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A B S T R A C T

Currently short-chain polyols such as ethanediol, propanediol, and butanediol are produced either from
the petroleum feedstock or from the starch-based food crop feedstock. In this study, a combinational
process of enzymatic hydrolysis with catalytic hydrogenolysis for short-chain polyols production using
corn stover as feedstock was developed. The enzymatic hydrolysis of the pretreated corn stover was
optimized to produce stover sugars at the minimum cost. Then the stover sugars were purified and
hydrogenolyzed into polyols products catalyzed by Raney nickel catalyst. The results show that the yield
of short-chain polyols from the stover sugars was comparable to that of the corn-based glucose. The
present study provided an important prototype for polyols production from lignocellulose to replace the
petroleum- or corn-based polyols for future industrial applications.
ã 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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1. Introduction

Short-chain polyols such as ethanediol, propanediol, and
butanediol are important commodity chemicals used as solvents,
drugs, cosmetics, antifreezes, or as precursors for synthesizing
unsaturated polyester resins [1,2]. Conventionally, short-chain
polyols are produced from petroleum-based feedstocks, in which
ethanediol is produced by epoxidation of ethylene; 1,2-propanediol
is by chlorohydrination of propylene or epoxidation of ethylbenzene
hydroperoxide; 1,3-propanediol is by hydration of acrolein known as
“Degussa–DuPont route” orby hydroformylationof ethylene oxideto
produce 3-hydroxypropionaldehyde and then hydrogenated known
as “Shell route” [3,4]; and 1,4-butanediol is by synthesis of
1,4-butynediol with acetylene and formaldehyde and then hydroge-
nated known as “Reppe chemistry” [5].

In light of the fluctuating price of petroleum and limited
reserves, microbial production of some specific polyols such as
1,3-propanediol and 1,4-butanediol from corn-based glucose
has attracted more attentions and gone into commercialization
[6,7]. Recently, a hydrogenolysis process using corn-based
glucose for the production of few short-chain polyol com-
pounds was developed and commercialized [8]; (http://www.
globalbiochem.com; http://ty.mycaixin.cn). Lignocellulose-
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derived sugars from the cheap and abundant agricultural
residues are an important option to replace the corn-based
glucose for polyols production. However, great technical
challenges exist on the short-chain polyols production from
lignocellulose materials, including how to produce cheap
sugars from lignocellulose through pretreatment and hydroly-
sis, how to purify the lignocellulose-derived sugars to meet the
hydrogenolysis requirements, and how to find proper catalysts
for hydrogenolysis of the mixed sugars from lignocellulose.

In this study, a combinational process for short-chain polyols
production from corn stover was developed as shown in Fig.1. Corn
stover was pretreated using “dry dilute acid pretreatment” [9,10],
then enzymatically hydrolyzed into monomer sugars (mainly
glucose and xylose); the liquid hydrolysate was purified by
decolorization and desalting, and then chemically transformed
into short-chain polyols via hydrogenolysis. Finally, the short-
chain polyols mixture was fractionated into different components,
including ethanediol, 1,2-propanediol, and butanediol etc. To our
knowledge, this is the first report on the hydrogenolysis of
lignocellulose-derived sugars for short-chain polyols production.

2. Materials and methods

2.1. Materials

Corn stover was harvested in fall, 2011 from Dancheng County,
Henan province, China. After collection, corn stover was unpacked,
der the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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Fig. 1. Schematic diagram of short-chain polyols production by combination of enzymatic hydrolysis and catalytic hydrogenolysis of lignocellulosic materials.
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water-washed to remove the impurities and air-dried, then milled
coarsely using a beater pulverizer (SF-300, Ketai Milling Equip-
ment, Shanghai, China) to a diameter less than 5 mm. The milled
materials were stored in air-tight plastic bags before pretreatment.

Cellulase enzyme Youtell #6 used in this study was provided by
the Hunan Youtell Biochemical Co., Yueyang, Hunan, China (http://
www.youtellbio.com). The activity of Youtell #6 was 145.0 FPU/g in
the filter paper unit (FPU) and 344.0 IU/g in the cellobiase unit (IU)
analyzed according to the protocol of NREL LAP-006 [11]. Youtell
#6 is a commercial cellulase enzyme with comparable perfor-
mance to the other commercial cellulases [12–14].

