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ABSTRACT: Cyanation of benzylic C−N bonds is useful in the preparation of important α-aryl nitriles. The first general catalytic
cyanation of α-(hetero)aryl amines, analogous to the Sandmeyer reaction of anilines, was developed using reductive cyanation with
CO2/NH3. A broad array of α-aryl nitriles was obtained in high yields and regioselectivity by C−N cleavage of intermediates as
ammonium salts. Good tolerance of functional groups such as ethers, CF3, F, Cl, esters, indoles, and benzothiophenes was achieved.
Using 13CO2, a 13C-labeled tryptamine homologue (five steps, 31% yield) and Cysmethynil (six steps, 37% yield) were synthesized.
Both electronic and steric effects of ligands influence the reactivity of alkyl nickel species with electrophilic silyl isocyanates and thus
determine the reactivity and selectivity of the cyanation reaction. This work contributes to the understanding of the controllable
activation of CO2/NH3 and provides the promising potential of the amine cyanation reaction in the synthesis of bio-relevant
molecules.
KEYWORDS: reductive cyanation, utilization of CO2/NH3, nitrile synthesis, α-(hetero)aryl amines, C−N activation, nickel,
isotope labeling

■ INTRODUCTION
Selective transformation of C−N bonds is attractive but
challenging.1−3 Although the transformation of amines to
nitriles is a straightforward process, examples have been
published only infrequently. The Sandmeyer reaction is the
traditional method for the cyanation of anilines and involves in
situ preparation of aryldiazonium salts (Figure 1a).4,5 In
addition, the cyanation of C−N bonds is difficult to achieve via
traditional SN2- or SN1-type reactions. Recently, Watson et al.

developed the nickel-catalyzed cyanation of Katritzky pyr-
idinium salts with Zn(CN)2 and one example of benzylic
pyridinium salt was reported.6 C−N bond cleavage of
enaminones promoted by I2 for synthesis of β-cyano enones
was also realized.7 Expanding the diversity of C−C coupling
reactions is a main topic in modern chemistry,8−28 and
utilization of CO2 as the most abundant, nontoxic C1 synthon
provides a promising approach to economically generate
desirable products.29,30 Recently, Martin et al. and Yu et al.
have reported carboxylation of C−N bonds in benzyl
ammonium salts with CO2.

31,32 The utilization of CO2 in
catalytic synthesis of nitriles however is yet to be explored.

Inspired by the biological 2e-reduction process for the
formation of cyanide ligands in [NiFe]-hydrogenase from CO2
and NH3,

33 we have prepared aryl nitriles by cyanation of aryl
halides using CO2.

34,35 The wide application of the Sandmeyer
reaction of anilines led us to envision a Sandmeyer reaction-
like system for cyanation of α-aryl amines, and to the best of
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Figure 1. (a) Sandmeyer reaction and (b) cyanation of α-aryl amines
using CO2/NH3.
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our knowledge, a general procedure of C−N bond cyanation to
afford α-aryl nitriles has not yet been reported. Moreover, the
selective incorporation of cyano group has attracted tremen-
dous attention.36−43 Even by far, the most prominent
production process for adiponitrile (>106 tons per year) is
suffering from toxic cyanide and costly purification.44 Herein,
we report the first example of general cyanation of α-aryl
amines via the challenging C−N bond cleavage for the
synthesis of α-aryl nitriles using CO2/NH3 (Figure 1b). This
nickel-catalyzed reaction allows the synthesis of one carbon
longer nitrile via a cyanation−reduction−cyanation sequence
from a simple substrate, and it has been successfully applied to
the convenient synthesis of isotopically labeled tryptamine
precursors.45,46 Notably, no desired product was detected
when metal cyanides were used. Thus, the reductive electro-
philic cyanation process using cheap and abundant CO2/NH3
provides an alternative chemical platform for C−C coupling
reactions and offers a hitherto unrecognized opportunity for
cyanide-free synthesis of bio-relevant α-(hetero)aryl nitriles.

■ RESULTS AND DISCUSSION
Initially, our investigation began by carrying out reactions on
benzyl ammonium salt (1a) formed in situ by the reaction of
the amine (1a′) with MeI (Table 1). During optimization,

careful selection of reductants is crucial to evade the undesired
reduction pathways, such as hydrolysis of ammonium salt,
reduction of CO2, and/or reduction of nitrile products. Under
CO2 and NH3, both at atmospheric pressure, the use of phenyl
silane efficiently provided the cyanated products, albeit in low
to moderate regioselectivities (Table 1, entries 1 and 2, 49−
87% yields; 18−68% selectivity for 2a). DIOP turned to be the
best ligand among the various ligands tested (Table S2).47−50

Since ligands containing a DIOP backbone proved to be
suitable for the reaction, various DIOP derivatives (L1−L7)
with different steric and electronic properties were synthesized
and tested. It was found that the more sterically hindered

ligand L3 ((R,R)-3,5-Me-DIOP) provided a better reactivity
(entries 3−8 and Table S2).51−53 Also, when using L3 as the
ligand, the switchable regioselectivity between the α-aryl nitrile
(2a) and linear nitrile (4a) could be well tuned, and the
desired product (2a) was obtained in good yield with high
regioselectivity (entry 4, 80% yield; 84:5:11 rr). These results
highlight the adjustment of the ability of ligands for selective
cyanation on the benzylic carbon over other positions.

