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ABSTRACT Maternal sepsis is a leading cause of morbidity and mortality during
pregnancy. Escherichia coli is a primary cause of bacteremia in women and occurs
more frequently during pregnancy. Several key outstanding questions remain regard-
ing how to identify women at highest infection risk and how to boost immunity
against E. coli infection during pregnancy. Here, we show that pregnancy-induced sus-
ceptibility to E. coli systemic infection extends to rodents as a model of human infec-
tion. Mice infected during pregnancy contain .100-fold-more recoverable bacteria in
target tissues than nonpregnant controls. Infection leads to near complete fetal was-
tage that parallels placental plus congenital fetal invasion. Susceptibility in maternal
tissues positively correlates with the number of concepti, suggesting important contri-
butions by expanded placental-fetal target tissue. Remarkably, these pregnancy-
induced susceptibility phenotypes are also efficiently overturned in mice with resolved
sublethal infection prior to pregnancy. Preconceptual infection primes the accumula-
tion of E. coli-specific IgG and IgM antibodies, and adoptive transfer of serum contain-
ing these antibodies to naive recipient mice protects against fetal wastage. Together,
these results suggest that the lack of E. coli immunity may help discriminate individu-
als at risk during pregnancy, and that overriding susceptibility to E. coli prenatal infec-
tion by preconceptual priming is a potential strategy for boosting immunity in this
physiological window of vulnerability.

IMPORTANCE Pregnancy makes women especially vulnerable to infection. The most
common cause of bloodstream infection during pregnancy is by a bacterium called
Escherichia coli. This bacterium is a very common cause of bloodstream infection,
not just during pregnancy but in all individuals, from newborn babies to the elderly,
probably because it is always present in our intestine and can intermittently invade
through this mucosal barrier. We first show that pregnancy in animals also makes
them more susceptible to E. coli bloodstream infection. This is important because
many of the dominant factors likely to control differences in human infection sus-
ceptibility can be property controlled for only in animals. Despite this vulnerability
induced by pregnancy, we also show that animals with resolved E. coli infection are
protected against reinfection during pregnancy, including having resistance to most
infection-induced pregnancy complications. Protection against reinfection is medi-
ated by antibodies that can be measured in the blood. This information may help to
explain why most women do not develop E. coli infection during pregnancy, ena-
bling new approaches for identifying those at especially high risk of infection and
strategies for preventing infection during pregnancy.
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Pregnant women are uniquely susceptible to invasive systemic infection by a variety
of classical prenatal pathogens, which can lead to congenital invasion and excep-

tionally high morbidity and mortality (1–6). An estimated half of early-preterm births
(,28weeks of gestation) and the majority of early-onset cases of neonatal sepsis are
attributed to maternal infection during pregnancy (7–9). Maternal infection is also an
important modifiable cause of stillbirth, especially in low- and middle-income countries
(10–12). A recent prospective analysis of nearly 3 million live births across 52 countries
shows that severe maternal infection occurs in 10.9 women per 1,000 live births and
leads to disproportionately high rates of stillbirth and early neonatal death (13).

While pregnancy-induced immunological shifts have been probed primarily using
pathogens such as Listeria monocytogenes, Brucella spp., and Zika virus, with estab-
lished placental tropism and a unique predisposition for severe infection during preg-
nancy, it should also be highlighted that the more ubiquitous commensal pathobiont
Escherichia coli is consistently the leading cause of maternal sepsis and bacteremia dur-
ing pregnancy (14–18). For example, E. coli was the most common cause of maternal
sepsis in a prospective analysis of 272 cases (.150,000 pregnancies) in Dublin, Ireland,
between 2005 and 2012 (15). Likewise, E. coli was the most common cause of maternal
bacteremia in a retrospective analysis of 347 cases (59,491 live births) in Paris, France,
from 2005 to 2009 (16). E. coli is a Gram-negative bacterium that ubiquitously colonizes
intestinal mucosal barrier tissues. It is also the most common cause of urinary tract
infections and consistently a primary cause of bacteremia/sepsis in all age groups
(19–24). The recent World Health Organization Global Maternal Sepsis study found the
urinary tract to be the most common source of maternal infection and sepsis during
pregnancy (13). Interestingly, while E. coli is consistently cited as one of the leading
pathogens responsible for maternal sepsis during pregnancy, causing an estimated 33
to 50% of antenatal cases and 10 to 27% of fetal mortality (15, 16, 25, 26), the absolute
risk associated with pregnancy has not been directly evaluated.

A number of pregnancy-associated physiologic shifts have been shown to promote
susceptibility to infection by classical prenatal pathogens. For example, impaired tissue
localization of innate immune cells and expansion of immunosuppressive maternal regu-
latory CD41 T cells required for sustaining fetal tolerance increases the susceptibility of
pregnant mice to infection by L. monocytogenes and Salmonella enterica serovar
Typhimurium (27–29). Other studies show that the placenta is a nidus of infection in
pregnant guinea pigs, responsible for efficient reseeding of maternal target tissues after
systemic L. monocytogenes infection (30). For these classical prenatal bacterial patho-
gens, which reside and replicate primarily within host cells, transport within maternal
leukocytes has been described to facilitate placental tropism and invasion of trophoblast
cells (14, 31). In this context, while E. coli residence within bladder and vaginal epithelial
cells and macrophage cells is increasingly recognized in the pathogenesis of urinary tract
infections (32–37), key knowledge gaps remain regarding how pregnancy causes suscep-
tibility to E. coli, which replicates primarily in extracellular tissue compartments (38, 39).

