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Abstract. Biomechanical factors play an important role in 
tumor distribution, epithelial‑mesenchymal transition (EMT), 
invasion and other important processes. Despite fewer reports 
investigating biomechanical function in papillary thyroid 
carcinoma (PTC), a large number of PTC cases are located 
close to the trachea and the majority of advanced cases of PTC 
have been associated with invasion of the trachea. However, 
the effect of trachea stiffness on PTC distribution and growth 
remains unknown. To clarify this issue, two types of PTC cells 
(TPC‑1 and KTC‑1) were seeded on a substrate with different 
stiffness to observe cell proliferation and movement. To iden‑
tify the effect of trachea stiffness on the thyroid, two thyroid 
lobes (left and right) were evenly divided into interior (close to 
the trachea) and lateral (away from the trachea) parts, based on 
the vertical line between the trachea and thyroid lateral margin 
with different von Mises stress values. As PTC originates from 
papillary thyroid microcarcinoma (PTMC) with a maximum 
diameter of <1 cm, the present study selected PTMC as the 
study subject to reflect initial PTC distribution in the thyroid. 
The association between the percentage of PTMC distribution 
in different parts of the thyroid and von Mises stress values 
was analyzed. Both PTC cells exhibited stronger proliferation 
and mobility on the stiff substrate compared with that on the 
soft substrate. Furthermore, the results of finite element anal‑
ysis revealed that the von Mises stress values of the interior 

parts of the trachea were notably higher compared with that 
in the lateral parts. PTMC distribution in the interior trachea 
was notably greater compared with that in the lateral section. 
There was also an observed association between von Mises 
stress values and PTMC distribution. In addition, the results 
of RNA‑sequencing and reverse transcription‑quantitative 
PCR demonstrated that three biomechanical genes were over‑
expressed in PTMC located in the interior section compared 
with that in adjacent normal tissue, and the related signaling 
pathways were also activated in these tissues. On the whole, 
these results indicated that trachea stiffness may supply a 
suitable biomechanical environment for PTMC growth, and 
the related biomechanical genes may serve as novel targets for 
PTMC diagnosis and prognostic estimation.

Introduction

Matrix stiffness, resulting from abundant matrix protein 
deposition and crosslinking, as one of the important biome‑
chanical factors, plays important roles in tumor progression, 
including epithelial‑mesenchymal transition (EMT), motility, 
distribution, invasion, metastasis and stemness in tumors (1,2). 
For example, melanoma cells could migrate towards higher 
extracellular matrix (ECM) densities or stiffer areas of the 
substratum. The increased matrix stiffness, following thermal 
ablation, could promote the progression of residual hepatocel‑
lular carcinoma by a stiffness‑dependent regulation of ERK 
phosphorylation (3). The inhibition of the ECM stiffness in 
the mouse mammary gland caused tumor cells to revert to a 
normal epithelial phenotype, which could be characterized by 
reduced invasion and proliferation (4).

Thyroid cancer is responsible for 586,000 cases world‑
wide, ranking in 9th place for incidence in 2020 (5). Papillary 
thyroid carcinoma (PTC) is one of the most common endo‑
crine malignancies in worldwide, research has demonstrated a 
continuous increase in the global incidence of thyroid cancer 
over the past two decades (6). Despite a number of studies on 
the biochemical alterations in PTC (7,8), the developmental 
processes of PTC remain to be fully determined. To the best 
of our knowledge, reports on the biomechanical influence 
and genetic alterations in PTC are limited. Very recently, 
Jasim  et  al  (9) found that thyroid nodule location was an 
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independent risk factor in predicting the risk of thyroid 
cancer. Normally, isthmic nodules carry the highest risk of 
cancer diagnosis and lower lobe nodules carry the lowest risk. 
Naturally, the isthmus is closely attached to the trachea with 
a relative stiffness. Furthermore, a number of studies have 
demonstrated that the trachea is the most common site of inva‑
sion, with an incidence rate of 35‑60% in patients with PTC and 
tumor invasion, followed by the larynx and esophagus (10,11); 
the incidence rate per site was as follows: 77% for recurrent 
laryngeal nerve, 55% for the trachea, 4% for the larynx and 
15% for the esophagus (12), while <4% of patients exhibited 
vein and soft tissue invasion. All these results indicated that 
PTCs occur more frequently around the trachea where the 
tissue stiffness is higher; however, the association between 
tissue stiffness and tumor distribution remains unclear. It is 
thus, crucial to investigate the effect of trachea stiffness on 
PTC distribution and to determine its association with tumor 
prevention, diagnosis and treatment.

