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Abstract

Menopause is an endocrine-related transition that induces a number of physiological and

potentially pathological changes in middle-aged and elderly women. The intention of this

research was to investigate the influence of menopause on the intricate relationships

between major biochemical metabolites. The study involved metabolic profiling of 186 meta-

bolic markers measured in blood plasma collected from 120 healthy female participants. We

developed a method of network analysis using differential correlation that enabled us to

detect and characterize differences in metabolites and changes in inter-relationships in pre-

and post-menopausal women. A topological analysis was performed on the differential net-

work that uncovered metabolite differences in pre-and post-menopausal women. In this

analysis, our method identified two key metabolites, sphingomyelins and phosphatidylcho-

lines, which may be useful in directing further studies into menopause-specific differences in

the metabolome, and how these differences may underlie the body’s response to stress and

disease following the transition from pre- to post-menopausal status for women.

Introduction

The transition into menopause induces significant developments in a number of organ sys-

tems in the body, as well as the skeletal system. These developments could lead to pathological

and physiological changes [1,2]. For example, the prevalence of osteoarthritis (OA) is higher

among women than among men, and the difference in prevalence further increases after men-

opause. This could indicate the significant role played by female sex hormones in the etiology

of musculoskeletal degenerative diseases [3,4]. During our investigations, many of the metabo-

lites examined in study participants affected by OA were found to show associations related to

both age and gender [5,6]. Considering that changes in organ biochemistry accompany the
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development of conditions such as heart disease, premature mortality, and OA, disturbances

in metabolism are either a simple consequence of pathological changes or factors that contrib-

ute to the development of disease, or a combination of the two. Considering its effects on bio-

chemical metabolism, menopause, combined with numerous other influences such as genetics

and the environment, may play a role in the development and outcome of a disease. Therefore,

establishing metabolic biomarkers related to menopause will enable us to understand these

influences and their biological implications.

Metabolomics, as a method of analysis, allows for the investigation of underlying mecha-

nisms that control biological functions and the expression of various phenotypes through the

involvement of studies that investigate the various states and conditions of large groups of

metabolites [6,7]. The analysis of data from these studies, using techniques that allow binary

class discriminations such as partial least square discriminant analysis (PLS) and principal

component analysis (PCA), often reveal complex relationships between metabolites and phe-

notypes [8]. When studying the effects of these metabolites on intricate physiological states,

however, the regulatory systems in which they function need to be taken into consideration

[9]. These regulatory systems can provide the cellular context of all metabolites of interest, as

well as a means of identifying dysfunctional subnetworks in each disease or physiological state.

However, due to the limited availability of accepted methodologies, those types of analyses are

not frequently used [10]. The lack of established procedures for the analysis of metabolite cor-

relations, for example, has caused it to see only limited adoption. If such correlations were to

be investigated, however, the results would be significantly interesting and could reveal infor-

mation about complex biochemical systems and their connections.

Our primary goal in this work was to advance a method for determining how pairs of

metabolites that exhibit significant differential correlations during pre- and post-menopause

are interconnected, with the ultimate objective being the investigation of the effects of meno-

pause on the components of metabolic makeup and the complex relationships between those

components. This specific method is referred to as the differential correlation network

approach, and the methodology used is markedly distinctive from current methods of analysis.

By applying the method of topological analysis of differential associations, we can identify the

metabolites that have significant influence in controlling information flow and network func-

tional connectivity.

Patients and methods

Patients

The study participants were adult female volunteers recruited from the Newfoundland popula-

tion. The present study was part of ongoing CODING (Complex Diseases in the Newfound-

land Population: Environment and Genetics) study that was initiated in 2003 [11]. The

inclusion criteria for the cohort were as follows: a) adults between the ages of 21and 76 years

old; b) 3-rd or higher generation Newfoundlander; and c) not pregnant at the time of study. A

total of 120 healthy women were randomly selected from the overall sample. The mean age of

subjects was 50±12.8 years. The mean BMI was 29.2±5.6 kg/m2. Only participants without

liver, renal, metabolic or inflammatory diseases were recruited. The general characteristics of

the subjects were shown in Table 1. Information concerning menopausal status was obtained

through a questionnaire on menstrual history. In total, 55 women aged 21 to 54 years were

deemed as pre-menopausal after reporting regular menstruation, while the remaining 64

women aged 40 to 76 years were designated as post-menopausal after reporting periods of

amenorrhea longer than 12 months. Medical information was gathered from the participants

using a self-administered questionnaire. All methods were performed in accordance with the
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relevant guidelines and regulations, and the study protocol received approval from the Health

Research Ethics Authority of Newfoundland and Labrador. Written informed consent was

obtained from all of the volunteers.

