-L1
may appear paradoxical, it has been reported that
mRNA expression of immunosuppressive check-
point molecules such as PD-L1 strongly correlates
with other immune markers with proimmune
activity. In addition, a positive correlation between
higher PD-L1 mRNA expression and an immune
signature of genes associated with a strong
cytotoxic activity has been reported.

Association with Treatment Response

Immunotherapy
In the last decades, immune checkpoint inhibitors have
emerged as a promising treatment strategy for metastatic BC,
especially in the TN subtype, where the immune microenvi-
ronment is thought to play a major role in tumorigenesis and
tumor progression. Indeed, the encouraging results from sev-
eral early-phase trials testing immune checkpoint inhibitors in
heavily pretreated MBC fostered the evaluation of such agents
in phase II and III trials both as single agent and in combina-
tion with conventional treatment strategies, including targeted
therapies. However, only a portion of patients seem to derive
benefit from these agents. For this reason, a proper and reli-
able selection of patients is strongly needed in order to dis-
criminate potential responders from nonresponders.

In this context, PD-L1 expression has been proposed as
potentially capable of predicting the benefit from anti-PD1/
PD-L1 agents in the context of several prospective trials, as
summarized in Table 3.

In detail, the KEYNOTE-012 phase Ib trial tested
pembrolizumab monotherapy in advanced TNBC. The enroll-
ment of only PD-L1-positive patients did not allow for a con-
clusion on the predictive role of PD-L1 expression to be
drawn; however, the authors reported a trend toward greater
clinical benefit from pembrolizumab in cases of higher PD-L1
expression evaluated with a prototype scoring assay (IHC
assay using clone 22C3) [61].Ta
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Pembrolizumab monotherapy has also been tested in the
context of the KEYNOTE-086 phase II trial, which included two
cohorts of patients: cohort A enrolled previously treated
patients with TNMBC irrespective of PD-L1 status, whereas
cohort B included previously untreated PD-L1-positive (IHC

assay using clone 22C3) TNMBC. In cohort A, overall response
rate (ORR) appeared to be modest and independent from PD-
L1 status; however, a trend toward a greater clinical benefit
from pembrolizumab in terms of both disease control rate
(DCR) and duration of response was observed in PD-L1-positive

Table 3. Studies of immune checkpoint inhibitors: association with PD-L1 status

Study (design)

No. of patients
included
(BC subtype)a

Treatment arms
(primary endpoints)

Study
enrollment
according to
PD-L1 status

Centralized PD-L1
assessment (assay)

PD-L1 positivity
cutoff Main findings Origin of samples

Nanda 2016 [61]
Keynote-012
(phase Ib)

111 (TNMBC) Pembrolizumab
(ORR)

PD-L1 positive Protein (prototype
IHC assay: clone
22C3)

% positive TC and IC:
Positive: ≥1%

Increased ORR
(one-sided p = .028)
and PFS (one-sided
p = .012) with
increasing expression
of PD-L1

NA (archival)

Adams 2019 [62]
Keynote 086 (phase
II)
Cohort A

170 (TNMBC) Pembrolizumab
(ORR)

Regardless of
PD-L1 status

Protein (IHC: clone
22C3)

CPS:
Positive: ≥1

ORR independent from
PD-L1 status but trend
of greater
PD-L1-positive tumors
in terms of DCR (ORR
5.3% in total
population vs. 5.7% in
PD-L1+ vs. 4.7% in
PD-L1−; DCR 7.6% in
total population vs.
9.5% in PD-L1+ vs.
4.7% in PD-L1−)

146 newly
collected: mostly
from metastatic
sites
47 archival: mostly
from primary
breast
tumors

Adams 2019 [63]
Keynote II
Cohort B

84 (TNMBC) Pembrolizumab
(ORR)

PD-L1 positive Protein (IHC: clone
22C3)

CPS:
Positive: ≥1

ORR 21%
DCR 23.8%

Tolaney 2017 [64]
Keynote
150-Enhance 1
(phase Ib/II-interim
analysis)

106 (TNMBC) Pembrolizumab +
eribulin
(ORR)

Regardless of
PD-L1 status

Protein (IHC: clone
22C3)