The present study constructed trachea stiffness analysis 
technology and quantitatively evaluated the genetic perfor‑
mance of PTC, with adjacent normal tissue as a control to 
identify the association between trachea stiffness and PTC 
distribution to provide novel diagnostic and treatment markers 
for PTC. Combining in vitro and in vivo analyses, elucidating 
the association between trachea stiffness and PTC distribution 
may provide new insight into PTC development and lead to the 
design of new treatment strategies.

Materials and methods

Identification of PTMC tissue stiffness using nanoindentation 
technology. This was detected using a nanoindentation instru‑
ment (Hysitron TI980 TriboIndenter, Bruker Corporation) and 
its association between the displacement and the experimental 
load was analyzed.

Cell experiments on a substrate with different stiffness 
levels. The TPC‑1 and KTC‑1 cell lines, both derived from 
humans, were purchased from the Cell Bank of the Chinese 
Academy of Sciences. Both the cell lines were maintained in 
RPMI‑1640 medium (Invitrogen; Thermo Fisher Scientific, 
Inc.) supplemented with 10% fetal bovine serum (Invitrogen; 
Thermo Fisher Scientific, Inc.), 100 IU/ml penicillin (Gibco; 
Thermo Fisher Scientific, Inc.) and 100 µg/ml streptomycin 
(Gibco; Thermo Fisher Scientific, Inc.), at 37˚C in a humidified 
incubator with 5% CO2.

The cells were then seeded in a 6‑well plate, at a concen‑
tration of 1x105 cells/well with 10, 40 and 60 kPa substrate 
for 12 h, in which the substrate was prepared according to a 
previous report (13). Subsequently, the cells were scratched 
vertically with a 100‑µl pipette tip the following day. At 
48 h, the cells were counted under an inverted phase‑contrast 
microscope in 5 random fields, after washing twice with PBS 
and placed in serum‑free culture medium.

The cells of 1x105/ml were seeded in six‑well culture plates 
with different substrate stiffness. The 10 kPa stiffness group 
was served as the control. After 24‑h cell culture, cells were 
trypsinized for cell counting using Coulter counter every 12 h, 
then re‑suspended and reseeded in dishes till 72 h. The above 
experiments were repeated three times for each group.

Finite element analysis (FEA) for the thyroid and its 
surrounding tissue
Construction of the 3D volume model. Computed tomography 
(CT) data of the neck was collected from 7 patients with 
PTC for FEA (Department of Maxillofacial and Ear Nose 
and Throat Oncology, Tianjin Medical University Cancer 
Institute and Hospital). The 3D image data of the patients with 
PTC were captured using CT technology (ScanXmate‑E090; 
Comscantecno Co., Ltd.). Following air calibration, X‑ray 
exposure in the neck of each patient was performed with a 
view field of 25x25 cm and an axial scan, at a thickness of 
2.5x2.5 mm interval. The CT data was used to construct the 
3D polygonal stereolithography (STL) model of the neck 
in each case. A part of the STL model, with ~2.5 mm ante‑
rior‑posterior thickness, was retrieved from the whole model to 
obtain a segment representing the region of interest, including 
the loading site. This segmented STL model was converted 
into computer‑aided design software (Catia V5R18; Dassault 
Systems) to analyze the model in detail and examine minute 
irregularities. Finally, the 3D volume model was constructed 
using Ansys finite element software (Ansys version 11.0; 
ANSYS, Inc.), which was meshed by 10‑nodes quadratic tetra‑
hedral element with 3 degrees of freedom.

Definition of material parameters. The thyroid gland was set 
as viscoelastic and isotropic material, with an initial Young's 
modulus of 34.85 MPa and Poisson's ratio of 0.49 (14). The 
trachea was defined as isotropic elastic material with a Young's 
modulus of 3.33 MPa and Poisson's ratio of 0.49 (15). The 
density of the thyroid was set as 1,150 kg/m3, and the trachea 
was considered as cartilage only with a density of 1,400 kg/m3, 
which was obtained using the density measurement function 
of Mimics version 8.1 software (Materialise; https://www.
materialise.com/).

