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Abstract: Taking dead-zone nonlinearlity and external disturbances into account, an active distur-
bance rejection optimal controller based on a proportional-derivative (PD) control law is proposed by
connecting the proportional-integral-derivative (PID) control, the active disturbance rejection control
(ADRC) and particle swarm optimization (PSO), with the purpose of providing an efficient and prac-
tical technology, and improving the dynamic and steady-state control performances. Firstly, in order
to eliminate the negative effects of the dead-zone, a class of 2-order typical single-input single-out
system model is established after compensating the dead-zone. Following that, PD control law is
introduced to replace the state error feedback control law in ADRC to simplify the control design.
By analyzing the characteristics of the traditional linear extended state observer, an improved linear
extended state observer is designed, with the purpose of improving the estimation performance of
disturbances. Moreover, employing PSO with a designed objective function to optimize parameters
of controller to improve control performance. Finally, ten comparative experiments are carried out to
verify the effectiveness and superiority of the proposed controller.

Keywords: proportional-derivative; active disturbance rejection control; particle swarm optimization;
improved extended state observer

1. Introduction

In industrial control systems, the dead-zone non-linearity of the control actuator
directly affects the control performance and even leads to instability [1]. In addition,
external disturbance is another main reason that reduces the control performance of the
system [2]. Considering the above-mentioned negative factors, designing an efficient and
practical control method is of great significance for improving system control performance
and meeting industrial requirements.

In the past few decades, model-based control methods have been rapidly developed,
such as sliding mode control [3] and backstepping control [4]. However, since the above-
mentioned control methods are usually more complicated and their control performances
depend on the precision of the model of the system, their applications in actual engineering
are limited. To the best of our knowledge, the classical PID still plays a dominating
role in industrial control systems due to the fact that it does not depend on a precise
system model, and has a simple structure [5,6]. Of course, the good control performance
of PID depends on the setting of proportional, integral and derivative gains, which is
considered a complicated task in actual engineering applications [7,8]. In fact, the integral
term of PID has a better effect on suppressing constant disturbance, but when there is no
disturbance, it often makes the dynamic performance of the closed-loop system worse.
On the other hand, under time-varying disturbances, its anti-disturbance ability is weak [9].
In particular, for systems suffering from external time-varying disturbances, the gains need

Entropy 2021, 23, 888. https://doi.org/10.3390/e23070888 https://www.mdpi.com/journal/entropy

https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0003-1818-5296
https://orcid.org/0000-0002-9805-8870
https://orcid.org/0000-0002-4276-5410
https://doi.org/10.3390/e23070888
https://doi.org/10.3390/e23070888
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/e23070888
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e23070888?type=check_update&version=1


Entropy 2021, 23, 888 2 of 15

to be constantly adjusted to ensure good control performance, which can not be achieved in
engineering applications. In addition, for a system with dead-zone nonlinearity, the control
performance of a system can not be improved by tuning the gains.

Moreover, ADRC as a practical control method, which was originally proposed by Han
in 1998 [10], has received more and more attentions [11–15]. The stability analysis of ADRC
is an open challenge for ADRC-based control systems. Aguilar-Ibañez et al. [16] discussed
the stability of ADRC for uncertain system via direct Lyapunov method. Following that,
the effectiveness of ADRC was verified by successful applications on a ball and rigid
triangle system [17] and uncertain second-order flat systems [18]. Without loss of generality,
ADRC consists of transition process (TP), extended state observer (ESO), and state error
feedback control law (SEFCL). Among them, ESO estimates the disturbance based on the
input and output of a controlled process, with the purpose of effectively improving the
anti-disturbance ability of a control system. However, there are several parameters in
the ESO that need to be determined, and there is a lack of parameter tuning methods for
reference in the existing researches. Moreover, its superior estimation accuracy depends
on large gains, which amplifies noise, thereby deteriorating control performance, even
causing instability [19]. TP produces a desired trajectory with shorter settling time and
smaller error in terms of expected signal. According to the difference between output
of ESO and that of TP, a SEFCL is designed. Discrete TP is widely employed to avoid
high-frequency chattering caused by discretizing continuous one. However, a third- or
higher-order discrete TP is hardly to be designed, limiting the application of ADRC [19].