To investigate the immunopathogenesis of E. coli prenatal infection, a preclinical
model employing pregnant mice was developed and shown to recapitulate the
increased susceptibility of women to E. coli bacteremia during pregnancy. Using inbred
mice with defined major histocompatibility complex (MHC) haplotype antigens housed
under specific-pathogen-free conditions for mating and infection allows precise control
over potentially important confounding factors, including maternal age, parity, mater-
nal-fetal genetics, and prior pathogen exposures, so that the impacts of pregnancy on E.
coli infection susceptibility can be addressed in isolation. This instructive model was
used to further investigate the cause of maternal susceptibility to E. coli infection during
pregnancy and to explore strategies for boosting immunity in this physiological context.

RESULTS
Pregnancy-induced susceptibility to systemic E. coli infection. Pregnancy-

induced shifts in E. coli infection susceptibility were initially evaluated by enumerating
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recoverable bacterial burdens in the target tissues of midgestation (embryonic day 10
to 12 [E10–12]) C57BL/6 (H-2b) mice and comparing them with those of isogeneic vir-
gin C57BL/6 (H-2b) female control mice. The virulent uropathogenic E. coli strain UTI89
was utilized, since ascending infection from the urinary tract is a leading cause of
maternal sepsis (35, 40), but for this study was administered intravenously so that preg-
nancy-induced changes in invasive infection susceptibility could be evaluated in isola-
tion. Initial experiments used male mice in the BALB/c (H-2d) background to sire alloge-
neic pregnancy, which recapitulates the natural mismatch between maternal and fetal
MHC haplotype antigens in humans and other naturally outbred populations (27,
41–43) (Fig. 1A). These experiments showed that pregnancy confers increased suscep-
tibility to invasive systemic infection, with significantly increased (.100-fold) numbers
of bacteria recovered from the spleen and liver 48 h after inoculation of midgestation
(E10–12) pregnant mice compared with numbers in virgin control mice (Fig. 1B). E. coli
was also recovered in the blood for a majority of mice after intravenous inoculation,
with progressively increasing levels in the first 48 h and significantly higher numbers in
pregnant than in virgin control mice 24 h postinfection (Fig. 1C). Thus, enhanced sus-
ceptibility to E. coli bacteremia during pregnancy is recapitulated in mice.

E. coli prenatal infection was also catastrophic with regard to pregnancy outcomes.
Fifty percent (8 of 16) E. coli-infected pregnant mice showed vaginal bleeding within
the first 48 h after infection, indicative of ensuing fetal complications. Necropsy

FIG 1 Pregnancy confers increased susceptibility to systemic E. coli infection in mice. (A) Schematic
outlining the susceptibility to E. coli intravenous infection in virgin mice compared with mice
midgestation (E10–12) during allogeneic pregnancy; (B) recoverable E. coli CFU in the spleen or liver
48 h after infection for the mice described in panel A; (C) E. coli CFU in the blood at each
postinfection time point for the mice described in panel A; (D) percent fetal wastage among
individual litters of mice 48 h after maternal E. coli infection at midgestation (E10–12) compared with
that of no-infection control pregnant mice; (E) recoverable E. coli CFU in the placenta and concepti
for each litter 48 h after maternal E. coli infection at midgestation; (F) number of live pups born at
term among individual litters of mice 48 h after maternal E. coli infection at midgestation (E10–12)
compared with that of no-infection control pregnant mice. Each point represents the data from an
individual mouse, combined from at least two independent experiments, both with similar results.
i.v., intravenous.
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revealed near complete (.95%) fetal wastage in the majority of E. coli-infected preg-
nant mice 48 h after maternal infection compared with background levels (,5%) in
uninfected control pregnancies (Fig. 1D). E. coli was also consistently recovered in the
placenta and concepti at remarkably high titers (.107 CFU per tissue), highlighting the
potential for efficient in utero fetal invasion (Fig. 1E). Extending this analysis to term
showed complete loss of live pups in E. coli-infected pregnant mice (n=7), compared
with an average litter size of ;6 to 7 live pups in uninfected control pregnancies
(Fig. 1F). Together, these results show that mice effectively recapitulate human suscep-
tibility to systemic E. coli infection during pregnancy, enabling an instructive opportu-
nity to investigate the pregnancy-associated changes responsible for prenatal infection
susceptibility and strategies for boosting antimicrobial immunity in this developmental
window.