The modified Raney nickel catalyst #12-2 was provided by the
Caixin Sugar Industry Co., Dancheng, Henan, China and commer-
cially available in the company. The catalyst #12-2 is currently used
for industrial hydrogenolysis of corn based glucose into short-
chain polyols. The major ingredients of the catalyst include nickel,
aluminium, tin and other necessary ingredients at different ratios.
The particle size is ranged from 80 to 300 meshes per square inch.

2.2. Dry dilute acid pretreatment and enzymatic hydrolysis

Corn stover was pretreated using the dry dilute sulfuric acid
pretreatment in a helical stirring reactor as described by [9]
and [10]. Briefly, the corn stover was presoaked with dilute sulfuric
acid (5.0%, w/w) at a solid/liquid ratio of 2:1 for 12 h (the moisture
content of the impregnated corn stover was about 33.33%). Then
the materials were put into the pretreatment reactor and the hot
steam was jetted into the reactor heating the corn stover to 185 �C
for 3 min (heating time from 0 to 185 �C was kept within 3–6 min).
After that, the pressure was released within 10–30 s and the
pretreated corn stover was discharged from the reactor. The
reactor was operated at 50 rpm during the pretreatment process.
The harvested pretreated corn stover contained about 50% solids
materials and was stored at 4 �C before enzymatic hydrolysis.

The enzymatic hydrolysis cost highly depends on the enzyme
dosage used, the substrate used, and the pretreatment method used
[15,16]. Therefore, the enzymatic hydrolysis of corn stover using dry
pretreatment and Youtell #6 enzyme was optimized to give the
minimum cost of stover sugars. The solids loadings, cellulase
dosages, and the reactor scales were considered in the hydrolysis
study. The sugar yield obtained at different conditions was
incorporated into the Eq. (10) as described in Supplementary
Materials to calculate the stover sugar hydrolysate production costs.
The conditions which could obtain a relative lower sugar production
cost was chosen for the following experiments. The pretreated corn
stover was used directly for enzymatic hydrolysis without any other
detoxification process. All the enzymatic hydrolysis trials were
performed in duplicates and the average data were reported.

2.3. Purification of stover sugar hydrolysate

The corn stover slurry after enzymatic hydrolysis was solid/
liquid separated in a frame press (Shanghai Dazhang Filter
Equipment Co., Shanghai, China). The obtained hydrolysate was
decolorized by 3% (w/w) of activated charcoal (powder-like
products, purchased from Sinopharm Chemical Reagent Co.,
Shanghai, China) at 80 �C for 30 min. Again the solid charcoal
was separated using the frame press to obtain the decolorized
stover sugar hydrolysate.

The decolorized hydrolysate was desalted using ion exchange
resins. The strong acidic cation resins 732 and the weak base anion
resins D315 (Sino Polymer Co., Shanghai, China) were used to remove
the positive and negative ions (mainly Na+ and SO4

2� ions),
respectively. The resins were activated according to the producer's
specifications and the decolorized hydrolysate was flowed through a
column (20 mm in diameter and 600 mm in length) filled with
180 mL wet activated 732 resins at a flowrate of 70 mL/min until the
resins were saturated. Then the effluent hydrolysate was sent to flow
through the column filled with 180 mL wet activated D315 resins at a
flowrate of 25 mL/min until the resins were saturated. The samples
were taken regularly for conductivity analysis using a DDS-307A
conductivity meter (Shanghai INESA and Scientific Instrument Co.,
Shanghai, China), and sugars and inhibitors analysis on HPLC.

2.4. Hydrogenolysis of stover sugars into polyols

The stover sugar hydrolysate was concentrated to a 300–350 g/L
sugar concentration by steam evaporation before hydrogenolysis.
Then the concentrated stover sugar hydrolysate was sent to the
hydrogenolysis reactor supplemented with 4% (w/w) sodium
hydroxide and 15% modified Raney nickel catalyst #12-2 (w/w,
based on the total sugar weight in system). The purified hydrogen
was ventilated into the reactor to remove the inert air in the reactor
and heated to 230 �C and 11.0 MPa slowly in an oil bath, then
maintained for 120 min until glucose and xylose were completely
converted. After each batch reaction, the Raney nickel catalyst was
recycled by washing with deionized water then sent to the next
round of catalytic operation.