Compared with PID and ADRC, the structure of PID is simpler, which is more con-
ducive to engineering applications. ADRC has stronger anti-disturbance ability and effec-
tively improves system control performance. It is worth noting that ADRC is essentially
an improved nonlinear PID control method. SEFCL in ADRC is regarded as a PD control
law. On the other hand, the integral term of PID and ESO both play the role of suppressing
disturbances [19,20]. Based on this, the organic integration of PID and ADRC is bound
to obtain a more efficient controller. Zhong et al. [21] proposed a parameter formula
by combining PID and ADRC, with the purpose of improving robustness and tracking
performance of a 2-order system. Since the proposed control law rely on the outputs of
TP, the method proposed in [21] is not suitable for higher-order systems. Wang et al. [22]
proposed a double closed-loop control method based on PID and ADRC to solve the posi-
tion and attitude control of a quadrotor helicopter system with model uncertainties and
disturbances, however, the above-mentioned control method has a complicated structure
and many parameters. Liu et al. [23] proposed an ADRC-based fractional-order PID for an
active power filter, with the purpose of improving robustness and control performance.
However, the design of the control law is complicated and there are many control pa-
rameters to be tuned. Ren et al. [24] proposed a back-propagation PID with based on a
nonlinear ESO to achieve precise control of wind turbines. The method proposed in [24]
used a neural network to optimize only the parameters of the PID, but did not optimize the
parameters of the active disturbance rejection controller, which is detrimental to improving
the control performance of the system. In addition, the larger gains of ADRC will amplify
noise, which may reduce control performance.

The optimal parameter setting of controller has a direct effect on improving the control
performance of the system [25]. As a mature algorithm, PSO was originally proposed by
Kennedy and Eberhart in 1995 [26]. It is an intelligent optimization algorithm based on
the foraging behavior of birds or fish. Due to the advantages of simple implementation
and high search efficiency [27,28], it has been applied to the parameter optimization of the
control systems [29–32]. Therefore, PSO is introduced to seek the best parameters of the
controller in this paper, which is of great significance to improve the control performance.

In view of this, a class of 2-order typical single-input single-out system model is
established after compensating the dead-zone. Following that, PD and PSO are introduced
into ADRC, forming a PD-based ADRC optimal controller. This paper has the following
fourfold contributions:
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1. Establishing a dead-zone compensated model. By introducing a compensation
method [1], the influence of the dead-zone nonlinearity on the control system is eliminated.

2. Introducing a PD as the control law. Compared with SEFCL, PD has the advantages
of simple design, fewer parameters, and easy application.

3. Designing an improved linear ESO with smaller gains. The proposed observer is
established based on the estimated errors of all state variables, with the purpose of
enhancing estimation performance for disturbances with smaller gains.

4. Optimizing parameters by PSO with a designed objection function. The controller
with the optimal parameters provides better dynamic and steady-state
control performances.

The rest of this paper is structured as follows: Section 2 establishes the dead-zone
compensated model; Section 3 propose the PD-based ADRC optimal controller; Section 4
provides the comparative experiments, and analysis of the proposed controller. Finally,
the whole paper is conclude and future direction is provided in Section 5.

2. The Model of a Controlled System

Without loss of generality, a typical 2-order single-input single-output system with
dead-zone nonlinearlity and external disturbances is modeled as follows:

ẋ1 = x2
ẋ2 = f0(x1, x2, ω(t)) + b0ud
y = x1
ud = dz(v)

(1)

where X = (x1, x2) ∈ R2 is the state vector and can be measured; ud and y are the input and
output of the controlled system, respectively; v represents the original control signal; dz(v)
represents the dead-zone nonlinearity of v; f0(x1, x2, ω(t)) ∈ R represents the unknown
factors that depend on X and external time-varying disturbance ω(t); b0 is a gain.

The control actuator of an actual system usually has asymmetrical dead-zone nonlin-
earity [33,34], as shown in Figure 1. kd is the gain, δL and δR are the uncertain boundary
parameters of the dead-zone.

kd

v0

L
d

R
d

kd

d
u

Figure 1. Dead-zone nonlinearity.