Prenatal E. coli susceptibility linked with expanded fetal target tissue. Pregnancy
stimulates a variety of immunological changes both systemically and locally at the
maternal-fetal interface to avert rejection of semiallogeneic fetal tissues (44–46). The
magnitude of these immunological changes, including expansion of immune-suppres-
sive FOXP31 regulatory CD41 T cells, is directly proportional to the degree of antigenic
mismatch between maternal and fetal tissues and drives susceptibility to some prena-
tal pathogens, including L. monocytogenes and Salmonella spp. (27, 29, 47). To investi-
gate the contribution of maternal immunological changes driven by mismatch
between maternal and fetal MHC haplotype antigens, E. coli infection susceptibility
was evaluated in C57BL/6 (H-2b) female mice bearing allogeneic pregnancies (sired by
BALB/c H-2d male mice) and compared with that of mice with syngeneic pregnancies
(sired by C57BL/6 H-2b male mice) (Fig. 2A). We reasoned that if immunological shifts
required for sustaining fetal tolerance play dominant roles conferring prenatal suscep-
tibility during allogeneic pregnancy, susceptibility would be significantly reduced in
syngeneic pregnancies. Surprisingly and in sharp contrast to this hypothesis, similar
levels of susceptibility to prenatal E. coli infection were found in all groups of pregnant
mice. This includes indistinguishably high levels of recoverable E. coli CFU in maternal
tissues (spleen and liver) (Fig. 2B), fetal wastage (Fig. 2C), congenital fetal invasion
(Fig. 2D), and recoverable E. coli CFU in each conceptus (Fig. 2E) of mice bearing alloge-
neic and syngeneic pregnancies. Thus, prenatal susceptibility to E. coli infection occurs
regardless of immunological adaptations stimulated by mismatch between maternal-
fetal MHC haplotype antigens.

An alternative explanation for enhanced infection susceptibility during pregnancy
is the presence of expanded placental-fetal target tissue that is susceptible to microbial
invasion, as was shown for prenatal pathogens with placental tropism (30). This possi-
bility was evaluated using the aforementioned mice infected with E. coli during preg-
nancy by comparing the relationship between susceptibility in maternal and fetal tis-
sues and the natural variation in the number of concepti per litter. This analysis
showed highly significant positive correlations between E. coli bacterial burden in the
maternal spleen and the number of concepti in each litter (P = 0.002) (Fig. 3A).
Pregnant mice containing the highest E. coli bacterial burden in the maternal spleen
also contained the most concepti, whereas the E. coli bacterial burden in maternal tis-
sues progressively declined in pregnant mice with smaller numbers of concepti
(Fig. 3A). Similar positive correlations were also found between E. coli bacterial burden
in the maternal liver and the number of concepti in each litter; these border on statisti-
cal significance (P = 0.051) (Fig. 3A). This potential causative link associated with
expanded placental-fetal target tissue driving E. coli prenatal infection susceptibility
extends to pregnancy outcomes where a direct correlation between percent fetal was-
tage and the average number of recoverable E. coli CFU in each conceptus per litter
was identified (Fig. 3B). Together, these results suggest that maternal E. coli infection
susceptibility and ensuing pregnancy complications are driven primarily by bacterial
replication in expanded placental-fetal target tissue, with noncontributory roles for
immunological changes stimulated by maternal-fetal antigenic mismatch.
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Preconceptual priming overrides prenatal E. coli infection susceptibility.
Immunity primed by E. coli systemic infection against recurrent infection remains
poorly defined. The estimated 10 to 15% rate of recurrent E. coli bacteremia among
individuals with prior bloodstream infection suggests incomplete immunity primed by
natural infection (48–52). However, the vast majority of recurrent infections occur in
immunocompromised individuals or individuals with other infection risk factors,
including the presence of intravascular catheters, prosthetic tissues, or other implant-
able hardware (50, 52–55). Thus, immunity from prior infection may play a more domi-
nant protective role in healthy, immunocompetent individuals, but this is difficult to
determine given the retrospective nature of most human studies and the preponder-
ance of underlying conditions in bacteremic patients. We reasoned that establishing
whether E. coli infection primes protection against recurrent systemic infection and the
potential persistence of these protective effects during pregnancy would create an
instructive framework for developing vaccines to mitigate prenatal infection
susceptibility.

These hypotheses were investigated by first evaluating the impacts of prior E. coli
infection on susceptibility to reinfection with the same strain in nonpregnant mice.
Initial dose titration experiments showed that 4� 106 E. coli CFU was uniformly nonle-
thal and cleared within 10 days postinfection, whereas 4� 107 CFU caused near com-
plete mortality within the first 24 to 48 h postinfection and was associated with very
high numbers of recoverable bacteria in the spleen and liver. An experimental

FIG 2 Susceptibilities to systemic E. coli infection are comparable during allogeneic and syngeneic
pregnancies. (A) Schematic outlining the use of BALB/c (H-2d) or C57BL/6 (H-2b) males to establish
allogeneic and syngeneic pregnancies, respectively, in C57BL/6 (H-2b) female mice; (B) recoverable E.
coli CFU in the spleen or liver 48 h after infection at midgestation (E10–12) for the mice described in
panel A; (C) percent fetal wastage among individual litters of mice 48 h after maternal E. coli infection
at midgestation for the mice described in panel A; (D) percent concepti with recoverable E. coli CFU
48 h after maternal E. coli infection at midgestation for the mice described in panel A; (E) average
number of recoverable E. coli CFU among concepti in each litter 48 h after maternal E. coli infection
at midgestation for the mice described in panel A. Each point represents the data from an individual
mouse, combined from at least two independent experiments with similar results.
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framework using these inocula for E. coli priming and challenge, respectively, showed
susceptibility to be sharply reduced in mice during secondary infection compared with
that during primary infection (Fig. 4A). No mortality occurred after E. coli challenge in
mice with a prior resolved sublethal infection (n=10), compared with the rapid pro-
gression to a moribund state in control mice without a prior E. coli infection (Fig. 4B).
The improved survival of mice with prior E. coli priming also paralleled significantly
reduced E. coli bacterial burdens in the spleen and liver after high-dose challenge com-
pared with those of control mice without prior E. coli infection (Fig. 4C). Thus, primary
E. coli bacteremia efficiently primes cross-protection against recurrent systemic infec-
tion by the same strain.