CPS:
Positive: ≥1

No association
between response and
PD-L1 status (ORR for
PD-L1+ vs. PD-L1−:
25.7% vs. 25%; median
PFS for PD-L1+ vs.
PD-L1− 19 months vs.
21 months)

NA

Loi 2018 [28]
Panacea
(phase Ib/II)

58 (HER2+ MBC) Pembrolizumab +
trastuzumab
(ORR)

Phase Ib: PD-L1
positive
Phase II:
regardless of
PD-L1 status

Protein (IHC: clone
22C3)

TC and IC PD-L1:
Positive: ≥1%
CPS:
positive: ≥1

ORR for PD-L1+ vs.
PD-L1−: 15% vs. 0%
1-year OS for PD-L1+
vs. PD-L1−: 65% vs.
12%

Metastatic lesions

Schmid 2017 [65]
(expansion cohort
phase Ia study)

112 (TNMBC) Atezolizumab
(ORR)

Initially limited
to PD-L1
positive, then
opened also to
PD-L1 negative

Protein (IHC: clone
SP142)

Staining on IC
Negative: 0/1
Positive: 2/3 (≥ 5%)

ORR for PD-L1 2/3 vs.
PD-L1 0/1: 17% vs. 8%

NA

Adams 2016 [66];
Pohlmann 2018 [67]
(phase Ib; 2-years
update)

32 (TNMBC) Atezolizumab +
nab-paclitaxel (ORR)

Regardless of
PD-L1 status

Protein (IHC: clone
SP142)

% positive TC and IC:
0: 0% (negative)
1: 0%–4% (positive)
2: 5%–9% (positive)
3: ≥10% (positive)

ORR for PD-L1+ (PD-L1
1/2/3) vs. PD-L1−
(PD-L1 0): 42% vs. 33%
Secondary endpoints:
longer PFS (PD-L1+ vs.
PD-L1−: 6.9 months
vs. 5.1 months) and OS
(PD-L1+ vs. PD-L1−:
21.9 months vs. 11.4
months) with higher
PD-L1

NA

Dirix 2017 [68]
Javelin (expansion
cohort phase I trial)

168 (MBC) Avelumab
(ORR)

Regardless of
PD-L1 status

Protein (IHC: clone
73-10)

% positive TC:
different thresholds
for positivity: 1%
and 5%
% positive IC:
positive: ≥10%

TC PD-L1:
no efficacy trends in
subgroups defined by
PD-L1 expression in
tumor cells at different
thresholds
IC PD-L1:
ORR for PD-L1+ vs.
PD-L1− 16.7% vs. 1.6%
in the overall group,
and 22.2% vs. 2.6% in
TNBC

The most recent
suitable
biopsy or surgical
specimen available

Schmid 2018 [6]
Impassion130 (phase
III)

902 (TNMBC) nab-paclitaxel +
atezolizumab
/placebo
(PFS, OS)

Regardless of
PD-L1 status
(PD-L1 status
was a
stratification
factor)

Protein (IHC: clone
SP142)

PD-L1 on IC
(percentage of
tumor area):
positive: ≥1%

PFS for PD-L1+ in
control vs.
experimental arm: 7.5
vs. 5.0 months
OS for PD-L1+ in
control vs.
experimental arm: 55
vs. 15.5 months

NA

aPatients included in the translational analysis.
Abbreviations: BC, breast cancer; CPS, combined positive score; DCR, disease control rate; HER2, human epidermal growth receptor 2; IC,
immune cells; IHC, immunohistochemistry; ITT, intention-to-treat population; MBC, metastatic breast cancer; NA, not available; ORR, overall
response rate; OS, overall survival; PD-L1, programmed cell death ligand 1; PFS, progression-free survival; TC, tumor cells; TNMBC,
triple-negative metastatic breast cancer.
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versus PD-L1-negative patients [62]. In cohort B, higher ORR
(21.4%) and longer duration of responses (median 10.4months)
were observed as compared with cohort A, thus strengthening
the hypothesis that patients with BC harboring PD-L1 positivity
may show good responses to pembrolizumab monotherapy,
especially in the earliest lines of treatment for metastatic dis-
ease [63].