Definition 1. Let δ = [δR, δL]
T, δ̂ = [δ̂R, δ̂L]

T and δ̃ = δ̂− δ are the corresponding estimation
and estimated error of δ, respectively.
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After using the dead-zone compensator proposed by Lewis [1], ud in Equation (1) can
be represented as follows:

ud = dz(v) = kd[u + δ̃T(ᾱ− β̄)] (2)

In the above formula, u is the control variable to be designed, ᾱ = [α, 1 − α]T,
β̄ = [αξ(δ̃R), (1 − α)ξ(δ̃L)]

Tsat(u), where α = 1 as u ≥ 0 and α = 0 as u < 0. ξ(·)
represents a unit step function, sat(u) is represented as follows:

sat(u) =


0 u > −δ̃R
1 + u/δ̃R 0 < u ≤ −δ̃R
1 + u/δ̃L −δ̃L<u ≤ 0
0 u ≤ −δ̃L

(3)

Let b = b0kd, then, substituting Equation (2) into Equation (1), one has
ẋ1 = x2
ẋ2 = f0(x1, x2, ω(t)) + bδ̃T(ᾱ− β̄) + bu
y = x1

(4)

Let f0(x1, x2, ω(t)) + bδ̃T(ᾱ − β̄) represent the “total disturbance”, denoted as
f (x1, x2, ω(t), δL, δR), then, Equation (4) can be transformed as follows:

ẋ1 = x2
ẋ2 = f (x1, x2, ω(t), δL, δR) + bu
y = x1

(5)

3. The Proposed PD-Based ADRC Optimal Control Method

In this paper, taking dead-zone nonlinearity, and external disturbance into account,
a PD-based ADRC optimal controller is proposed by combining PD, ADRC and PSO,
with the purpose of simplifying the design as much as possible while improving the con-
trol performance. As shown in Figure 2, the framework of the proposed control method
includes four parts: (1) TP: producing an expected tracking trajectory; (2) PD: providing
a simpler and easier-to-apply control law; (3) Improved linear ESO: estimating the to-
tal disturbance more efficiently with smaller gains; (4) PSO-based parameter optimizer:
producing the optimal parameters for controller.

TP PD
Controlled 

system

Improved 

linear ESO

dx 0u u yd1x

--

e

PSO-based parameter optimizer

f

1 b

3x̂

, , ie e u p d,  ,  i k kb

PD-based ADRC optimal controller

Figure 2. The framework of the proposed controller.
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3.1. Transition Process

When the system responds quickly, the larger initial error and step error caused
by the step reference signal may cause overshoot. To solve the above problem, a TP is
introduced to generate a smooth and continuous ideal tracking trajectory. In addition, since
the system chattering that may be caused by continuous TP, a discrete 2-order TP is used
as follows [19]: {

xd1(k + 1) = xd1(k) + hxd2(k)
xd2(k + 1) = xd2(k) + hu1

(6)

where xd1 and xd2 are the outputs of the TP; k ∈ N+, h is the integration step, u1 represents
a fast control function proposed by Han [19], which is described as follows:

d = rh0, d0 = h0d, h0 > h
y′ = xd1 − xd + h0xd2, a0 =

√
d2 + 8r|y′|

a1 =

{
xd2 +

a0−d
2 |y′| > d0

xd2 +
y′
h0

|y′| ≤ d0

u1 = −
{

rsgn(a1) |a1| > d
r a1

d |a1| ≤ d

(7)

In the above formula, r is the speed factor and adjusts the tracking speed of xd to xd1.
h0 is a new variable independent of the integration step length h. Generally, h0 > h, with the
purpose of eliminating the overshoot, and avoiding amplifying noise in the differential
signal. d0 depends on r and h0. a1 is related to xd2, a0, d, y′ and h0. In order to provide a fast
and accurate response for control system, the key parameters of the proposed transition
process, such as r and h0, are tuned online [19]. Based on them, we can determine the
values of d, d0, y′, a0 and a1.

3.2. PD Control Law

In Section 3.1, a 2-order discrete TP is employed, represented by Equation (6), with the
purpose of simplifying design and facilitating engineering applications. Denote xd as a set
reference signal, and xd1 as a desired reference signal of a controlled variable produced
by TP. Based on this, e = xd1 − y is defined as a tracking error, where xd1 is the output of
transition process, and y = x1 is the output of the system. Then, we obtain the derivative of
e as ė = ẋd1− x2. PD is employed as the control law to provide a control signal, represented
by u0, for the controlled system expressed by Equation (5) as follows:

u0 = kpe + kd ė (8)

where kp, kd are the gains of PD-based control law.