The scope of these experiments was expanded to further investigate whether the
protective benefits primed by resolved E. coli infection are sustained during pregnancy
(Fig. 5A). We found that susceptibility to prenatal E. coli infection was sharply reduced
in mice with resolved infection prior to mating compared with that of pregnant mice
without prior E. coli priming. After E. coli challenge at midgestation (E10–12), bacterial
burdens in the maternal spleen, liver, and blood were each significantly reduced in
mice with resolved preconceptual infection compared with those of control mice with-
out prior E. coli infection (Fig. 5B and C). The frequency of fetal wastage was also
reduced to only background levels after E. coli prenatal infection in mice with prior
resolved E. coli infection before pregnancy compared with the near uniform fetal was-
tage in E. coli naive pregnant control mice (Fig. 5D). Likewise, numbers of recoverable
bacteria in the placenta and concepti were significantly reduced and below the limits
of detection after E. coli infection for a majority of mice with resolved preconceptual
infection compared with numbers in control mice without prior E. coli infection
(Fig. 5E). Together, these results show that protective immunity primed by resolved E.
coli infection is functionally retained during pregnancy.

E. coli bacteremia is highly inflammatory, and infection often triggers a cascade of
innate proinflammatory cytokines, including tumor necrosis factor alpha (TNF-a), inter-
leukin 1 (IL-1), and IL-6, which are both protective against infection and promote the
immune pathogenesis of clinical sepsis (56–59). In turn, dynamic changes in the levels
of these cytokines also occur with the progression of pregnancy, and perturbations

FIG 3 Maternal E. coli susceptibility during pregnancy directly correlates with the number of
concepti in each litter. (A) Regression analysis comparing the number of concepti in each litter with
recoverable E. coli in the maternal spleen and liver; (B) regression analysis comparing fetal wastage
with the average number of recoverable E. coli CFU in the concepti of each litter. Each point
represents the data from an individual mouse, combined from at least two independent experiments
with similar results.
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have been implicated in various pregnancy complications, including preeclampsia and
miscarriage (60–64). To evaluate pregnancy-induced shifts in E. coli infection suscepti-
bility, serum levels for a variety of innate inflammatory cytokines were analyzed in the
first 48 h after E. coli infection in pregnant and virgin control mice and between suscep-
tible pregnant mice and more resistant pregnant mice with preconceptual E. coli pri-
ming. As expected, the levels of IL-6, TNF-a, IL-10, and the neutrophil chemoattractant
keratinocyte-derived chemokine (KC) were increased in the sera of virgin control mice
after E. coli infection (Fig. 6). Interestingly, the levels and accumulation tempos for
some cytokines were nearly indistinguishable between E. coli-naive pregnant and vir-
gin control mice despite drastic differences in tissue pathogen burden (Fig. 1). In par-
ticular, levels of IL-6 and KC peaked to similar levels within the first 8 h, later declining
to background levels 48 after infection in both groups of mice (Fig. 6). In contrast,
other cytokines showed more significant differences after E. coli infection between
pregnant and virgin control mice. For example, infection-induced levels of TNF-a, IL-
1b , and IL-17A were higher in the sera of pregnant mice than in the sera of virgin con-
trol mice, which parallels their increased bacterial burden, whereas the anti-inflamma-
tory cytokine IL-10 peaked to higher levels in virgin than in pregnant mice (Fig. 6).
Interestingly, levels of other cytokines, such as gamma interferon (IFN-g) and granulo-
cyte macrophage colony-stimulating factor (GM-CSF) did not change significantly after
E. coli infection in virgin control or pregnant mice. Importantly, the production of
nearly all cytokines was muted after E. coli infection of pregnant mice with resolved
subclinical infection prior to mating, compared with that of pregnant mice without
prior E. coli exposure (Fig. 6). Thus, pregnancy-induced susceptibility to sharply
increased E. coli accumulation in target tissues, fetal wastage, and infection-induced
inflammation are efficiently averted by preconceptual priming.