Papillary thyroid microcarcinoma (PTMC) distribution in 
the thyroid and its clinical information. The present clinical 
study included 998 patients who were diagnosed with PTMC 
by a pathologist following surgery at the Tianjin Medical 
University Cancer Hospital (TJMUCH) between 1st June 
2016 and 1st December 2016; 709 patients had a single tumor 
and 289 patients had multifocal disease. The mean age was 
48.2±11.3 years and there were 261 males and 737 females. 
The present study was conducted according to the principles 
outlined in the Helsinki Declaration and was approved by 
the Research Ethics Committee at TJMUCH (no. 2018090). 
Written informed consent was provided by all the patients. 
The clinicopathological data, including sex, age and the pres‑
ence of thyroiditis, were also collected. All the patients were 
subjected to total thyroidectomy or unilateral thyroidectomy 
according to the National Comprehensive Cancer Network 
guidelines (version 2016) (16,17); cases in which the tumor 
was close to the tracheal region were marked as ‘interior’, and 
those with tumors 2‑4 cm away from the trachea were marked 
as ‘lateral’.

RNA extraction, sequencing and preprocessing. A total of 33 
samples, each containing PTMC located in interior regions and 
adjacent normal tissue, were collected for RNA‑seq analysis 
(3 samples) and RT‑qPCR (30 samples). A total of 10 samples, 
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including multifocal PTMC located in the interior and lateral 
regions, were collected for RT‑qPCR for comparing differences 
in gene expression between PTMC located in different regions 
of the trachea. All tissue samples were obtained by thyroidec‑
tomy and stored at ‑80˚C until further use. RNA sequencing 
(RNA‑seq) and subsequent analysis was performed by the 
BGI‑Shenzhen Company (http://www.genomics.cn/en/).

Identification of differentially expressed genes (DEGs) 
using RNA‑seq analysis. Gene expression levels of the 
transcripts were measured using the reads per kilobase of 
transcript, per million mapped reads method. Subsequently, 
the edgeR package (edgeR 3.14.0) (18) tool was utilized to 
identify the DEGs between the PTMC and adjacent normal 
tissue from 3 samples of PTMC. During the differential 
analysis, the negative binomial model was used to calculate 
the significance of the differentially expressed mRNAs, 
followed by the adjustment of P‑values using the Benjamini 
Hochberg method (19). The cut‑off values of the DEG selec‑
tion was a false discovery rate adjusted P<0.05 and |log2 
fold change |≥1. These results were determined based on 
the comparison with The Cancer Genome Atlas (TCGA). 
Venn diagram analysis was performed using online soft‑
ware at the following URL: http://bioinformatics.psb.ugent.
be/webtools/Venn/.

Functional enrichment analysis and construction of the 
protein‑protein interaction (PPI) network using TCGA. To 
further investigate the functions and pathways of the DEGs, 
Gene Ontology (GO; http://www.geneontology.org/) and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) (www.
kegg.jp) pathway enrichment analyses were performed using 
‘Term Finder’ (https://yeastgenome.org/goTermFinder), 
with a threshold corrected P≤0.05 for the identification of 
significant GO terms and pathways using default settings. 
Furthermore, Search Tool for the Retrieval of Interacting 
Genes/Proteins (http://string‑db.org/) was used to further 
investigate the associations in the DEGs, at the protein 
level  (20). The criterion for the construction of the PPI 
network was based on the confidence score ≥0.90. The 
Cfinder software (version 2.0.6, http://www.cfinder.org/) was 
used to extract the functional modules of the PPI network 
with default parameters (21).

RT‑qPCR. 30 samples tissues, including PTMC and adjacent 
normal tissue, were selected for RT‑PCR test. Three biome‑
chanical genes, which were overexpressed from RNA‑seq 
analysis were analyzed using RT‑qPCR for validation and 
the TransStart Top Green qPCR SuperMix (Beijing Transgen 
Biotech Co., Ltd.). The PCR was performed using the ABI7500 
Real‑Time qPCR System (Applied Biosystems; Thermo Fisher 
Scientific, Inc.) and the following thermocycling conditions: 
Initial denaturation at 95˚C for 20 sec, followed by 40 cycles 
of 95˚C for 15 sec, annealing at 60˚C for 30 sec and extension 
at 70˚C for 90 sec. The specificity of RT‑qPCR was examined 
using the dissociation curve and the relative expression of the 
selected DEGs was normalized with the 18S rRNA gene. The 
cycle threshold (Cq) 2‑∆∆Cq method was used to calculate the 
relative expression level (22). All the gene specific primers 
used are listed in Table SI.