3.3. An Improved Linear ESO

ESO can estimate the disturbance in real time based on the input and output of the
system without any information about the disturbance. Following that, the estimated
disturbance is compensated by combining a control law to achieve the purpose of improv-
ing the control performance. The linear ESO has the advantages of simple design, fewer
parameters, and suitability in engineering applications [19].

Denote x3 as the extended state variable of f in Equation (5). For the system, repre-
sented by Equation (5), the traditional linear ESO is described as follows:

e1 = x̂1 − x1
˙̂x1 = x̂2 − β1e1
˙̂x2 = x̂3 − β2e1 + bu
˙̂x3 = −β3e1

(9)
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where βi > 0, i = 1, 2, 3 are the gains of the linear ESO. x̂i is an estimation of xi, e1 is the
estimated error of x1.

The traditional linear ESO adjusts the estimation increment, represented by ˙̂xi, in terms
e1. However, once x̂1 is close to x1 enough, e1 is too small to achieve the approximation of
êτ to eτ , τ = 2, 3. To tackle the problem, the parameters in the estimated model, such as βi,
are set to the larger values. However, large βi may amplify noise, causing chattering, even
instability [19]. In view of this, we propose an improved linear ESO with smaller gains
to obtain better estimation performance, in which estimation errors of all state variables,
represented by ej = x̂j − xj, j = 1, 2, are introduced to Equation (9), instead of e1:

˙̂x1 = x̂2 − β1e1
˙̂x2 = x̂3 − β2e2 + bu
˙̂x3 = −β3e2

(10)

In the above formula, β1 > 0, β2 > 0 and β3 > 0 are adjusted online [19], with the
purpose of ensuring higher estimation accuracy of the observer. e = [e1, e2, e3]

T is an
estimated error vector, where e3 = x̂3 − x3. Define ẋ3 = ḟ = f1, the dynamic estimated
error is achieved after integrating Equation (5) with Equation (10).

ė = Ae + B f1 (11)

where, A=

[
−β1 1 0

0 −β2 1
0 −β3 0

]
, B =

[
0
0
−1

]
.

In actual engineering, the “total disturbance” expressed by f is usually bounded,
x3 = f , consequently, is bounded. Since βi > 0, A is a Hurwitz matrix. According to
Hurwitz stability theory [35], the differential equation expressed by Equation (11) is stable.
Therefore, the improved linear ESO is stable and its estimated errors are bounded.

Moreover, the proposed improved linear ESO can be extended to a (n + 1)-order
observer, expressed by Equation (13), to estimate the “total disturbance” of a class of
n-order single-input single-output systems, represented by Equation (12), and its stability
can also be guaranteed: 

ẋ1 = x2
ẋ2 = x3

...
ẋn = f + bu
y = x1

(12)

The improved (n + 1)-order linear ESO for the above n-order systems is designed
as follows: 

˙̂x1 = x̂2 − β1e1
˙̂x2 = x̂3 − β2e2

...
˙̂xn = x̂n+1 − βnen + bu
˙̂xn+1 = −βn+1en

(13)

where x̂µ is an estimation of xµ, µ = 1, · · · , n + 1; βη , η = 1, · · · , n is the gain of the
improved linear ESO; eη = x̂η − xη is the estimated error of state variable. In order to
ensure the higher estimation accuracy of the observer, β1 > 0, · · · , βn+1 can be selected
through online adjustment [19].

3.4. Design of the PD-Based ADRC Optimal Controller

Through the organic combination of PD, improved linear ESO and PSO, a PD-based
ADRC optimal controller is developed. In the proposed controller, PD, represented by
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u0 = kpe + kd ė, is integrated with x̂3 obtained from the improved linear ESO, the final
output of the proposed controller is thus obtained as follows:

u =
u0 − x̂3

b
(14)

Remark 1. The proposed controller, represented by Equation (14), can be transformed into
u = kp0e + ki0 x̂3 + kd0 ė, where kp0 =

kp
b , ki0 = − 1

b , and kd0 = kd
b . The integral term of

PID and ki0 x̂3 of the proposed controller are both to suppress the influence of the disturbances on
the system. Therefore, the proposed controller can be regarded as a kind of improved PID controller
with stronger robustness, which is beneficial to its application in engineering. According to Remark
1, it can be obtained that the proposed control method is also suitable for high-order systems.