FIG 4 E. coli infection primes protective immunity against reinfection in mice. (A) Schematic
outlining the susceptibility to E. coli high-dose (4 � 107 CFU) challenge of specific-pathogen-free
naive mice compared with that of mice infected 20 days prior with a sublethal E. coli inoculum; (B)
survival for each group of mice described in panel A after high-dose E. coli challenge; (C) recoverable
E. coli CFU in the spleen or liver 24 h after high-dose E. coli challenge for the mice described in panel
A. Each point represents the data from an individual mouse, combined from at least two
independent experiments with similar results.
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E. coli-specific antibodies primed by primary infection protect against secondary
challenge. To investigate which adaptive immune components stimulated by E. coli
primary infection mediate protection against secondary challenge, the susceptibility of
naive mice receiving adoptively transferred donor leukocytes (5� 107 spleen and
lymph node cells), heat-inactivated serum (200ml), or both from E. coli-primed mice 1
day prior to high-dose (4� 107 CFU) E. coli challenge was evaluated (Fig. 7A). We found
that protection was mediated primarily by immune components in the serum, since
naive mice receiving adoptively transferred serum only (n=9) or serum plus spleen
and lymph node cells (n=7) from E. coli-primed mice showed no mortality, whereas all
naive mice receiving only donor cells (n=10) became moribund or died within the first
4 days after E. coli challenge (Fig. 7B). In turn, bacterial burden was sharply reduced af-
ter challenge of mice given serum from E. coli-primed mice compared with that of na-
ive control mice (Fig. 7C) and to levels comparable with those in intact E. coli-primed
mice (Fig. 4B).

These results showing protection against E. coli invasive infection transferred by se-
rum is consistent with the ability of E. coli-specific antibodies to mediate protection
against invasive E. coli infection in other infection contexts, including other rodent
infection models (65–71). To further evaluate the priming and accumulation of protec-
tive antibodies after primary E. coli infection, levels of E. coli-specific antibodies in the
sera of E. coli-primed mice were compared with those of naive control mice. These
analyses showed 128- to 512-fold (6 to 8 additional 2-fold serum dilutions to achieve
the same optical density [OD] reading)-increased titers of E. coli-specific antibodies in

FIG 5 Preconceptual infection overrides pregnancy-induced E. coli infection susceptibility in mice. (A)
Schematic outlining the susceptibility to E. coli prenatal challenge in specific-pathogen-free naive
mice compared with mice infected 20 days prior to mating to establish allogeneic pregnancy; (B)
recoverable E. coli CFU in the spleen or liver 48 h after infection for the mice described in panel A; (C)
E. coli CFU in the blood at each postinfection time point for the mice described in panel A; (D)
percent fetal wastage 48 h after maternal E. coli infection at midgestation (E10–12) among E. coli-
naive (no preconceptual infection) and primed female mice with resolved E. coli infection prior to
pregnancy; (E) recoverable E. coli CFU in the placenta and concepti for each litter 48 h after maternal
E. coli infection at midgestation. Each point represents the data from an individual mouse, combined
from at least two independent experiments with similar results.
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mice 20 days after primary infection (Fig. 7D). All antibody subtypes were significantly
increased in the sera of E. coli-primed mice, with IgM, IgG1, IgG2b, and IgG3 showing
the most prominent differences from those in naive control mice (Fig. 7E). Thus, pro-
tection against E. coli systemic infection primed by prior infection is associated with
the accumulation of E. coli-specific antibodies in the serum, and serum containing E.
coli-specific antibodies efficiently transfers protection against E. coli systemic infection
to recipient naive mice.

To investigate the efficiency with which donor immune serum containing E. coli-
specific antibodies protects against prenatal E. coli infection, complementary experi-
ments (i) used midgestation (E10–12) pregnant mice as recipients of serum from E.
coli-primed mice and (ii) evaluated potential differences in maternal susceptibility to
prenatal E. coli infection (Fig. 8A). We found that pregnant mice administered serum
from E. coli-primed mice 1 day before E. coli infection during pregnancy contained sig-
nificantly reduced bacterial burdens in the maternal spleen (P = 0.02) and near signifi-
cant reductions in the maternal liver (P = 0.06) (Fig. 8B). Infection-induced fetal wastage
and levels of E. coli in fetal tissues were also significantly reduced in pregnant mice
given serum from E. coli-primed mice compared with those of control pregnant mice
given no serum (Fig. 8C and D). Thus, circulating antibodies primed by prior invasive E.

FIG 6 Serum cytokine levels after E. coli prenatal infection. Levels of each cytokine in the serum
prior to or 8, 24, or 48 h after intravenous injection of E. coli (2� 105 CFU of uropathogenic strain
UTI89) for virgin control mice (gray squares), pregnant midgestation (E10–12) mice without prior E.
coli exposure (black circles), and pregnant midgestation (E10–12) mice with resolved E. coli infection
prior to pregnancy (red circles). These data are representative of 4 to 5 mice per group at each time
point, combined from two independent experiments with similar results.
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coli infection protects against reinfection, and these protective benefits persist during
pregnancy, when infection susceptibility is naturally increased.

DISCUSSION

Classical prenatal pathogens that cause more severe infection in mothers during
pregnancy or have the propensity for congenital fetal invasion include Listeria monocy-
togenes, Toxoplasma gondii, Brucella spp., cytomegalovirus, and influenza and Zika
viruses (6, 14, 31). This list should be expanded to include E. coli, which is consistently
reported as a leading cause of maternal sepsis during pregnancy and responsible for
an estimated 33 to 50% of antenatal cases (15, 16, 25, 26). Interestingly, however, the
pregnancy-attributed risk of E. coli bacteremia has surprisingly not been described.
Based on the reported incidence of E. coli bacteremia ranging from 64 to 100 cases per
100,000 pregnancies across multiple epidemiological surveys and the relatively low