Demographics and anthropometrics

Demographic information was extracted from the self-administered questionnaire. All anthro-

pometric measurements were taken in the morning hours after a 12-hour period of fasting.

Participants were weighed to the nearest 0.1kg using Health O Meter scale (Bridgeview, IL). A

fixed stadiometer was used to measure participants’ height to the nearest 0.1 cm. Weight and

height measurements were used to calculate BMI, which is expressed in kilograms per square

meter. Age was determined at the time of blood collection.

Plasma sample preparation

Whole blood samples were collected after at least 8 hours of fasting using commercial EDTA

tubes (lavender tops). Plasma was separated within 15 min of collection using the standard

protocol of centrifuging at 2,000 ×g for 10 mins. The separated plasma was then immediately

transferred into a polypropylene storage container and stored at -80˚C until analysis. The spec-

imen storage time was less than two years for all samples. Sample preparation was according to

the laboratory workflow (S1 Fig).

Metabolomics data collection

We performed metabolic profiling in plasma samples using the Waters XEVO TQ mass spec-

trometry system (Waters Limited, Mississauga, Ontario, Canada), combined with the Bio-

crates Absolute IDQ p180 kit. This enabled the measurement of 186 metabolites including 90

glycerophospholipids, 40 acylcarnitines (including free L-carnitine), 21 amino acids, 19 bio-

genic amines, 15 sphingolipids, and 1 hexose (> 90% is glucose). The complete list of 186

metabolites is provided in the S1 Table. The metabolic profiling method used in this study was

previously described [12]. Briefly, acylcarnitines, glycerophospholipids, and sphingolipids

were analyzed on the system by flow injection analysis (FIA) and using positive ion electro-

spray ionization. Hexose was analyzed on a subsequent FIA analysis and using negative ion

electrospray ionization. Amino acids and biogenic amines were analyzed using an ACQUITY

UPLC System connected to the Waters XEVO TQ mass spectrometry system and using posi-

tive ion electrospray ionization (S2 Table). Identification and quantification of metabolites

was achieved using internal standards and by multiple reaction monitoring (MRM) methodol-

ogy. Data analysis and calculation of the metabolite concentrations, analyzed by FIA (acylcar-

nitines, glycerophospholipids, sphingolipids, and hexoses), was automated using the MetIDQ

software (BIOCRATES Life Sciences AG). Analysis of peaks obtained by UPLC (amino acids

and biogenic amines) was performed using the TargetLynx Application Manager software,

and the results were then imported into the MetIDQ software for further processing and statis-

tical analysis.

Table 1. Characteristics of the study participants in the pre- and post-menopause.

Variables Pre-menopause Menopause P-value

Age (years) 39.4 ± 9.1 57.2 ± 8.5 1.76×10−19

BMI (kg/m2) 29.4 ± 7.2 28.3 ± 4.8 0.351

Physical activity level 8.2 ± 1.5 7.5 ± 1.6 0.020

Age of menarche 12.4 ± 1.4 13.2 ± 2.1 0.027

https://doi.org/10.1371/journal.pone.0222353.t001
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Statistical methods

Measurement of metabolic profiling. Metabolite concentrations in plasma samples were

measured using mass spectrometry as described above. Metabolites that were present at mea-

surable levels in at least 80% of samples were selected for analysis. In samples where the levels

of metabolites were below detection limits a concentration equivalent to half of the minimum

quantified level was assigned so that further analysis, requiring quantitative data, could occur.

Overall, in all plasma samples comprising the dataset, 168 of the 186 metabolite panel were

successfully quantified.

Prior to any analysis, we performed covariant adjustment based on participant age, BMI,

physical activity, and age of menarche, in order to remove any confounding associations. The

covariate adjustment was done through regressing the levels of metabolites on the potential

confounding factors. The residuals of the regression were used in further analysis. Imputation

was performed to fill missing data entries (missing rate less than 5% per metabolite) with the

population average. Data were further normalized to a mean of 0 and unit standard deviation.

Differential correlation network analysis of key menopause-associated metabolites.

Metabolite concentrations may correlate due to the complex cascading biochemical reactions

in metabolism. The correlation may or may not associate with phenotype. Therefore, differen-

tial correlation analysis allows computing the change of the correlations of metabolite pairs in

different phenotypic groups [13,14]. Moreover, networks provide a global overview and ana-

lytical tool to investigate the relationships between a large number of different entities, and can

be used to characterize the differential correlations between multiple metabolites [13].