In the above controller, βi, kp, and kd need to be tuned to ensure good control per-
formance. This section employs PSO and a designed objective function jointly to con-
struct a PSO-based parameter optimizer. In the optimizer, an individual is encoded
as Xj = (βi, kp, kd). Assuming that a particle swarm contains m particles, and the di-
mension of each particle is D. The position and velocity of k-th particle are denoted as
Xk = (Xk1, · · · , XkD), k = 1, · · · , m and vk = (vk1, · · · , vkD). The optimal positions reached
by the k-th particle and the entire particle swarm are expressed by pk = (pk1, · · · , pkD) and
pg = (pg1, · · · , pgD), g = 1, · · · , m. During the N + 1 iteration, each particle updates its
velocity and position in the following manner:

vN+1
kd = χvN

kd + c1r1(pN
kd − xN

kd) + c2r2(pN
gd − xN

gd) (15)

xN+1
kd = xN

kd + vN+1
kd (16)

In the above formulas, N ∈ N+; d = 1, 2, · · · , D; χ represents the inertia coefficient;
c1 and c2 are two acceleration factors; r1 ∈ [0, 1] and r2 ∈ [0, 1] are two random numbers.
Considering the control performance in terms of ei, e, and u, the objective function is
designed as follows:

J =
∫ t

0

(
n+1

∑
i=1
|ei|+ |e|+ |u|

)
dt (17)

The PSO-based parameter optimization process may be broken down in the follow-
ing steps.

Step 1: Initializing the initial position and velocity of all particles;
Step 2: Calculating the fitness value of each particle;
Step 3: Updating the local and global optima by Equation (17);
Step 4: Updating the position and velocity of each particle according to Equations (15)

and (16);
Step 5: Judging whether the iteration reaches its maximum, if yes, stop searching and

output the global optimum; otherwise, jump to step 2.

4. Experimental Results and Analysis

In order to verifiy the effectiveness and superiority of the proposed PD-based ADRC
optimal controller, ten comparative experiments are carried out by MATLAB 2016b on
an Intel (R) Core (TM) i5-6500 CPU @ 3.20 GHZ 3.19 GHZ 4.00 GB RAM, Windows 10
platform. Let us consider the following controlled system:

ẋ1 = x2
ẋ2 = f (x, ω(t)) + bu
y = x1

(18)

where f = 5 as t ∈ [0, 5]s, f = −1 as t ∈ (5, 10]s, f = 6 as t ∈ (10, 15]s, f = 18 as
t ∈ (15, 20]s; b = 133; xd = 0.5 as t ∈ [0,10)s; xd = 1 as t ∈ [10,20]s.
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In the proposed controller, h = 0.002, h0 = 0.01, r = 1, ω = 1, c1 = 2, c2 = 2, and the
detailed values of optimized parameters are obtained as follows: kp = 9.56, kd = 112.66,
β1 = 3.52, β2 = 55.26, β3 = 1060.89. Moreover, nine control methods are used as
comparison methods to verify the superiority of the proposed controller, as follows.

(1) Traditional PD (TPD). Let kp, kd are proportional and derivative gains of
PD, respectively.

u = kpe + kd ė (19)

where kp = 0.6, kd = 0.02.
(2) Traditional PID (TPID). Let kp, ki, kd are proportional, integral and derivative gains

of TPID, respectively.

u = kpe + ki

∫ t

0
edt + kd ė (20)

where kp = 0.6, ki = 0.4, kd = 0.02.
(3) Traditional PID with a 2-order discrete TP (TPID-TP). Let kp, ki, kd are proportional

integral and derivative gains of TPID-TP, respectively.

u = kpe + ki

∫ t

0
edt + kd ė (21)

where h = 0.002, h0 = 0.01, r = 1, kp = 0.6, ki = 0.4, kd = 0.02.
(4) Linear ADRC with linear ESO (LADRC-LESO).

u =
u0 − x̂3

b
(22)

where u0 = 10(xd1 − x̂1) + 100(xd2 − x̂2); β1 = 100, β2 = 3000, β3 = 10,000.
(5) Nonlinear ADRC with linear ESO (NADRC-LESO).

u =
u0 − x̂3

b
(23)

where u0 = 10 f al((xd1 − x̂1), α1, δ) + 100 f al((xd2 − x̂2), α1, δ); β1 = 100, β2 = 3000,
β3 = 10,000, α1 = 0.5, α2 = 0.75, δ = 0.01, and

fal(∗,αj,δ) =

{
|∗|αj sgn(∗) |∗| > δ
∗

δ
(1−αj)

|∗| ≤ δ (24)