FIG 7 Serum containing E. coli-specific antibodies from mice with resolved infection transfers
protection to naive recipient mice. (A) Schematic outlining when immune cells (splenocyte and lymph
node cells) and serum (200ml after heat inactivation) are harvested from E. coli-primed donor mice and
transferred (5� 107 splenocytes plus lymph node cells and/or 200ml heat inactivation serum) to each
group of naive recipient mice; (B) survival for each group of mice described in panel A after high-dose
(4 � 107 CFU) E. coli challenge; (C) recoverable E. coli CFU in the spleen or liver 24h after high-dose E.
coli challenge for mice administered serum 1 day prior to infection compared with that in naive control
mice given no serum; (D) E. coli-specific IgG antibody titers in the sera of E. coli-primed mice (20days
after infection) compared with those of naive control mice; (E) optical density of each antibody type with
E. coli specificity after administration of a 1:2,000 dilution of the serum from E. coli-primed mice (20days
after infection) compared with that of naive control mice. Each point represents the data from an
individual mouse, combined from at least two independent experiments with similar results.
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incidence in reproductive-age individuals (;10 cases per 100,000 individuals 15 to
49 years of age) we conservatively estimate a 5- to 10-fold-increased risk during preg-
nancy (15, 16, 21, 22). This is likely an underestimation, since pregnancy status was not
described in general surveys of E. coli bacteremia in reproductive-age individuals (aged
15 to 44 or 15 to 49 years) (21, 22), and a large proportion of these cases may be attrib-
uted to pregnancy. Thus, consideration of pregnancy as a biological variable is needed
in human epidemiological surveys to more precisely define infection risk in this physio-
logical context.

An intriguing commonality between classical prenatal pathogens is obligate or fac-
ultative residence within host cells and, except with influenza virus, defined placental-
fetal tropism (6, 14). These parameters regarding whether microbes reside within or
outside host cells during infection are likely linked with tissue tropism, since transport
within circulating leukocytes promotes trophoblast cell invasion for intracellular prena-
tal pathogens (31). In turn, placental-fetal tropism promotes susceptibility to infection
during pregnancy by intracellular pathogens, as infected placental-fetal cells can serve
as a nidus for ongoing seeding of maternal tissues (30). We found that E. coli efficiently
infects the placenta and other fetal tissues during systemic maternal infection, which
may occur by several distinct mechanisms. These include the increasingly recognized
ability of E. coli to replicate within infected host cells (such as macrophages and epithe-
lial cells), which may promote placental-fetal invasion during prenatal infection, as
with infection in the urinary tract (32–35, 37). Alternatively, extracellular pathogens like
E. coli may exploit fundamentally different pathways, such as direct invasion of placen-
tal-fetal tissues from the maternal blood supply (72) or ascending spread from the
female genital tract, where intracellular replication has also been identified (36).

Potential clues for dissociating these possibilities include the direct association
between E. coli pathogen burden in maternal tissues and the number of concepti in
each litter, and the high levels of E. coli in the placenta, suggesting expanded placen-
tal-fetal target tissue, directly contributes to prenatal E. coli infection susceptibility, as
with intracellular pathogens like L. monocytogenes (30). However, an important

FIG 8 Serum containing E. coli-specific antibodies transfers protection to naive pregnant mice. (A)
Schematic outlining when serum is harvested from E. coli-primed nonpregnant donor mice and
transferred into pregnant mice midgestation (E10–12) during allogeneic pregnancy; (B) recoverable E.
coli CFU in the spleen or liver 48 h after prenatal E. coli challenge for mice administered serum
(200ml after heat inactivation) 1 day prior to infection compared with that of naive control pregnant
mice given no serum; (C) percent fetal wastage for the mice described in panels A and B; (D) average
number of recoverable E. coli CFU among concepti in each litter 48 h after maternal E. coli prenatal
challenge for the mice described in panels A and B. Each point represents the data from an
individual mouse, combined from at least two independent experiments with similar results.
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distinction linked with the unique cellular residence of these pathogens lies in the
adaptive immune components that mediate protective immunity. Primary L. monocyto-
genes infection confers protection against secondary challenge that is exclusively
mediated by CD81 T cells, consistent with the intracellular residence of the bacterium
(73, 74). In contrast, donor splenocytes from E. coli-primed mice are nonprotective, and
immunity against E. coli reinfection is instead mediated by antibodies, consistent with
the primary extracellular residence of this bacterium (Fig. 7B). Nonetheless, we noted
considerably increased variability in the levels of fetal wastage and E. coli burdens in fe-
tal tissues among mice given serum from primed donors, in contrast to the near com-
plete protection against fetal wastage and congenital fetal invasion observed when E.
coli-primed mice were infected during pregnancy (compare Fig. 8C with Fig. 5D). The
magnitude of protection in maternal tissues was also reduced considerably in preg-
nant mice administered serum from primed donors (;10-fold reduction compared
with that in controls) compared with that in E. coli-primed mice infected during preg-
nancy (;1,000-fold reduction compared with that in controls) (compare Fig. 8B with
Fig. 5B). This more attenuated protection with adoptive serum transfer in comparison
to that of intact mice after primary infection most likely reflects that protective anti-
bodies achieved with 200ml donor immune serum is just at the threshold required for
overriding heightened susceptibility during pregnancy.