The combination of pembrolizumab plus eribulin has
been evaluated in the context of the KEYNOTE-150 phase
IB/II trial, which included TNMBC regardless of PD-L1 status.
No association between treatment response and PD-L1 sta-
tus (IHC assay using clone 22C3) was reported [64].

The association of PD-L1 protein expression with treat-
ment response has also been evaluated in HER2+ BC. In the
phase Ib/II PANACEA trial, the combination of pembrolizumab
plus trastuzumab was explored in HER2+ MBC in both PD-
L1-positive and -negative patients (IHC assay using clone
22C3). The authors reported higher ORR (15.2% vs. 0%) and
longer 1-year OS (65% vs. 12%) for PD-L1-positive as com-
pared with PD-L1-negative patients [28].

Atezolizumab monotherapy was tested in an expansion
cohort of a phase Ia trial of both PD-L1-positive and PD-
L1-negative TNMBC. The authors reported that PD-L1 posi-
tivity was associated with higher response rates [65].

In the phase Ib trial of atezolizumab in combination with
nab-paclitaxel for TNMBC (regardless of PD-L1 status), the
biomarker analysis revealed that PD-L1 expression on either
tumor or immune cells (by IHC, clone SP142;) correlated
with ORR [66, 67].

The subsequent phase III trial—Impassion130—randomized
patients with TNMBC to receive atezolizumab + nab-paclitaxel
versus placebo + nab-paclitaxel. Stratification factors included
PD-L1 status assessed on TILs by IHC (clone SP142; intention-to-
treat [ITT] population = 902, PD-L1-positive patients = 369). The
results showed only a slight PFS improvement associated with
atezolizumab (median 7.2 vs. 5.5 months; hazard ratio [HR]
0.80; 95% confidence interval [CI] 0.69–0.92; p = .002) and no
effect on OS (median 21.3 vs. 17.6 months; HR 0.84; 95% CI
0.69–1.02; p = not significant) in the ITT population. However,
when considering only PD-L1-positive patients, a significant PFS
benefit (median 7.5 vs. 5.0 months; HR 0.62; 95% CI 0.49–0.78;
p < .001) and a trend in improved OS (25 vs. 15.5 months; HR
0.62; 95% CI 0.45–0.86; no formal testing performed) were
observed in the atezolizumab arm compared with the placebo
arm, thus demonstrating for the first time in a randomized clini-
cal trial the possible predictive value of PD-L1 in TNMBC [6].

Single anti-PD-L1 agent avelumab has been evaluated in a
cohort of MBC in the context of the phase Ib Javelin trial. In
the biomarker analysis, different compartments for PD-L1
evaluation (tumor cells vs. tumor-associated immune cells)
and different PD-L1 positivity thresholds (for tumor cells: ≥1%
vs. ≥5% with any staining intensity and ≥ 25% with moderate-
to-high staining; for tumor-associated immune cells: ≥10% at
any staining) were evaluated, reporting a trend toward higher
ORR in the overall population and TN subgroup when PD-L1
positivity was determined on tumor-associated immune cells
(≥10%) rather than on tumor cells [68].

Neoadjuvant Chemotherapy
In the last decades, neoadjuvant chemotherapy (NACT) has
been increasingly used in the management of locally advanced

BC, especially in the TN and HER2+ subtype, where the
achievement of a pathological complete response (pCR) after
NACT represents a strong positive prognostic factor [69]. For
this reason, the identification of reliable biomarkers capable of
identifying the subset of patients more likely to obtain a pCR
after NACT is of great interest in BC translational research.

In this context, the possible association between base-
line PD-L1 expression and efficacy of conventional neo-
adjuvant treatments has been recently evaluated. Studies
addressing this issue have reported partially conflicting
results, as shown in Table 4.

In detail, PD-L1 mRNA upregulation has been associated
with increased pCR rates in two cohorts of patients with BC
treated with anthracycline-based chemotherapy (CT) [10] in
a large retrospective study and anthracycline-taxane ± car-
boplatin [27] in the context of the GeparSixto randomized
trial. The association between PD-L1 and pCR was only con-
firmed for basal-like/TN and HER2-enriched/HER2-positive
subsets.