(6) Linear ADRC with improve linear ESO (LADRC-ILESO).

u =
u0 − x̂3

b
(25)

where u0 = 10(xd1 − x̂1) + 100(xd2 − x̂2); β1 = 3.52, β2 = 55.26, β3 = 1060.89.
(7) Nonlinear ADRC with improve linear ESO (NADRC-ILESO).

u =
u0 − x̂3

b
(26)

where u0 = 10 f al((xd1 − x̂1), α1, δ) + 100 f al((xd2 − x̂2), α1, δ); β1 = 3.52, β2 = 55.26,
β3 = 1060.89, α1 = 0.5, α2 = 0.75, δ = 0.01.

(8) PD with linear ESO and a 2-order discrete TP (PD-LESO-TP).

u =
u0 − x̂3

b
(27)

where h = 0.002, h0 = 0.01, r = 1, u0 = kpe + kd ė; kp = 0.6, kd = 0.02, β1 = 100, β2 = 3000,
β3 = 10,000.
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(9) PD with improve linear ESO and a 2-order discrete TP (PD-ILESO-TP).

u =
u0 − x̂3

b
(28)

where h = 0.002, h0 = 0.01, r = 1, u0 = kpe + kd ė; kp = 0.6, kd = 0.02, β1 = 3.52,
β2 = 55.26, β3 = 1060.89.

The desired tracking trajectory generated by TP is shown in Figure 3. In the actual
control system, there may be step disturbances that affect the performance of the system.
In view of this, the total disturbance, as shown in Figure 4, is chosen to verify the effective-
ness of the proposed control method. The approximate responses of the traditional linear
ESO (LESO) and the improved linear ESO (ILESO) to the “total disturbance” are shown in
Figure 4.
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Figure 3. The response of xd1.
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Figure 4. The estimation of disturbance.

The tracking responses of ten control methods to the output of the TP, denoted as
xd1 is shown in Figure 5. Among them, Figure 5j shows the step response of x1 for the
proposed control. Obviously, the proposed control method achieves fast tracking xd1
without overshoot. Figures 6 and 7 depict the tracking errors and control inputs of ten
controllers. Moreover, four performance indexes of tracking error, including maximum
absolute error (MAAE), mean absolute error (MEAE), standard deviation of absolute error
(SDAE), the integral time absolute error (ITAE), as listed in Table 1. Four performance
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indexes of control input, including maximum absolute control input (MAACI), mean
absolute control input (MEACI), standard deviation of absolute control input (SDACI),
and the integral time absolute control input (ITACI) are also employed to fully analyze
the control performances, as listed in Table 2. Comparative experiment results show that
the proposed control method achieves the smallest tracking error with the smallest control
input, which verifies its effectiveness and superiority. Specifically, by comparing with
nine control methods, the following conclusions are obtained: (1) The control method can
improve the control performance with the assistance of TP strategy, which verifies the
effectiveness and rationality of TP. (2) The control method can significantly improve the
control performance with the aid of the ILESO strategy with small gains, which verifies
the effectiveness and rationality of ILESO. (3) The control method with optimal control
parameters has better control performance, which verifies the effectiveness and rationality
of the parameter optimization strategy. Furthermore, the performance of the controllers
PD-ILESO-TP and PD-LESO-TP with parameters set according to the traditional control
method is extremely poor, and the proposed parameter optimization strategy can find
the optimal parameters for the controller to achieve better control performance. For non-
linear control methods NADRC-LESO and NADRC-ILESO, because their control laws
show the non-smooth characteristics, high-frequency chattering occurs in the control
input, which is not conducive to engineering applications. The proposed method is
a litter more complicated than TPD, TPID and TPID-TP, but the control performance
is superior to them. The proposed control method is not only simpler than LADRC-
LESO, NADRC-LESO, LADRC-ILESO, and NADRC-ILESO, but also has superior control
performance. The control method proposed in this paper not only obtains the best control
performance, but also is suitable for high-oeder systems, and is a practical control method
with strong competitiveness.

Table 1. Comparison of the tracking error among different control methods.