In this context, it is important to also highlight pregnancy-induced changes in the
frequency and tissue distribution of innate immune cells, including neutrophil and
macrophage cells (28, 75, 76), both of which participate in protective immunity against
E. coli and L. monocytogenes infections (38, 77–81). The cellular shifts that lead to infec-
tion susceptibility during pregnancy are likely linked with changes in systemic and
local levels of innate inflammatory cytokines. For example, pregnant mice which rap-
idly succumbed to normally innocuous Salmonella infection were shown to have
increased serum IL-6 levels, as well as blunted migration of leukocytes to infected tar-
get organs, whereas pregnancy-induced Salmonella susceptibility was reversed with IL-
6 blockade (28). Interestingly, E. coli strains have drastically different potentials to
evoke host proinflammatory cytokines after infection, and the uropathogenic E. coli
strain UTI89 that we used has been shown to suppress inflammatory cytokine produc-
tion after infection in other contexts (82). This may explain the muted production of
some cytokines (IFN-g and GM-CSF) that we observed after in vivo infection. Thus, fur-
ther establishing the immunopathogenesis of prenatal E. coli infection will require
complementary approaches, including mathematical modeling of the infection tempo
after enumerating pathogen burden in maternal and fetal target tissues at multiple
time points after infection (30), the use of E. coli strains recovered from women with
systemic infections during pregnancy, the use of E. coli mutants that cannot enter and
replicate within host cells for prenatal infection (34), and more precise analysis of sys-
temic inflammation induced by infection within localized tissues (83).

Importantly, and despite these limitations, the enhanced susceptibility of women
during pregnancy to systemic E. coli infection is replicated in specific-pathogen-free
pregnant mice. Considering the ubiquitous presence of E. coli as a commensal patho-
biont across mammalian species, these results raise important new questions as to
why E. coli bacteremia with ensuing fetal complications does not occur even more fre-
quently. In other words, if pregnancy confers susceptibility to invasive E. coli infection
and E. coli is a ubiquitous pathobiont in the human intestine, would not infection dur-
ing pregnancy be expected to be the norm and not the exception? We propose that
there are likely yet-to-be-identified immunological or physiological distinctions unique
to pregnant women who develop E. coli bacteremia. One consideration is the afore-
mentioned discussion on expanded placental-fetal target tissue. This notion is consist-
ent with the ;5-fold-increased susceptibility to severe maternal sepsis during multiple
gestations compared with that during singleton human pregnancies (84–86). A sepa-
rate analysis of 29 pregnant women with E. coli bacteremia showed disproportionately
increased susceptibility in the third pregnancy trimester (25). However, the majority of
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maternal E. coli bacteremia-sepsis cases occurring in singleton pregnancies, together
with the lack of a clear association between susceptibility and the progression of preg-
nancy in larger studies (87), suggest that there are likely other factors, including the vir-
ulence of individual E. coli strains, immunity primed by prior infection or colonization,
and maternal nutritional status (15–18). Likewise, prenatal susceptibility is also likely
not driven by immunological changes required for accommodating the mismatch
between expressed maternal and fetal MHC haplotype antigens, given the similar sus-
ceptibilities that we show between mice bearing syngeneic and those bearing alloge-
neic pregnancies.

Given the ubiquitous presence of E. coli in the intestinal lumen and the constant
susceptibility to bloodstream seeding by these commensal pathobionts from mucosal
interface tissue beginning early after birth (67), a provocative explanation for the rela-
tively rare occurrence of E. coli bacteremia in human pregnancy is immunity naturally
primed by subclinical infection in reproductive-age women prior to pregnancy. Using
sublethal infection of specific-pathogen-free mice to mimic preconceptual exposure to
invasive E. coli infection, we find nearly complete reversal of many parameters associ-
ated with prenatal susceptibility to E. coli infection. For example, recoverable E. coli in
the maternal spleen and liver was significantly reduced to levels comparable to those
in nonpregnant control mice with preconceptual priming (compare Fig. 1B and 5B).
Likewise, near complete reversal of E. coli infection-induced fetal wastage was found in
mice with resolved E. coli bacteremia prior to pregnancy (compare Fig. 1D and 5D).

Other limitations to our current model include using the same uropathogenic E. coli
strain for priming and challenge, and the relatively short time interval between precon-
ceptual priming and secondary prenatal challenge in these proof-of-concept experi-
ments designed to probe pregnancy-induced shifts in host defense. Nonetheless, the
dramatically reduced susceptibility to E. coli prenatal infection conferred by preconcep-
tual priming also highlights interesting new strategies for potentially closing this devel-
opmental window of vulnerability. Recent studies show that natural antibodies primed
by exposure to commensal bacteria have wide cross-reactivity against other Gram-neg-
ative Enterobacteriaceae species, including protection against enterotoxigenic E. coli
infection primed by intestinal colonization with Pantoea spp. (67). Applied to the sus-
ceptibility of mothers to invasive E. coli infection during pregnancy, the larger transla-
tional implications are that natural antibodies primed by commensal E. coli or other
cross-reactive Enterobacteriaceae spp. override in most women pregnancy-induced sus-
ceptibility to invasive infection. Screening for the presence of natural antibodies
primed by the microbiota or subclinical invasive infection may help to discriminate
women with natural immunity from those at increased risk for invasive E. coli infection
during pregnancy. In turn, preconceptual administration of vaccines that mimic immu-
nity primed by commensal colonization or subclinical invasive infection may efficiently
override prenatal infection susceptibility. Beyond the susceptibility of mothers, the
transfer of protective maternal antibodies in utero or through breastfeeding may also
play dominant roles controlling the susceptibility of neonates to invasive E. coli infec-
tion (67). Important next steps include testing these hypotheses in preclinical models
controlling for E. coli commensal colonization, and using urethral E. coli inoculation to
better mimic the primary route of natural invasive infection.