A positive relationship between PD-L1 protein expression
and pCR has been reported as well. In particular, two retro-
spective studies reported that higher levels of PD-L1 expres-
sion were independently associated with increased pCR rates
after anthracycline-based CT in hormone receptor-positive/
HER2-negative BC [17] and in TNBC [26], respectively.

In addition, the translational analysis of the phase II HER2+
hormone receptor-negative WSG-ADAPT trial revealed that
baseline PD-L1 expression on infiltrating immune cells was
positively associated with pCR in the Trastuzumab emtansine
(T-DM1) arm [70]. A similar association between baseline PD-
L1 protein expression and pCR has been reported in the
HER2-negative subtype in the context of two prospective trials
testing neoadjuvant anthracycline-based CT ± bevacizumab,
where PD-L1 was reported as positively associated with better
response to neoadjuvant therapy [71, 72].

On the other hand, PD-L1 protein expression has also
been related to pCR in the opposite direction in the context
of a retrospective study reporting that patients with TNBC
with higher basal PD-L1 protein expression experienced
lower rates of pCR after anthracycline-taxane NACT [19].

Although these contradictory results indicate that further
study of the possible role of PD-L1 in affecting either response
or resistance to conventional neoadjuvant treatments in the
context of adequately powered clinical studies is needed, it
must be noted that the most robust body of evidence supports
the notion that baseline PD-L1 may be positively associated
with pCR. The potential capability of baseline PD-L1 to predict
pCR after NACT may gain further relevance when considering
that CT could be strategically used with the aim of enhancing
antitumor immune response, turning a cold tumor into a hot
tumor, and ultimately boosting the efficacy of immunotherapy.

The strategy of combining immunotherapy and chemother-
apy in the neoadjuvant setting is the subject of several clinical
trials, some of which are ongoing ([73–76], NCT02620280).
Moreover, post-neoadjuvant immunotherapy for patients with
triple-negative breast cancer who did not achieve a pCR after
NACT is being tested in randomized trials (NCT02954874,
NCT02926196). As discussed further in this review, because
PD-L1 is a dynamic marker, its expression can be further modu-
lated by NACT, and ongoing adjuvant immunotherapy trials will
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possibly clarify whether post-treatment PD-L1 is able to predict
immunotherapy efficacy.

PD-L1 Testing: Technical and Biological
Heterogeneity
The implementation of PD-L1 as a reliable biomarker for
the selection or exclusion of patients with BC for immuno-
therapy has thus far been complicated by several issues
mainly attributable to technical and biological heterogene-
ity, as summarized in Figure 1.

Analytic Levels
Available studies on the potential predictive/prognostic role
of PD-L1 in BC mainly focused on its expression at the pro-
tein level by IHC, frequently reporting conflicting and incon-
clusive results. Such inconsistency may reflect the current
lack of standardization of PD-L1 testing techniques, particu-
larly regarding the reproducibility and specificity of avail-
able PD-L1 antibodies and diversity of cutoff for positivity.

The comparison between different commercially avail-
able PD-L1 antibodies revealed a general good concordance

in BC, especially between Ventana SP263, Dako 22c3, and
rbMCAL10, and between Dako 28-8 and E1L3N [46, 77].
However, comparative analyses of different PD-L1 antibodies
on NSCLC tissue samples consistently reported low sensitiv-
ity of SP142 antibody, because it was associated with signifi-
cantly lower rates of PD-L1 detection on both tumor and
immune cells [78, 79].

In addition, the adoption of different scoring systems and
thresholds for PD-L1 positivity may contribute to further reduc-
ing the reproducibility of PD-L1 assessment. Indeed, in BC, dis-
cordant results were reported when different positivity cutoffs
were applied and when tumor cells and tumor-infiltrating
immune cells were differentially considered [46, 77].

In this context, the adoption of digital pathology and
software-assisted methods may increase accuracy, reduce
human error, and ultimately improve reproducibility of PD-L1
assessment and interpretation [80]. Recently, PD-L1 expres-
sion measured by IHC and assessed by digital pathology plat-
forms has been positively associated with outcome in two
cohorts of patients with TN early BC treated with surgery and
standard CT [29, 81].