As described in our previous study [14], Pearson’s correlation coefficient r was used to eval-

uate the correlation between a pair of metabolites in subjects who were pre-menopausal and

post-menopausal. The correlation coefficients rpre and rpost were used to evaluate the change in

correlation between two metabolites in each of the two physiological categories defined as the

pre-menopausal and post-menopausal. Namely, for metabolites i and j, the differential correla-

tion rdiff (i, j) was determined as the normalized difference of Fisher’s z-transformations of

rpre(i, j) and rpost (i, j),

rdiff i; jð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npre � 3

2

r

� zpre i; jð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npost � 3

2

r

� zpost i; jð Þ ð1Þ

In which z is the Fisher’s z-transformation of the correlation coefficient r,

zpreði; jÞ ¼
1

2
ln½

1þ rpreði; jÞ
1 � rpreði; jÞ

�; zpostði; jÞ ¼
1

2
ln½

1þ rpostði; jÞ
1 � rpostði; jÞ

� ð2Þ

We used npre and npost to denote the total amount of samples in the pre-menopause and post-

menopause categories. The differential correlation figure indicates a change in the normalized

correlation between the two distinct categories. By applying this approach, we can determine

whether any two corresponding metabolites are differentially correlated in the pre-menopausal

and the post-menopausal groups of subjects. We used a 1×103 fold permutation test to assess

the levels of significance of the differential correlations.

Results

Metabolite correlations in pre-menopause and post-menopause

Overall, we calculated the pairwise Pearson’s correlations of 168 metabolites in samples from

pre- and post-menopausal women. The majority of 13,861 pairs of metabolites were positively

correlated as observed in both pre- and post-menopause cases and controls. In order to
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determine the significance of pairwise correlations, we employed Bonferroni multiple-testing

correction and used a p-value threshold of 0.05. About 80% of all correlated pairs in pre-meno-

pausal women were also determined to be correlated in post-menopausal women. Considering

that there was a significant overlap in metabolite correlations between the two phenotypic con-

ditions, it can be inferred that the majority of correlations were caused by "housekeeping" bio-

logical reactions and that they were unrelated to menopausal status.

Differentially correlated metabolites between pre-menopause and post-

menopause

On comparison between pre- and post-menopausal women, 829 metabolite pairs showed dif-

ferential correlations with a significance level of permutation testing p� 0.05, and 155 metab-

olite pairs with a level of p� 0.01 (S3 Table). We used these 155 pairs of metabolites to build

the differential correlation network for pre- and post-menopausal subjects. All of the metabo-

lite pairs had negative differential correlations, denoted by the blue edges in the graph as

shown in (Fig 1). The node degree of the sample network had a mean of 4.05, in which SM

(OH) C14:1 had a core status with a degree of 19, showing how robust the information flow

and connectivity were in the network (S4 Table).

Differential metabolites between pre-menopause and post-menopause

We also analyzed the results of the plasma metabolite profiles of subjects from the pre- and

post-menopausal groups using the OPLS-DA method. The two groups separated unambigu-

ously with the Q2 = 0.54 (Fig 2) using VIP>1 and p value <2.9×10−4 (0.05/168) as criteria, 26

metabolites, including 15 glycerophospholipids, 5 sphingolipids, 2 amino acids, 2 biogenic

amines and 2 acylcarnitines were identified as key metabolites for the separation of the pre-

menopausal and menopausal groups (Fig 3). Of these, most were glycerophospholipids (13/

15), the 2 acylcarnitines were at higher levels in the pre-menopausal group, and all of the

sphingolipids and 2 amino acids were at higher levels in the post-menopausal group. Addition-

ally, S-plot analysis was used to test the identified metabolites. The S-plot model indicated that

Fig 1. The differential correlation network showing linkages between components of the metabolite dataset. (Only

pairs that have significant differential correlations are shown. The network is visualized using the force-directed layout

presentation with a closer node layout distance representing a stronger pairwise correlation. Edge width is

proportional to differential correlation strength and edge color (blue) shows that all the differential correlations are

negative).

https://doi.org/10.1371/journal.pone.0222353.g001
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the values of metabolites were between 0.17 and -0.18. These values were mainly distributed at

both ends in the S-plot model loadings, and were consistent with the VIP generated by the

OPLS-DA.

Linear regression analysis was used to examine the association between identified metabo-

lite (26 metabolites) concentrations and menopause using covariant-adjusted metabolites.

Finally, 3 metabolites were identified as associated with menopause. These metabolites were

leucine (p = 0.0016), PC ae C42:0 (p = 0.005) and PC ae C38:0 (p = 0.024).