MATERIALS ANDMETHODS
Mice. Defined strains of inbred mice (C57BL/6 [MHC H-2b haplotype] and BALB/c [MHC H-2d haplo-

type]) mice were purchased from the National Cancer Institute and Charles River Laboratories (Frederick,
Maryland) and maintained under specific-pathogen-free conditions at the Cincinnati Children’s Hospital.
Allogeneic and syngeneic pregnancies in C57BL/6 female mice were sired by BALB/c and C57BL/6 male
mice, respectively, as described previously (27). Experiments involving animals were performed under
Cincinnati Children’s Hospital Institutional Animal Care and Use Committee (IACUC) approved protocols
(assurance no. 2013-0170).

Bacteria and infections. For infection, E. coli strain UTI89 was grown in LB medium. Overnight cul-
tures were back-diluted to log-phase growth (90 to 120 min, 37°C, 200 to 225 rpm; OD at 600 nm
[OD600], 0.3 to 0.4). Thereafter, the bacteria were washed, resuspended, and diluted in sterile saline and
injected via the lateral tail vein (in a 200-ml volume) into mice. For enumerating bacterial burden after
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infection, each tissue (spleen, liver, placentae, or concepti) was dissected in a sterile fashion from eutha-
nized mice and homogenized in sterile saline supplemented with 0.05% Triton X-100. Serial dilutions of
each tissue homogenate or heparinized blood was spread onto LB plates, and cells were counted after
24 h of incubation at 37°C.

Passive serum and immune cell transfer. Blood, spleen, and lymph nodes were harvested from vir-
gin mice 20 days after E. coli priming (4� 106 CFU by intravenous infection). For serum harvest and
transfer, the blood was allowed to clot at room temperature and then spun at 10,000 rpm for 10 min.
Serum was removed and then heat inactivated (56°C for 20 min) and transferred by intraperitoneal injec-
tion into each group of recipient mice (200ml) 1 day prior to E. coli infection. For immune cell harvest
and transfer, the spleen and lymph nodes from donor mice were mechanically disrupted using frosted
glass slides, lysed of red blood cells, filtered through a 60-mm nylon mesh, and resuspended in sterile sa-
line. On average, 108 splenocytes plus lymph node cells were recovered from each donor. Cells (5� 107;
half donor mouse equivalent) were transferred by intravenous injection into each group of recipient
mice 1 day prior to E. coli infection.

Cytokine analysis. At each time point after E. coli intravenous injection, blood was obtained from
the retro-orbital space and allowed to clot at room temperature for each group of mice. The serum was
harvested, frozen at220°C, and analyzed using Milliplex (Millipore, Sigma).

E. coli-specific antibodies. For evaluating E. coli-specific antibodies by enzyme-linked immunosor-
bent assay (ELISA), flat-bottom, high-binding, 96-well enzyme immunoassay (EIA)/radioimmunoassay
(RIA) plates (Costar) were coated with nearly confluent, log-phase E. coli UTI89 and allowed to dry over-
night under UV light. E. coli-coated plates were blocked with 3% milk and first probed with serum
dilutions from each mouse at the indicated dilution and then secondarily probed with the following
biotin-conjugated anti-mouse antibodies: rat anti-mouse IgG (eBioscience catalog [cat.] no. 13-4013-8), rat
anti-mouse IgM (eBioscience 13-5890-1589), rat anti-mouse IgA (eBioscience 13-5994-82), rat anti-mouse
IgG1 (BD Pharmingen cat. no. 553441), rat anti-mouse IgG2a (BD Pharmingen 553388), rat anti-mouse
IgG2b (BD Pharmingen 553393), rabbit anti-mouse IgG2c (Invitrogen cat. no. SA5-10235), and rat anti-
mouse IgG3 (BD Pharmingen 553401). Each antibody was used at an 1:1,000 dilution and developed with
streptavidin-peroxidase (554066; BD Bioscience) using o-phenylenediamine dihydrochloride as a substrate;
absorbance at 450 nm (A450) was read as described previously (88).

Quantification and statistical analysis. The distribution of data on CFU, percent fetal invasion, and
fetal wastage was first evaluated for a normal distribution. Thereafter, Student's t test and the nonpara-
metric Mann-Whitney test were used for analysis of differences between normally and not normally dis-
tributed data sets. Linear regression was performed to determine correlations between E. coli bacterial
burdens and the number of concepti per litter or the average E. coli bacterial burden per conceptus and
fetal wastage in each litter. Survival between groups of mice was analyzed using the log rank (Mantel-
Cox) test. All data were analyzed using GraphPad Prism software, and a P of,0.05 was taken as statistical
significance.
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