Table 4. Studies reporting an association between pretreatment PD-L1 and response to neoadjuvant therapy

Study (design)

No. of patients
included
(BC subtype)a Neoadjuvant treatment PD-L1 assessment (assay)

PD-L1 positivity
cutoff Main findings

Sabatier 2014 [10]
(retrospective)

5454 Anthracycline-based CT mRNA (Affymetrix U133
Plus 2.0 human
microarrays)

Tumor/normal breast
ratio
Up: ≥2
Non-up: <2

pCR for PD-L1+ vs.
PD-L1-: 50% vs. 21%

Denkert 2015 [27]
Geparsixto (RCT)

580 (TNBC) Anthracycline-taxane ±
carboplatin CT

mRNA (RT-PCR) NA PD-L1 positively
associated with pCR

Wimberly 2015 [17]
(retrospective)

94 Majority received
anthracycline-taxane-
based CT

Protein (IHC: clone
E1L3N,
immunofluorescence Cy5)

Continuous
quantitative score on
TC and IC
Dichotomized PD-L1
(Joinpoint software)

PD-L1 positively
associated with pCR

Kitano 2016 [41]
(retrospective)

180 Anthracycline-taxane-
based CT

Protein (IHC: clone 4059) TC and IC PD-L1:
Positive: any staining
cell

PD-L1 not associated
with pCR (TC PD-L1
marginally correlated
with pCR in HR
−/HER2+ BC)

Harberk 2016 [70]
ADAPT (phase II)

326 (HR+/HER2+) TDM1 + ET vs.
trastuzumab + ET

Protein (IHC) TC and IC PD-L1: H
score

IC PD-L1 associated
with pCR in the TDM1
arm

Hou 2017 [45]
(retrospective)

123 (HER2+ BC) Anthracycline-taxane-
based CT + trastuzumab

Protein (multicolor IHC
multiplex assay)

NA PD-L1 not associated
with pCR in
multivariate analysis

Cerbelli 2017 [26]
(retrospective)

54 (TNBC) Anthracycline-taxane-
based CT

Protein (IHC: clone
SP142)

% positive TC and IC
PD-L1 (evaluated
separately):
Positive: ≥1%

TC PD-L1 positively
associated with pCR
in multivariate
analysis

Waks 2017 [71]
(prospective)

55 (HR+/HER2-) Anthracycline-taxane-
based CT + bevacizumab

Protein (IHC) TC PD-L1:
Negative: 0%
Low: 0%–4%
Intermediate: 5%–9%
High: ≥10%

PD-L1 positively
associated with RCB
MP

Pelekanou 2018 [72]
SWOG s0800 (phase II)

134 Anthracycline-taxane-
based CT ± bevacizumab

Protein (IHC: clone 22C3) % positive TC and IC:
Positive: ≥ 1%

PD-L1 positively
associated with pCR

Asano 2018 [19]
(retrospective)

177 Anthracycline-taxane-
based CT (+ trastuzumab
in HER2+ BC)

Protein (IHC: clone 27A2) % positive TC in 3
FOVs:
Negative: <10%
Positive: ≥10%

PD-L1 negatively
associated with pCR

aPatients included in the PD-L1 analysis.
Abbreviations: BC, breast cancer; CT, chemotherapy; ET, endocrine therapy; FOVs, fields of view; HER2, human epidermal growth receptor 2;
HR, hormone receptor; IC, immune cells; IHC, immunohistochemistry; MP, Miller-Payne; NA, not available; pCR, pathologic complete response,
PD-L1, programmed cell death ligand 1; RCB, residual cancer burden; RCT, randomized clinical trial; RT-PCR, real-time polymerase chain reaction;
TC, tumor cells; TNBC, triple-negative breast cancer.
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In addition, alternative analytic methods for PD-L1 assess-
ment have been also suggested.

In particular, the evaluation of PD-L1 at the mRNA level
emerged as a method potentially capable of overcoming
the major limitations of PD-L1 assessment by IHC, because
it relies on an antibody-independent method. Indeed, the
more consistent data on the possible positive prognostic
role of PD-L1 have been derived from studies evaluating
PD-L1 mRNA rather than protein expression. However, a
possible limitation of mRNA evaluation may be that it does
not discriminate between PD-L1 expression on tumor cells
and nontumor cells, such as TILs [10].