With the optimal conditions in hand, we next examined the
substrate scope in the synthesis of different α-(hetero)aryl
nitriles (Table 2). Considering the electronic properties, we
found that benzyl ammonium salts (1) bearing electron-rich or
electron-deficient groups could deliver the α-aryl nitriles in
moderate to good yields with high regioselectivity (2a−2f).
However, the reaction gave racemic products. Substrates
containing various functional groups such as fluorine (1c),
phenyl (1d), and naphthalene (1f) were examined. All were
smoothly converted to the corresponding α-aryl nitriles in
yields of 74−81%. Notably, selective cyanation between C−N
and C−O bonds to form the α-aryl nitrile product (2e) could
be achieved, albeit in diminished yield under the established
conditions.

Aryl acetonitrile compounds are valuable intermediates and
are generally used for diverse modification at their α-carbon to
synthesize chiral α-amino acid precursors.54−57 Remarkably,
the devised protocol is applicable to synthesize aryl
acetonitriles (2) from the corresponding primary benzyl
ammonium salts (1), showcasing the versatile utility of this
methodology. Initially, we evaluated the catalytic cyanation of
the benzyl ammonium salt (1g) with CO2 and NH3 (Tables
S3−S5). Examination of the reaction parameters showed that
the cyanation of 1g with CO2/NH3 and organophosphorus
ligands catalyzed by NiBr2 proceeds efficiently (Table S4).
Evaluation of various ligands showed that phosphine-
containing ligands outperformed ligands containing nitrogen
in both reactivity and chemoselectivity. Systematic inves-
tigation of phosphine ligands by changing the chain length
between two phosphorus atoms was found to improve the
yield of 2g. The ligand 1,2-bis(diphenylphosphino)ethane
(dppe) showed a remarkable performance, producing 2g in
81% yield.

Generally, studies of the substrate scope revealed that
ammonium salts bearing various substituents are tolerated and
afford the desired aryl acetonitriles in moderate to high yields
(Table 2). Use of 13CO2 led us to explore a catalytic protocol
to prepare isotopically labeled nitriles. First, using 13CO2, we
obtained 13C-2g in 83% yield, showing that the carbon source
of the CN group in the product was derived from CO2. This
reaction exhibited excellent chemoselectivity, and it was found
that benzyl ammonium salts substituted with either electron-
donating groups (Me, OMe, Et, t-Bu, and OCF3) or electron-
withdrawing groups (CF3, F, COOMe, and COOt-Bu) are well
tolerated, giving 2h−2n, 2p−2s, and 2v−2w. The reaction is
applicable to aromatic substrates with fused rings (2o, 2x, and
2y), indicating that molecules with expanded π-conjugated
systems are tolerated. A substrate with chlorine on the
aromatic ring provided the chlorophenyl nitrile (2t) in 50%
yield, together with phenyl nitrile as a byproduct formed by
dehalogenative hydrogenolysis. It is noteworthy that the
benzylic C−N bond of the ammonium salt (1z) was selectively
converted to the corresponding nitrile (2z) in 89% yield with
the benzylic C−O bond remaining intact. In contrast, only a
trace amount of product was formed in the presence of the

Table 1. Ligand Screening for Nickel-Catalyzed C−N Bond
Cyanationa

entry ligand (mol %) yield (%) rr (2a:3a:4a)

1 dppb 49 18:29:53
2 L1 87 68:10:22
3 L2 trace trace
4 L3 80 84:5:11
5 L4 66 60:16:24
6 L5 22 76:16:8
7 L6 26 72:15:13
8 L7 35 86:6:8

aReaction conditions: benzyl ammonium salts 1a (0.15 mmol, 1.0
equiv), NiBr2·(diglyme) (12 mol %), ligand (15 mol %), CO2/NH3
(15/15 mL), Zn (1.2 equiv), PhSiH3 (5.0 equiv), and ZnF2 (50 mol
%) were stirred in NMP:diglyme (0.5:0.1 mL) at 120 °C for 28 h.
Yields and regioselectivities were determined by GC. dppb = 1,4-
bis(diphenylphosphino)butane.
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cyanating reagent, Zn(CN)2.
6 We studied the reaction of

heterocyclic substrates such as indole and furan and found the
method to be applicable, obtaining 2aa−2ae in yields of 77−
90%. Specifically, cyanation of the 3-substituted indole
ammonium salt provided the tryptamine precursor (2ad) in
a good yield. Subsequent reduction of 2ad with LiAlH4
provided the tryptamine derivative in two steps, a method
that is far superior to the classical method that requires more
steps and a tedious workup. At the same time, different
aliphatic amines were tested and almost no desired nitrile
products could be obtained.45