2.5. Analysis of sugars, inhibitors, and hydrogenolysis products on
HPLC

Glucose, xylose, inhibitory compounds, such as formic acid,
furfural, 5-hydroxymethylfurfural (HMF), acetic acid and levulinic
acid, and hydrogenolysis products, including ethanediol,
1,2-propanediol, butanediol, glycerol, sorbitol, lactic acid were
determined using high-performance liquid chromatography
(LC-20AD, refractive index detector RID-10A, Shimadzu, Japan)
with a Bio-Rad Aminex HPX-87H column at the column tempera-
ture of 65 �C. The mobile phase was 0.005 M H2SO4 at the rate of
0.6 mL/min. All the samples were diluted properly and filtered
through a 0.22 mm filter before analysis.

2.6. Determination of proteins in the hydrolysate

The protein content in the hydrolysate at different purification
stages was determined according to Bradford using bovine serum
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Fig. 2. Enzymatic hydrolysis of corn stover under various operation conditions. (a)
Solids loadings; (b) cellulase dosages; (c) reactor scales. Conditions: solids loadings
assays were performed at the conditions of 15 FPU/g DM, pH 4.8 with 0.1 M citric
acid buffer, 150 rpm for 48 h while 20% (w/w) solids loading was performed in a 5 L
helical stirring bioreactor. And the hydrolysis at 20% solids loading lasted for 72 h;
the cellulase dosages assays were performed at 15% solids loading, pH 4.8 with 0.1 M
citric acid buffer, 50 �C in flasks and 150 rpm for 48 h; the reactor scale assays were
performed at 15% solids loading, 7 FPU/g DM, pH 4.8, 50 �C, 150 rpm in the 250 mL

fl
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albumin (BSA) for making standard protein curve [17]. All the
assays were performed in triplicates and the average data were
presented.

2.7. Analysis of the compositions of virgin corn stover

The compositions of virgin corn stover were analyzed using
ANKOM 200 Cellulose Analyzer (ANKOM Technology, Macedon,
NY, USA) [14]. The original corn stover contained 45.09 � 0.08%
glucan, 31.74 � 0.18% xylan, 5.15 � 0.34% acid-insoluble lignin, and
4.98 � 0.28% ash. All the above data were calculated on the dry
solid matter.

2.8. Yield and selectivity calculations

The glucose and xylose yields were calculated using the
following equations [18]:

Glucose yieldð%Þ ¼ ½Glu� � V
f � ½Biomass� � m � 1:111

� 100%

Xylose yieldð%Þ ¼ ½Xyl� � V
h � ½Biomass� � m � 1:136

� 100%

where [Glu] and [Xyl] were the glucose and xylose concentration at
the end of the hydrolysis (g/L), respectively; V was the final liquid
volume of the hydrolysis system (L); f was the cellulose content in
corn stover (g/g); h was the hemicellulose content in corn stover
(g/g); [Biomass] was the solids loading of corn stover in the
enzymatic hydrolysis system (%, w/w); m was the total weight of
the hydrolysis system (g).

The polyols yield based on sugars was calculated used the
following equation:

Polyols yield ¼ ½polyols�
½Glu�1 þ ½Xyl�1

� 100%

where [Polyols] was the sum of short-chain polyols concentration
(g/L), including ethanediol, 1,2-propanediol and butanediol in the
reaction broth; [Glu]1 and [Xyl]1 were the glucose and xylose
concentration in the original reaction broth (g/L), respectively.

The product selectivity was calculated as follows:

Product selectivity ¼ ½Product�
½Hydrogenolysis products� � 100%

where [Product] was the concentration of a certain product (g/L),
e.g., ethanediol, or 1,2-propanediol in the reaction broth; the
[Hydrogenolysis products] was the total products concentration in
the reaction broth (g/L).