Site of PD-L1 Expression
Cellular Compartment. Tumoral expression of PD-L1 encom-
passes both membrane and cytoplasm. It is unclear whether a
differential evaluation of the two compartments may affect
PD-L1 biological and clinical value in BC. However, preliminary
data coming from a TNBC patient cohort suggest that cyto-
plasmic PD-L1 expression may be more biologically relevant
compared with the membranous expression [21]. Of course,
these data need to be confirmed in other clinical series.

Tumor Microenvironment Compartment. An additional
source of variability in the assessment of PD-L1 protein
expression is that PD-L1 may be evaluated in both tumor
and stromal compartments.

In contrast to NSCLC, where regulatory approval for anti-
PD1/PD-L1 therapy (pembrolizumab) is based on PD-L1 posi-
tivity assessed on tumor cells [82], in BC, PD-L1 seems to be
predominantly expressed by stromal compartment [20, 25,
29, 38, 83, 84]. However, so far, no consistent data exist on

the possible biological and clinical implications of a differen-
tial expression of PD-L1 by either tumor cells or tumor-
infiltrating immune cells. Of note, it has been suggested that
a significant proportion of PD-L1-negative tumors assessed
on tumor cells may actually be classified as PD-L1 positive if
assessed on stromal immune cells, thus enriching the subset
of patients that might be candidates for immunotherapy [20,
25, 38]. However, Tawfik and colleagues also suggested that
the adoption of a stricter cutoff for PD-L1 positivity (10%
instead of 1%) may help increase the agreement between
stromal and tumor compartments [38].

In contrast to NSCLC, where regulatory approval for
anti-PD1/PD-L1 therapy (pembrolizumab) is based
on PD-L1 positivity assessed on tumor cells, in BC,
PD-L1 seems to be predominantly expressed by
stromal compartment. However, so far, no consistent
data exist on the possible biological and clinical
implications of a differential expression of PD-L1 by
either tumor cells or tumor-infiltrating immune cells.

Interestingly, results from the phase Ib Javelin trial with
avelumab suggested that the predictive value of PD-L1 may
be larger when PD-L1 is evaluated on TILs rather than tumor
cells [68]. Indeed, the first phase III trial suggesting the pre-
dictive role of PD-L1 in TNMBC actually defined as PD-
L1-positive tumors those expressing PD-L1 only on immune
cells [6, 84].

Figure 1. Programmed cell death ligand 1 (PD-L1) testing in breast cancer (BC): technical and biological heterogeneity. (A): Analyti-
cal level: PD-L1 can be assessed at both protein and mRNA level. (B): Tumor microenvironment compartment: PD-L1 expression
can be detected on both tumor and stromal cells, such as tumor-infiltrating lymphocytes, macrophages, and fibroblast-like cells.
(C): Temporal and spatial heterogeneity: PD-L1 expression has been evaluated on both primary BC and matched metastatic lesions
(lymph node metastases and/or distant metastases). (D): PD-L1 has been mainly assessed on tumor tissue; however, it can also be
detected on circulating tumor-related material.
Abbreviations: AB, antibodies; IHC, immunohistochemistry; RT-PCR, reverse transcriptase polymerase chain reaction.
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It should also be noted that PD-L1 stromal expression
encompasses not only TILs but also macrophages and
fibroblast-like cells, thus further increasing the complexity of
the biological role of PD-L1 in possibly affecting response to
immunotherapy [85].

Temporal and Spatial Heterogeneity
In the last few years, several authors investigated the dynamic
nature of PD-L1 by assessing its protein expression in primary
and matched metastatic tumor samples.

In more detail, higher concordance rates between pri-
mary and secondary lesions have been reported when PD-
L1 was assessed on tumor cells rather than on TILs [20, 38].
In addition, several authors reported that discordant cases
in terms of PD-L1 status between primary and secondary
lesions (encompassing both distant and local lymph node
metastases) tended to exhibit a gain in PD-L1 expression
rather than a loss [20, 36, 38, 42]. Finally, it has been
reported that patients with TNBC with PD-L1 gain from pri-
mary to paired local lymph node metastasis experienced
worse DFS compared with patients with PD-L1 negativity in
both primary tumor and lymph node metastasis [42].