Statistical analysis. All the data are presented as the 
mean ± SEM. Gene expression analysis was based on sex, age 
or thyroiditis. For the data from the patients with PTC, the 
categorical variables were analyzed using a χ2 or Fisher's exact 
test. Continuous variables were analyzed using a paired and 
unpaired Student's t‑tests as appropriate. Comparisons of >2 
groups were performed using ANOVA followed by Bonferroni's 
post hoc test. P<0.05 was considered to indicate a statistically 
significant difference. ImageJ software (version 1.42; National 
Institutes of Health) was used for wound healing analysis. 
Origin software (version 9.0; OriginLab Corporation) was 
used for all other data analysis.

Results

PTMC stiffness. Thyroid images were captured and used to 
construct thyroid model (Fig. S1). When the load reaches the 
maximum value (hmax), the displacement also reaches the 
maximum value (Pmax), that is the maximum indentation 
depth. After unloading, the displacement finally returns to a 
fixed value (S). At this time, the depth is called the residual 
indentation depth (hr), that is the permanent plastic deforma‑
tion left by the indenter on the sample (Fig. S2A). As the load 
reaches the maximum value of 0.743 mN, the displacement 
reached the maximum indentation depth of 984.63 nm; after 
unloading, the displacement finally returned to the residual 
indentation depth of 881.36 nm (Fig. S2C). The results showed 
that PTMC tissue stiffness ranged from 20‑70 kPa due to 
calcification or fibrosis (Fig. S2D).

Characterizations of the cell migratory and proliferative 
abilities on different substrates. To evaluate the migratory and 
proliferative abilities of the PTC cells on different substrates, 
these characteristics were analyzed using different experi‑
ments. As shown in Fig. 1, the scratch areas in the control and 
60 kPa groups were significantly narrower compared with that 
in the 10 and 40 kPa groups for the TPC‑1 (Fig. 1A) and KTC‑1 
(Fig. 1B) cell lines, suggesting a stronger migratory ability of 
these cells on the stiffer substrate compared with that on the 
softer substrate (P<0.001; Fig. 1C and D). Furthermore, the 
density of the TPC‑1 cells on the 60 kPa substrate following 
72 h of culture was 7.19±0.2x105/ml. However, the cell densi‑
ties were 2.88±0.06x105/ml and 1.2±0.03x105/ml on the 40 and 
10 kPa substrates, respectively (Fig. 1E). It was notably different 
among the different stiffness groups compared with 10 kPa 
groups, (P<0.001; Fig. 1F). For the KTC‑1 cell line, similar 
results were obtained, with densities of 7.36±0.29x105/ml, 
4.59±0.11x105/ml and 1.75±0.05x105/ml on the 60, 40 and 
10 kPa substrates, respectively (Fig. 1G). A statistically signifi‑
cant difference was observed among these groups (P<0.001; 
Fig. 1H), which indicated a stronger proliferation ability of the 
cells on the stiffer substrate compared with that on the softer 
substrate.

Uneven stress distribution between the thyroid section close 
to and away from the trachea. Von Mises stress, an equivalent 
stress, was selected to reveal the distribution of elastic stress 
in the biological tissue. As shown in Fig. 2C, the von Mises 
stress in the thyroid was mainly produced by stiffness and the 
deformation of the trachea, which was significantly higher 
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in the ‘interior’ compared with that in the ‘lateral’ regions 
(10.18±3.35 vs. 7.71±2.89 kPa, respectively; P<0.05).

Characterizations of PTMC distribution on different regions. 
As shown in Table I, the percentages of PTMC distribution in 

the ‘interior’ and ‘lateral’ sections were 68.58 and 31.42% in 
males, and 66.22 and 33.78% in females, respectively. There 
were no statistically significant differences in the parameters 
of sex, age or thyroiditis (P>0.05). The number of PTMC 
cases in the ‘interior’ and ‘lateral’ sections was 916 and 458, 

Figure 1. Effect of substrate stiffness on the migration and growth of the TPC‑1 and KTC‑1 cells. Wound healing was performed following culture of the 
(A) TPC‑1 and (B) KTC‑1 cells on the substrate with different stiffness for 48 h. The scratch area (Piexl) results from the control, 10, 40 and 60 kPa groups of the 
(C) TPC‑1 and (D) KTC‑1 cells. (E) Growth curves of the TPC‑1 cells on substrates with different stiffness. (F) TPC‑1 density (1x105 mmol/l) following culture 
for 72 h in the 10, 40 and 60 kPa groups. (G) Growth curves of the KTC‑1 cells on substrates with different stiffness. (H) KTC‑1 density following culture for 
72 h in the 10, 40 and 60 kPa groups. #P<0.05 compared with 10 kPa group. ##P<0.05 represent 60 kPa compared with 10 and 40 kPa groups. *P<0.05 compared 
with 10 kPa group in 72 hours for cells density. **P<0.05 60 kPa compared with 10 and 40 kPa groups in 72 hours for cells density.
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respectively, suggesting a possible association between PTMC 
distribution and Von Mises stress in the thyroid.