Control Methods MAAE MEAE SDAE ITAE

TPD 0.5379 0.0740 0.1004 1.4800
TPID 0.5072 0.0568 0.0879 1.1354
TPID-TP 0.2369 0.0271 0.0361 0.5427
LADRC-LESO 0.1804 0.0692 0.0499 1.3842
NADRC-LESO 0.1679 0.0641 0.0489 1.2816
LADRC-ILESO 0.0246 0.0088 0.0067 0.1768
NADRC-ILESO 0.0303 0.0131 0.0083 0.2615
PD-LESO-TP 5.3777 2.5274 1.6213 50.5480
PD-ILESO-TP 1.0193 0.4437 0.2779 8.8744
PROPOSED 0.0094 0.0034 0.0026 0.0672

Table 2. Comparison of the control input among different control methods.

Control Methods MAACI MEACI SDACI ITACI

TPD 5.3067 0.0776 0.1012 1.5522
TPID 5.3075 0.0706 0.0969 1.4118
TPID-TP 0.2031 0.0571 0.0490 1.1415
LADRC-LESO 0.1469 0.0566 0.0478 1.1309
NADRC-LESO 0.3619 0.0947 0.0619 1.8946
LADRC-ILESO 0.1568 0.0565 0.0478 1.1290
NADRC-ILESO 0.3836 0.0985 0.0733 1.9699
PD-LESO-TP 0.1596 0.0610 0.0492 1.2193
PD-ILESO-TP 0.1384 0.0574 0.0472 1.1474
PROPOSED 0.1462 0.0564 0.0478 1.1282



Entropy 2021, 23, 888 11 of 15
Version June 21, 2021 submitted to Entropy 11 of 15

0 5 10 15 20
Time(sec)

0

1

2
x

d
1
 a

n
d

 x
1 x

d1
x

1

(a) TPD

0 5 10 15 20
Time(sec)

0

1

2

x
d

1
 a

n
d

 x
1 x

d1
x

1

(b) TPID

0 5 10 15 20
Time(sec)

0

0.5

1

1.5

x
d

1
 a

n
d

 x
1

x
d1

x
1

(c) TPID-TP

0 5 10 15 20
Time(sec)

0

0.5

1

1.5

x
d

1
 a

n
d

 x
1 x

d1
x

1

(d) LADRC-LESO

0 5 10 15 20
Time(sec)

0

0.5

1

1.5

x
d

1
 a

n
d

 x
1 x

d1
x

1

(e) NADRC-LESO

0 5 10 15 20
Time(sec)

0

0.5

1

1.5

x
d

1
 a

n
d

 x
1

x
d1

x
1

(f) LADRC-ILESO

0 5 10 15 20
Time(sec)

0

0.5

1

1.5

x
d

1
 a

n
d

 x
1 x

d1
x

1

(g) NADRC-ILESO

0 5 10 15 20
Time(sec)

-5

0

5

10

15

x
d

1
 a

n
d

 x
1 x

d1
x

1

(h) PD-LESO-TP

0 5 10 15 20
Time(sec)

0

2

4

x
d

1
 a

n
d

 x
1 x

d1
x

1

(i) PD-ILESO-TP

0 5 10 15 20
Time(sec)

0

0.5

1

1.5

x
d

1
 a

n
d

 x
1 x

d1
x

1

(j) PROPOSED
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5. Conclusions

For a typical 2-order single-input single-output system subjected to dead-zone non-
linearlity and external disturbances, a PD-based ADRC optimal controller is proposed by
connecting the PD, ILESO and PSO-based parameter optimizer. Different from the tradi-
tional PID, the ILESO of the proposed control method greatly improves the anti-disturbance
ability of the system with smaller gains. Unlike ADRC, the proposed control method is
simpler and more effective, and is suitable for high-order systems. In addition, the pro-
posed parameter optimization strategy can seek the optimal control parameters, which not
only provides a parameter setting method, but also further improves the system control
performance. The comparative experiment results verified the effectiveness and superiority
of the proposed control method. In conclusion, the proposed control method provides an
efficient control technology for industrial engineering. The ILESO in this paper is proposed
based on the fact that the system state variables can be completely measured, which has
certain limitations. Therefore, considering that the state variables of the system are not
completely measurable, designing an efficient observer for PD-based control method is our
future work.
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17. Aguilar-Ibañez, C.; Sira-Ramirez, H.; Suarez-Castanon, M.S. A linear active disturbance rejection control for a ball and rigid
triangle system. Math. Probl. Eng. 2016, 5, 1–11. [CrossRef]
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