3. Results and discussion

3.1. Stover sugars preparation by dry dilute acid pretreatment and
enzymatic hydrolysis

The three key parameters, solids loadings, enzyme dosages, and
the reactor scales, were selected for optimization to obtain the
minimum cost of stover sugar preparation as shown in Fig. 2.
The data in Fig. 2(a) shows that the production of total sugars
(glucose and xylose) increased substantially with increasing solids
loading from 5% to 20% (w/w), while the glucose yield and xylose
yield decreased slightly. Fig. 2(b) shows that the more cellulase
used, the higher sugar concentration and sugar yields
were obtained, but only a minor increment of both sugar yield
and concentration was obtained when the enzyme dosage was
asks in a rotary water bath (lasted for 48 h), 5 L and 50 L helical stirring bioreactors
lasted for 72 h), respectively [19].
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further increased from 15 FPU/g DM to 20 FPU/g DM. Fig. 2(c)
shows that glucose yield and the total sugars in 5 L and 50 L
reactors were similar, and both were higher comparing to that in
250 mL flasks, indicating that the scale-up effect could be
reasonably ignored at least to the 50 L scale. Although
the enzymatic hydrolysis conditions were kept the same while
conducted at 0.25 L flasks, 5 L and 50 L bioreactors, the mixing and
mass transfer demonstrated a better performance in the helical
stirring bioreactor than in the flasks [19]. This might be the major
reason for the difference in sugars yield between flasks and helical
stirring bioreactors. And in the helical agitated bioreactors at
different scales, 5 L and 50 L, the different hydrolysis yield should
come from the difference of mass transfer in the forms of mixing
efficiency, shear stress on enzymes, and fluid velocity distributions
originated form the different helical ribbon sizes.

The preliminary cost estimation of stover sugars was calculated
by considering the costs of feedstock (corn stover), sulfuric acid,
cellulase enzyme, steam used in the pretreatment and in the sugar
concentrating, the conditioning cost in terms of the sodium
hydroxide used, as well as the purification costs. The method and
the results are shown in Supplementary Materials. The target
concentration of the stover sugars was 400 g/L to meet the
requirement of hydrogenolysis by Raney nickel catalyst #12-2. The
results show that the minimum cost of producing 1 t of stover
sugar hydrolysate at 400 g/L was approximately $255.5 at 7.0 FPU/g
DM and 15% solids loading for 72 h hydrolysis. The cost of stover
sugars was close to that of the corn-based glucose with the same
concentration (400 g/L) around $180–240 per ton [20]. In addition,
there is still a large space for decreasing the production cost of
stover sugars by the means of on-site cellulase production,
supplementation of accessory enzymes etc. [21,22].

3.2. Purification of stover sugar hydrolysate used for hydrogenolysis

The stover sugar hydrolysate contained various impurities,
including fine solid particles, degradation compounds (acetic acid,
furfural, 5-hydromethylfurfural, phenol derivatives etc.), sodium
sulfate salt from neutralization of sulfuric acid, and cellulase
enzyme residues. These impurities would significantly reduce the
activity and life time of nickel catalyst in the consequent
hydrogenolysis of sugars into polyols [23,24], unless an extensive
purification step was processed. Similar purification procedures
used for the corn-based glucose preparation were applied to the
stover sugar hydrolysate, including the two major steps: decolori-
zation and desalting.

In the first purification step, the hydrolysate was adsorbed by
activated charcoal to remove the pigmented impurities which gave
the hydrolysate dark black color. Addition of activated charcoal at
3% (w/w) dosage was found to be sufficient to remove the
pigmented impurities. Table 1 shows that all furfural and most
5-hydroxymethylfurfural were removed from the hydrolysate,
while the sugars and organic acids maintained the same or even
increased slightly due to the water loss. The results were in
agreement with the previous studies [25,26]. It is worth noting that
the protein content in the hydrolysate was not detected after
Table 1
Effect of decolorization with activated charcoal powders on the stover sugar hydrolysa

Stover sugars hydrolysate Glucose (g/L) Xylose (g/L) Acetate (g/L) 

Original 53.87 18.18 3.10 

Control 57.12 � 1.29 20.91 � 0.76 3.21 � 0.12 

Decolorized 56.78 � 1.46 21.04 � 0.52 2.68 � 0.21 

Conditions: The stover sugar hydrolysate was mixed vigorously with 3% (w/w) dosage of
was separated by plate press and the decolorized hydrolysate was obtained. The control w
procedure.
decolorization, indicating that the cellulase enzyme protein in the
hydrolysate was completely removed by the activated charcoal.