Although these findings seem to suggest that PD-L1 may
increase from primary to secondary lesions, available evi-
dence on its spatial and temporal heterogeneity remains lim-
ited as well as potentially biased by the fact that the majority
of available data are derived from studies assessing PD-L1 on
lymph node metastasis, where the reliability of immune-
related biomarker detection is currently unclear.

The immune landscape of metastatic lesions may be
even more complex when considering that a trend in the
opposite direction with regard to TILs has been reported. In
particular, results from two large retrospective cohorts of
patients with MBC showed that TILs tended to decrease
from primary to metastatic lesions in the TN subtype [36,
83], especially in patients receiving CT (for the advanced
disease) prior to metastasis biopsy [83].

It remains therefore unclear whether PD-L1 expression
assessed on secondary rather than primary lesions may provide
additional and clinically relevant information. Indeed, Dieci
et al. reported that whereas TILs assessed on metastatic lesions
from patients with TNMBC were positively associated with out-
come, stromal PD-L1 expression did not retain any prognostic
value (with either 5% or 1% cutoff for positivity) [83].

The dynamic nature of PD-L1 has been further explored
in the neoadjuvant setting, where modifications of PD-L1
expression from baseline to post-NACT BC samples were
reported. In particular, it has recently been shown that PD-L1
significantly increased on residual disease after NACT com-
pared with baseline in a large retrospective cohort of patients
with TN early BC [29]. The induction of PD-L1 expression by
chemotherapy is consistent with observations in other cancer
types [85–89] and with the notion that chemotherapy is able
to induce an adaptive immune response through various
mechanisms, including immunogenic cell death and the activa-
tion of the damage response c-GAS/STING [90]. Indeed, it has
been shown that CT may boost the immunogenicity of the
tumor by increasing tumor immune infiltrate from baseline to
post-NACT samples, with a high rate of conversion from low-

TIL to high-TILs tumor [91]. Interestingly, in the advanced set-
ting, results from the adaptive phase II randomized Tonic trial,
testing the anti-PD1 agent nivolumab after an induction treat-
ment in TNBC revealed that induction chemotherapy (with
doxorubicin or cisplatin) resulted in T-cell and T-cell clonality
increase from baseline to on-nivolumab biopsies of responders
patients [92].

To conclude, although available data highlight the highly
dynamic nature of PD-L1, robust evidence on its spatial and
temporal heterogeneity is missing, and it is not currently possi-
ble to draw a conclusion on the ideal timing for PD-L1 testing.

CONCLUSION

Targeting the PD1-PD-L1 pathway is emerging as a promising
treatment strategy for patients with BC, especially in the TN
subtype. However, whereas some patients experience good
response to immune checkpoint inhibitors, a subset of patients
seem to derive little or no benefit.

Indeed, as already suggested by Adams et al. [93], who
recently reviewed the current status of immunotherapy in
BC, a closer understanding of tumor, microenvironment, and
host factors that affect response to immunotherapy may
help identify reliable biomarkers and thus ultimately opti-
mize patient selection for immunotherapeutic strategies. In
this context, PD-L1 evaluation represents a good candidate.
However, many technical and biological issues need to be
addressed. In particular, PD-L1 testing on BC tumor tissue
currently lacks standardization in terms of diversity in assays
(IHC, gene expression), antibodies for IHC testing, scoring sys-
tems and thresholds for PD-L1 positivity, compartments of
the tumor microenvironment included in the analysis (tumor
cells, immune cells, or both), and nature of tumor samples
(primary, metastatic, or post-NACT), along with the lack of
proper widespread resources in terms of PD-L1 antibody
platforms for PD-L1 testing. In addition, no data are currently
available on the effect of preanalytical variables (e.g., fixation
time, type of fixative, storage, etc.) on the reproducibility of
PD-L1 testing in BC. Moreover, selection of the optimal PD-L1
test and score to be incorporated in clinical trials is paramount
in order to accurately understand the role of immunotherapy
in selected patients. In this regard, practical risk-assessment
recommendations have recently been suggested for effective
integration of biomarkers in clinical trials [94].