Tryptamine precursors produced from indole are a
privileged motif in biological and pharmaceutical research,
but only limited methods are known for their prepara-
tion.45,46,58,59 We prepared the intermediate indole-3-carboni-
trile (3c) in 72% yield with a nickel-catalyzed reaction with
CO2 and NH3. Treatment of 13CO2 with ammonium salt (3e)
and NH3 under standard conditions gave the 13C-labeled
tryptamine precursor (13C-2ad) in 66% yield (Scheme 1). This
protocol provides an alternative valuable route to construct
homologous tryptamines or 13C-labeled indole derivatives
efficiently. This methodology has also been applied to the
production of 13C-labeled Cysmethynil (Scheme 2). The
reaction of the indole ammonium salt (4e) with 13CO2 and
NH3 provided the 13C-labeled intermediate indole derivative
(4f) in 62% yield, and this was finally converted by treatment
with potassium hydroxide to 13C-labeled Cysmethynil (4g) in
89% yield.60,61

■ STUDIES OF THE MECHANISM
Additional experiments were conducted in an effort to
understand the mechanism of this transformation. Radical
clock experiments were conducted with benzyl ammonium
salts (1n) and α-cyclopropylstyrene (5). The ring-expanded
product (6) was obtained in 20% yield (Scheme 3a-I).62,63 The
benzyl ammonium salt (1n) was converted to o-methox-
yphenyl acetonitrile (2n) in 66% yield along with the ring-
expanded product (6) (Scheme 3a-II) in 13% yield. These
results indicate that although the well-known oxidative
addition of ammonium salts to Ni(0) is regarded as a major
pathway, the alternative radical pathway cannot be excluded.64

In the presence of a Hantzsch ester, the benzyl ammonium salt
(1n), a hydrogen donor capable of trapping carbon radicals
(Scheme 3b), was transformed into the nitrile (2n), which was

Table 2. Applicability Study of α-(Hetero)Aryl Amines

aReaction conditions: ammonium salt (1) (0.15 mmol, 1.0 equiv), NiBr2·(diglyme) (12 mol %), L3 (15 mol %), CO2/NH3 (15/15 mL), Zn (1.2
equiv), ZnF2 (50 mol %), NMP:diglyme (0.5:0.1 mL), 120 °C, 28 h. Isolated yields. bNiBr2 (12 mol %), dppe (12 mol %), NMP:toluene (0.5:0.1
mL), 120 °C, 24 h. Isolated yields. cGC yields reported using n-tetradecane as the internal standard. d30 h. rr represents the ratio of the major
product to the sum of all other isomers as determined by GC analysis.

Scheme 1. Synthetic Application for Aryl Acetonitrile. I:
Cyanation−Reduction Sequence for 13C-Labeled
Tryptamine Precursors
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formed as a major product in 63% yield, with the formation of
a minor product, 2-methylanisole, under standard condi-
tions.63,65 This result is in accord with the hypothesis that a
benzylic radical was formed in the mixture and subsequently
reacted with a hydrogen of the Hantzsch ester to give 2-
methylanisole. Control experiments were conducted to gain
more information on the active benzyl-nickel species. As
shown in Scheme 3c, in the absence of zinc powder, only trace
amounts of branched and linear nitriles were detected to be
formed, with 95:0:5 regioselectivity. Since nickel(II) com-
plexes can be reduced to nickel(I) complexes by zinc powder
through a single-electron transfer process and nickel(I) species
can participate in Ni-catalyzed coupling or chain walking