Biomechanical gene expression in PTMC and adjacent normal 
tissues. To evaluate biomechanical gene expression in different 
tissues, including PTMC and adjacent normal tissue, a total of 
18,154 genes were detected from gene expression profiling. Flow 
diagram analysis of all the expressed genes indicated that 15,743 
(86.7%) were expressed in all 3 samples for RNA‑seq (Fig. 3B). 
The heatmap revealed the relative gene expression level in 
different samples (Fig. 3B). Based on the criteria, 1,504 genes 
were identified as DEGs between the PTC and adjacent normal 
tissues, of which 794 were upregulated and 710 were downregu‑
lated (Fig. S4A). In addition, the results of RT‑qPCR indicated 
that the overexpressed genes in PTC were biomechanical 
sensors, including Piezo2, TRPV4 and CDH3 (Fig. 4A), ECM 
stiffness and EMT related genes, including CLDN1, CLDN16, 
Runx2, Twist and G3BP3 (Fig. 4B) compared with that in the 
lateral normal tissues. However, some of the G‑protein‑related 
genes, including ADORA1 and GABBR2, exhibited a higher 
expression in PTC compared with that in adjacent normal 
tissues; however, there was no notable difference in the expres‑
sion of RHOA among the groups (Fig. 4C). The expression level 
of these genes did not exhibit any significant difference by sex, 
age or thyroiditis, as shown in Fig. 5.

With respect to the Piezo2, CHD3, Runx2 and Twist1 
genes, the expression levels in PTMC, located in the interior 
section were notably higher compared with that in the lateral 
regions (Fig. S3).

Characterizations of the biomechanical functions and 
pathways in PTC. GO functional enrichment analysis in PTC, 
in comparison with TCGA, revealed the top 10 GO enrichment 
terms for tumors for ‘biological processes’ (BP) (Fig. 4D), 
‘cellular component’ (CC) (Fig. 4E) and ‘molecular function’ 
(MF) (Fig. 4F).

The upregulated genes were significantly enriched in 
‘cell adhesion’ (GO: 0007155), ‘immune system process’ 
(GO: 0002376), ‘ECM organization’ (GO: 0030198), ‘osteo‑
clast formation’, ‘anatomical structure development’ (GO: 
0048856), ‘single‑organism cellular process’ (GO: 0044763), 
‘response to stress’ (GO: 0006950), ‘cell proliferation’ (GO: 
0008283) (Fig. S4).

The most notable BP terms of the downregulated genes 
were ‘anatomical structure development’ (GO: 0048856), 
‘single‑organism developmental process’ (GO: 0044767), 
‘cell differentiation’ (GO: 0030154), ‘cellular developmental 
process’ (GO: 0048869), ‘extracellular matrix organiza‑
tion’ (GO: 0030198), ‘cell morphogenesis’ (GO: 0000902), 
‘cell adhesion’ (GO: 0007155) (Fig. S4C). KEGG pathway 

Figure 2. PTMC distribution feature and its association with von Mises stress. The unilateral thyroid gland lobe was equally divided by the yellow dash line. 
PTMC located closed to trachea and far from trachea were defined as (A) ‘interior’ or (B) ‘lateral’, respectively. The blue arrow indicates the trachea and the 
red arrow indicates PTMC. (C) The contour graph of von Mises stress in the thyroid gland with finite element analysis. The red color represents higher stress 
level and blue color represents lower stress level. PTMC, papillary thyroid microcarcinoma.

Table I. PTMC distribution in thyroid.

Characteristic	 Interior, n (%)	 Lateral, n (%)	 P‑value

Sex 			 
  Male	 179 (68.58)	 82 (31.42)	 P>0.05
  Female	 737 (66.22)	 376 (33.78)
Age, years			 
  ≥50	 403 (66.50)	 203 (33.50)	 P>0.05
  ≤50	 513 (66.79)	 255 (33.21)
Thyroiditis
  Yes	 227 (68.58)	 104 (31.42)	 P>0.05
  No	 689 (66.06)	 354 (33.94)	

Data are divided into three groups depending on sex, age and thyroiditis, and each group including interior and lateral, respectively.
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annotation revealed that signal transduction and immune 
system‑related genes mainly participated in PTMC (Fig. S4D).