Indeed, further efforts are needed to implement PD-L1
testing as a tool for properly selecting patients for immuno-
therapy. In this context, it is not acceptable that the same
patient should be labeled as PD-L1 positive or negative
depending on which PD-L1 assay or scoring system is used.

Furthermore, current scientific interest is pointed to the
identification of alternative or complementary methods to
improve patient selection for immunotherapy.

In this regard, TILs may provide additional information. In
particular, translational analyses of three clinical trials of anti-
PD1/PD-L1 agents revealed that patients with pretreatment
higher TIL levels tended to derive a greater benefit from
immune checkpoint inhibitors [28, 62, 63, 65, 95]. In detail,
data from the KEYNOTE-086 trial that predominantly relied
on newly collected metastatic samples revealed a significant
correlation between PD-L1 and TILs. The latter were found
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to be positively associated with greater responses to
pembrolizumab, especially in the first-line setting (cohort A:
ORR 6% vs. 2% for TIL ≥ vs. < median, respectively; median
TILs 10% vs. 5% in responders vs. nonresponders, respec-
tively; cohort B: ORR 39% vs. 9% for TIL ≥ vs. < median,
respectively; median TILs 50% vs. 15% in responders
vs. nonresponders, respectively) [62, 63]. In an expansion
cohort of a phase Ia trial with atezolizumab in TNMBC, the
presence of >10% TILs was associated with a trend toward
higher ORR and longer OS [65]. In the PD-L1-positive cohort
of the PANACEA Ib/II trial, higher baseline stromal TILs were
significantly associated with better ORR (stromal TILs ≥5%
vs. <5%: 39% vs. 5%) and DCR (stromal TILs ≥5% vs. <5%:
47% vs. 5%) [28].

However, preliminary translational analysis of the random-
ized phase III Impassion130 trial revealed that the evaluation
of TILs did not provide additional predictive information
beyond that provided by PD-L1 status [6, 84]. Nevertheless, it
should be noticed that the cutoff for TIL positivity (low
vs. intermediate/high) was set at 10%. In addition, as already
mentioned, results from both retrospective and prospective
studies showed that PD-L1 and TILs tend to be significantly
associated with each other [22–29]. For these reasons, the
evaluation of TILs as a predictive biomarker for immunother-
apy deserves further investigation in the light of the recent
publication of a consensus for standardized TIL assessment in
metastatic lesions [96]. In addition, the quantification of TILs
does not require any additional tissue availability or processing
because it may be performed on diagnostic hematoxylin and
eosin-stained slides, thus representing a more accessible and
less expensive tool as compared with PD-L1 evaluation by IHC.

Recently, the evaluation of PD-L1 by liquid biopsy has
emerged as a promising strategy potentially capable of better
capturing the dynamic nature of this biomarker compared
with its assessment on tumor tissue. Indeed, it has been
stated that patients with BC frequently harbor PD-L1-positive
circulating epithelial tumor cells [97, 98], peripheral blood

mononuclear cells [99], or circulating tumor RNA. Interestingly,
it has also been reported that serum PD-L1 is associated with
tumor burden [97, 99] and outcome [100]. These preliminary
data suggest that liquid biopsy may represent a noninvasive
and feasible strategy for dynamic assessment and serial moni-
toring of PD-L1 of patients with BC, thus potentially providing
a real-time picture of PD-L1 status.

The Cancer Genome Atlas data from more than 8,000
tumor samples (across 31 cancer types) revealed that PD1
mRNA may be a potential good predictor for anti-PD1/PD-
L1 monotherapy activity [101].

Finally, although no data on patients with BC are currently
available, gut microbiome and mutation burden have recently
emerged as promising predictors of the benefit from immune
checkpoint blockade in other solid malignancies, such as mela-
noma and NSCLC [4, 102–106]. These data fostered the conduc-
tion of several early-stage clinical studies—which are currently
ongoing—on the possible association between response to
immunotherapy and these pioneering biomarkers in patients
with BC (mutational burden: NCT01375842; gut microbiome:
NCT02079662, NCT03358511).
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