processes, a radical mechanism with nickel(I) active inter-
mediates in which cyanation is taking place. As shown in
Scheme 3d, when the ammonium salt of 2-phenyl ethylamine
(7) was the substrate, only trace amounts of nitriles were
obtained. This result implies that an efficient C−N bond
activation and the formation of benzyl-nickel intermediate are
crucial for the efficient cyanation of terminal sp3C-H bonds.
We attempted to isolate the active intermediate in the reaction
of the ortho-COOMe benzyl ammonium salt (1w) (see III-8 in
the SI).66,67 Ni(dppe)2 (8) was obtained, and its structure was
confirmed by X-ray crystallography (Scheme 3e). Using
compound 8 as the catalyst in the cyanation of the benzyl
ammonium salt (1n), the desired product was obtained in 15%
yield. This implies that the nickel(0) active species is involved
and the use of more ligand (in a ratio to Ni of 2:1) decreases
the reactivity. When DIPAMP* (L9: (1,2-Bis((R)-(2-
methoxyphenyl)(phenyl)phosphino)ethane) was used as the
ligand, only 13% selectivity for 2a was observed (Table S2). In
order to understand the regioselectivity differences between
the bisphosphine ligand, DIOP* (L3), and DIPAMP* (L9),
density functional theory (DFT) calculations based on the
hybrid of the Becke’s three-parameter exchange functional and
the Lee, Yang, and Parr correlation functional (B3LYP) were
performed for the benzylic nickel species.68−70 The basis set
used for C, H, O, P, and Br atoms was 6-31G, and the
LANL2DZ pseudopotential basis set was employed for the Ni
atom. The vibrational frequency was computed at the same
level of theory to determine whether each optimized structure
represented an energy minimum or a transition state. The
natural population analysis charge was also calculated using the
same method as in the optimization. As shown in Figure S3,
different electronic densities on the Ni center (0.365 vs 0.345)
and bite angles (P-Ni-P: 94.59 vs 78.22°) were obtained for
these two ligands. This suggests that both the electronic and
steric effects of ligands influence the reactivity with silyl
isocyanates of alkyl nickel species and the tendency of chain
walking via an iterative β-H elimination and reinsertion
process.

Based on the experimental results and previous reports, we
propose a plausible reaction mechanism for the benzyl nitriles
(Figure 2).34,35,63,64 First, the nickel(II)-precursor formed in
situ is reduced and the nickel(0)-species (I) is generated in the
presence of silanes and Zn. Subsequently, the benzyl
ammonium salt (1a) can be reduced by nickel(0) to give a
benzyl radical and a nickel(I) species (II) followed by a radical
addition reaction, which delivers the nickel(II) intermediate
(III). This intermediate is then reduced by Zn and silanes to
generate the thermodynamically favored benzyl-nickel(I)
intermediate (IV), which is inserted by silyl isocyanate
intermediates to give a transient imidate species (V) in the
presence of DIOP* (L3) as the ligand. As a minor process, the
β-hydrogen elimination of the intermediate benzyl-nickel(I)
(IV) would form the nickel(I) hydride species, subsequently
delivering the chain walking nitrile products.71−74 The key to
success is the careful choice of the ligand, which favors the
reactivity of the benzyl-nickel(I) intermediate and/or the silyl
isocyanate insertion step. The transient imidate species (V) are
then transformed into benzyl nitriles via a plausible 1,3-silyl N-
to-O migration,27,75,76 accompanied by the formation of a
nickel siliconate intermediate (VI), which upon reduction by
hydrosilane and zinc, regenerates the species (I), closing the
catalytic cycle.

Scheme 2. Synthetic Application for Aryl Acetonitrile. II:
Synthesis of Isotopically Labeled Cysmethynil

Scheme 3. (a−e) Mechanistic Studies
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■ CONCLUSIONS
In summary, we have developed the catalytic cyanation of α-
aryl amines via ammonium salt intermediates with CO2/NH3
as a source of the cyano group. This versatile protocol provides
a straightforward and cyanide-free route to an array of valuable
benzylic nitriles in moderate to good yields. The success of this
cyanation reaction is attributed to the careful selection of a
bisphosphine ligand that can control the formation and/or
reactivity of the benzyl-nickel(I) intermediate. This reaction
exhibits broad functional group tolerance and operational
simplicity. 13C-containing nitriles can be obtained conveniently
using 13CO2. The cyanation of C−N bonds with CO2/NH3
allows electrophilic cyanation of the C−N bond to form cyano
products and supports downstream applications in synthesis
and their prospective use in the synthesis of bio-relevant
molecules.

■ METHODS

General Procedure for the Reductive Cyanation of
Ammonium Salts Forming Nitriles
Under a nitrogen atmosphere, the nickel-catalyst (12 mol %, 0.018
mmol), ligand (15 mol %, 0.0225 mmol), ZnF2 (50 mol %, 0.075
mmol), Zn (1.2 equiv, 0.18 mmol), ammonium salts (1.0 equiv, 0.15
mmol), and a stirring bar were placed in a 10 mL oven-dried sealed
tube (Figure S4). Then, the respective solvents and PhSiH3 (5.0
equiv, 0.75 mmol) were injected by a syringe. The tube was sealed,
and CO2 (15 mL) and NH3 (15 mL) were injected by a syringe after
N2 was removed under vacuum. Then, the mixture was stirred for the
indicated time in a preheated alloy block. After the reaction was
finished, the tube was cooled to room temperature and the pressure
was released. The yield was measured by GC analysis or isolated by
preparative thin-layer chromatography on silica gel plates to give
nitriles (for the detailed procedure, see Figures S5 and S6).
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