Discussion

Similar to other types of endothelial cancer, PTC cells exhibit 
a stronger migratory ability and favor growth on a stiffness 
substrate in  vitro  (23‑26). As shown in the direct perfor‑
mance of this feature in the thyroid, >60% of PTMC cases 
are located close to the trachea, which is a relatively stiff 
organ. Jasim et al (9) reported that thyroid tumors located on 
the isthmus exhibited the highest possibility of malignancy, 
followed by upper and middle thyroid nodules. In the present 
study, from the FEA of the thyroid, the von Mises stress values 
of the isthmus and upper section close to the trachea were 
higher compared with that away from the trachea (Fig. 2C). 
Therefore, there may be an association between PTC distri‑
bution and stiffness, indicating a related differential gene 
expression in PTC.

RNA‑seq and RT‑qPCR determined that three biome‑
chanical genes exhibited up‑ or downregulated expression in 
PTC compared with that in adjacent normal tissue, and the 
related signaling pathways were enriched. For example, Piezo2 
is commonly recognized as an important mechanotransduc‑
tion channel participating in proprioception (27,28), pain (29) 
and lung airway stretching (30). It also serves as a novel regu‑
lator of glioma angiogenesis and hyperpermeability; knocking 
down the expression of Piezo2 using small interfering RNA 
significantly inhibited the growth of glioma in both in vivo and 
in vitro experiments (31). The overexpression of Piezo2 was 
detected in PTC, but not in adjacent normal tissue (Fig. 4A), 
which warrants further investigation.

E‑cadherin, as an important marker regulated by 
cadherin 3 (CDH3) in epithelial cells, is overexpressed during 
thyroid development (32). CDH3 is involved in various cellular 
activities, including cell adhesion, motility, invasion and the 
signaling of tumor cells and organ development (33). In breast 
cancer, CDH3 has been found to be overexpressed in high‑grade 
tumors and is a well‑established indicator of aggressive tumor 
behavior (34). The results of the present study demonstrated 
that CDH3 was overexpressed in PTC (Fig. 4A). Furthermore, 
its expression in PTMC located close to the trachea was 
notably higher compared with that in regions further away 
from the trachea; its function warrants further exploration. In 
addition, other trachea stiffness‑related genes, such as Piezo2, 
and biomechanical and EMT‑related genes, including Runx2 
and Twist1, also showed higher expression in PTMC located 
interiorly than laterally. Due to the important function of these 
genes in tumor metabolism, their effects on PTMC located 
in different locations requires further investigation. TRPV4, 
a calcium influx and stress sensor channel, was also found to 
be overexpressed in PTC and the G‑protein related signaling 
pathways were enriched in PTC.

Stress‑related signaling pathways were found to be highly 
enriched in PTC compared with that in adjacent normal tissue, 
including cell adhesion (GO: 0007155), ECM organization 
(GO: 0030198), anatomical structure development (GO: 
0048856), single‑organism cellular process (GO: 0044763), 
response to stress (GO: 0006950) and cell proliferation (GO: 
0008283). Although these pathways play important roles in 
several other types of tumors (23,25); however, reports on their 
functions in PTC are limited. The present study provided a 
novel method with which to identify the factors affecting PTC 
distribution and its association with invasiveness.

Figure 3. Differential gene expression between PTMC and adjacent normal tissue using RNA‑sequencing and reverse transcription‑quantitative PCR. (A) Flow 
diagram of the study design illustrating how the patients and controls were divided into screening and validation phase of the study. (B) Hierarchical clustering 
and heat map of the differentially expressed genes in the PTC and adjacent normal tissue based on the expression levels. The red and green regions represent 
the relatively up‑ and downregulated gene expression levels, respectively. The X‑axis represents the control and PTC samples, while the Y‑axis represents 
different genes. PTC, papillary thyroid carcinoma; TCGA, The Cancer Genome Atlas.
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In conclusion, the findings of the present study indicated that 
tracheal stiffness may exert a biomechanical effect on the thyroid; 
thus, may effect PTC distribution, providing a novel molecular 
mechanism and fundamental basis for the prediction and the 
development of possible novel treatment strategies for PTC.
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