In the second purification step, the Na2SO4 and other salts in the
decolorized stover sugar hydrolysate were removed by ion
exchange absorption in two steps: the positive ions such as Na+

were removed by the cation resins 732, and then the negative ions
such as SO4

2� were removed by anion resins D315, respectively.
Fig. 3(a) shows that the conductivity of the hydrolysate elute
increased quickly in the first 2 min of cation ions exchange,
indicating the exchanging of positive ions in the hydrolysate with
hydrogen ions on resins started. The hydrolysate conductivity was
maintained at a higher value (44,000 mS/cm) until the resins were
saturated by the ions such as Na+. Then the hydrolysate was sent for
anion ion exchange using the resin D315 to remove negative ions
such as SO4

2�. Fig. 3(b) shows that the conductivity of the stover
sugar hydrolysate decreased sharply from 44,000 mS/cm to
4000 mS/cm, indicating the negative ions such as SO4

2� were
sufficiently absorbed by D315 resins.

No apparent change of the sugar concentrations (glucose and
xylose) between the purified and the original hydrolysates, implying
that the sugar loss was negligible during the purification steps.

3.3. Short-chain polyols synthesis by catalytic hydrogenolysis of stover
sugars

The catalytic hydrogenolysis of stover sugars for short-chain
polyols synthesis was conducted as shown in Table 2. The polyols
product here refers to ethanediol, 1,2-propanediol, and butanediol.
The byproducts in the hydrogenolysis included formate, acetate,
lactate, and glycerol etc. The results show that the polyols yield
using the untreated original stover sugars was only 34.42%. The
polyols yield increased to 58.54% after the stover suagar
hydrolysate was decolorized, and to 67.22% after the hydrolysate
was decolorized and desalted, which was close to that using corn-
based glucose (71.42%). The results indicate that the two
purification steps were important for keeping a high polyols yield
when the stover sugars were used as the feedstock.

Fig. 4 shows the recycling of the Raney nickel catalyst #12-2
using different sugar feedstocks. The activity of the catalyst
maintained stable with respect to polyols yield in the four
successive runs when the corn-based glucose was used. When the
original stover sugars were used, the polyols yield decreased
sharply with only twice recycling of the catalyst, indicating the
purification of stover sugar hydrolysate was absolutely necessary
to keep the expensive catalyst to maintain a high catalytic activity.
When the stover sugars were purified by decolorization, the
activity of the nickel catalyst maintained stable in the three
successive runs of hydrogenolysis, but the polyols yield was pretty
lower. When the stover sugars were purified by both delocoriza-
tion and desalting, the polyols yield was maintained at high level in
the four successive runs.

The mixtures of the short-chain polyols could be obtained by
vacuum distillation and then directly used as precursors for
synthesizing the unsaturated polyester resins with a relative low
value added. Alternatively, the hydrogenolysis products could be
te compostion.

Levulic acid (g/L) HMF (g/L) Furfural (g/L) Proteins (mg/mL)

0.54 0.33 1.50 83.05
0.68 � 0.06 0.30 � 0.03 1.27 � 0.15 84.80 � 0.12
1.03 � 0.14 0.07 � 0.01 0 0

 activated charcoal powders at 80 �C for 30 min in the water bath, then the charcoal
as conducted without activated charcoal supplementation but undergone the same



Fig. 3. Desalting of the stover sugar hydrolysate with cation and anion exchange
resins. (a) Desalting with cation exchange resins to remove Na+; (b) desalting with
anion exchange resins to remove SO4

2�.

Fig. 4. Catalytic stability of Raney nickel catalysts #12-2 during recycling in the
hydrogenolysis reactions. The hydrogenolysis condition of the stover sugars was the
same as that described detailedly in Table 1 except the nickel catalysts were reused
by centrifugation after each batch operation. There was no fresh catalysts
supplementation in the next round hydrogenolysis operation.
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fractionated into different pure ingredients with high value added
applications.

The pigmented compounds (mostly in the form of lignin
sulfonate salts) and the enzyme proteins in the stover sugar
hydrolysate tend to deposit on the surface of the catalyst particles
and inhibit its activity [24,27]. The results in Tables 1 and 2 show
that the decolorization step by activated charcoal adsorbed most of
the pigmented substances and proteins, and led to the significant
increase of polyols yield.

The ionic strength of the reaction system significantly affects
the catalyst structure and activity [23,24,28]. The ions in the
Table 2
Short-chain polyols production using different sugars.

Sugars Hydrogenolysis selectivity
(%, w/w)

Polyols By

Ethanediol 1,2-
Propanediol

Butanediol Gly

Corn-based glucose 18.15 � 0.06 38.33 � 0.00 11.06 � 0.01 9
Original stover sugars 9.19 � 1.22 26.52 � 3.95 7.80 � 0.88 15
Decolorized stover sugars 14.99 � 0.05 34.93 � 0.30 10.60 � 0.01 12
Decolorized and desalted stover
sugars

16.70 � 0.10 35.84 � 0.12 11.02 � 0.05 7

Conditions: Glucose concentration in the corn-based glucose solution was 350 g/L. The g
sugars, and the decolorized and desalted stover sugars were approximately the same, abo
in the activated charcoals in the desalting fibers and the resins in the desalting column 

operated at 230 �C, 11.0 MPa, 10,000 rpm for 120 min in the reactor with a reaction vol
hydrolysate included the cation metal ions such as Fe2+, Na+, Ca2+,
Mg2+ etc., and the anion ions such as SO4

2�, Cl� etc. The sulfate salts
from the pretreatment tend to absorb to the metal surface and then
poison the catalyst irreversibly [28]. Desalting step by exchange
resins removed most cation and anion ions effectively, thus the
ionic strength of the hydrolysate was significantly decreased.
The catalytic efficiency of the nickel catalysts was greatly improved
accordingly.

The Raney nickel catalyst belongs to a commonly used catalyst
for hydrogenation of glucose, xylose, furfural etc., with the similar
ingredients but different preparations as reviewed in details by
[29]. Some kinds of Raney nickel catalysts are commercially
available and can be bought from Merk KGaA (Darmstadt,
Germany) or other related companies [30,31]. Some modifications,
such as impregnating the Raney nickel with heteropolyacid salts,
particularly Cu3/2PMo12O40 could greatly enhance its catalytic
activity [29,30]. The other catalysts, such as the copper catalysts or
the ruthenium and rhodium catalysts or others, with high
selectivity and catalytic performance should be tested for hydro-
genolysis of the lignocellulose-derived sugars in the following
research [4].

Currently, cellulosic ethanol is considered a model product of
lignocellulose biorefinery [32]. However, two major barriers still
exist for commercialization of cellulosic ethanol [33,34]. One is the
Polyols yield
(%)

products

cerol Sorbitol Formate Acetate Lactate

.56 � 0.01 0.18 � 0.00 18.85 � 0.03 2.45 � 0.03 1.55 � 0.04 71.42 � 0.12

.08 � 0.99 2.38 � 0.37 23.57 � 1.88 10.75 � 2.17 4.75 � 0.65 34.42 � 5.79

.28 � 0.08 0.55 � 0.02 18.20 � 0.17 5.54 � 0.10 3.96 � 0.01 58.54 � 0.17

.53 � 0.17 0.24 � 0.00 24.12 � 0.29 2.66 � 0.01 1.81 � 0.05 67.22 � 0.04

lucose and xylose concentration in the original stover sugars, the decolorized stover
ut 229 g/L and 86 g/L, respectively. But the loss of the sugars in the residues retained
were not considered. Chemical hydrogenolysis of the stover sugar hydrolysate was
ume of 500 mL.
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inhibition to ethanol fermenting strains by toxic compounds
derived from the harsh pretreatment, such as the acetic acid,
furfural and 5-hydroxymethylfurfural [35]. The other is low
efficiency of xylose conversion to ethanol [34]. In contrast, these
two barriers were simply avoided in the present cellulosic polyols
production process: the inhibitors were efficiently removed by the
two-step purification of decolorization and desalting, and the
xylose was easily hydrogenolyzed into short-chain polyols
simultaneously with glucose by Raney nickel catalyst [36].

4. Conclusion

A combinational process of enzymatic hydrolysis and catalytic
hydrogenolysis for short-chain polyols production from corn
stover was developed in this study. The results show that the
production cost of stover sugars via enzymatic hydrolysis was
competitive to the corn based glucose. The purification processes
used for corn-based glucose worked well with stover sugars and
the short-chain polyols yield from hydrogenolysis of stover sugars
was comparable to that of the corn-based glucose. The present
study provided an important prototype for polyols production
from lignocellulose to replace the petroleum- or corn-based
polyols for future industrial applications.
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