Discussion

Existing metabolomic studies in menopause have revealed relationships with certain metabolic

changes [15,16]. Using an NMR-based platform, Auro et al. found that menopause was

Fig 2. Scores plots of the OPLS-DA analysis of the metabolic profiles in plasma of women before- and post-monopause.

https://doi.org/10.1371/journal.pone.0222353.g002

Fig 3. Heatmaps of significant metabolites for the separation of the pre-menopausal and menopausal groups.

https://doi.org/10.1371/journal.pone.0222353.g003
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associated with changes in the levels of several amino acids, total fatty acid levels and monoun-

saturated, omega-7 and -9 fatty acids [15]. Similarly, Yamatani et al. reported that significantly

higher levels of fatty acid metabolites were found in the visceral fat in post-menopausal

women compared with pre-menopausal women [16]. In addition to analyses using absolute

concentrations of metabolites, changes in the relationships between menopause-associated

metabolite pairs were analyzed for the first time in this study. By employing the creation and

analysis of the differential correlation network, the network’s core metabolites could be identi-

fied. The metabolites identified in this way were closely related to the correlational changes

associated with menopause. As described in the Methods section, the differential correlations

of the metabolite pairs were calculated by comparing their correlations in pre-menopausal and

post-menopausal groups. Subtracting correlations found in pre-menopausal women from

those who were post-menopausal enabled us to magnify differentially correlated pairs of

metabolites, while negating the correlations that were present in both categories. As can be

seen in Fig 1, all of the differential correlations had negative signs, indicating that the correla-

tions between the menopause-associated pairwise metabolites were decreasing. We were able

to put emphasis on the correlations that were associated specifically with changes in the physi-

ological state by using the differential correlation method. Our investigation yet again demon-

strated how powerful network analysis can be for characterizing the complex relationships

between entities, in this case increasing the extent to which we understand metabolic changes

induced by menopause. A number of metabolites that play important roles in modulating con-

nectivity through the network, as well as network information flow were revealed through

topological analysis on node importance using centrality measures. In the core of the network,

the hub-and-bottleneck metabolites were sphingomyelins, specifically SM (OH) C14:1, while

the metabolites present on the peripheral are mostly phosphatidylcholines and acylcarnitines.

Furthermore, plasma metabolite profiles of subjects from the pre- and post-menopausal

groups were also analyzed using the OPLS-DA method. The two groups separated unambigu-

ously with the Q2 = 0.54 (Fig 2). Using the criteria of VIP>1 and p value <2.9×10−4(0.05/

168), 26 metabolites, including 15 of 26 glycerophospholipids, 5 of 26 sphingolipids were iden-

tified as the key metabolites for the separation of pre-menopausal and post-menopausal

groups. After adjustment for age, BMI, physical activity and age of menarche, 3 of 26 metabo-

lites (leucine, PC ae C42:0 and PC ae C38:0) are still significantly associated with menopause.

Sphingomyelins control membrane fluidity and promote signal transduction, making them

important components of cell membranes, particularly in neuronal cells. The plots were

drawn smoother to further define age-related changes in metabolite concentrations in women

and men. We found that the concentrations of SM C20:2 and SM C24:0 increased sharply after

40 years of age. Interestingly, in our separate study in the males (unpublished observation),

sphingomyelins were not significantly associated with age, which showed that the changes in

sphingomyelins were female specific and possibly menopause-dependent. The higher levels of

sphingomyelins in older women were consistent with Yu et al’s research [17]. In a more recent

study, global lipid profiles were compared with associated mRNA levels of the proliferating

and replicative senescent BJ fibroblasts. The changes in lipid composition of cells that were

most significant during senescence were identified in Sphingolipids [18]. Phosphatidylcholines

(PCs) are the most abundant class of phospholipids. It incorporates choline as a head group

and mainly resides in the outer layer of the cellular membrane. Nearly 80% of men and post-

menopausal women developed liver or muscle damage when deprived of PCs, whereas only

43% of pre-menopausal women developed similar organ damage [19–21]. Sphingomyelins

and phosphatidylcholines are both components of plasma lipoproteins and are involved in

lipoprotein assembly, and show association with menopausal status. During menopause, the

heightened number of lipoproteins likely reflects how changes in hormone levels influence
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liver enzymes [22,23], but these changes might also relate to weight gain and insulin resistance

[24,25].

In addition, our study also demonstrated that menopause contributes to the metabolic

composition of body fluids and could act as a confounder in other metabolomic investigations.

In future studies, changes in metabolite levels and relationships occurring as a result of meno-

pausal status should be adjusted in metabolomics research to avoid any false discoveries.

Conclusion

This study investigated menopause from the metabolic perspective. To the best of our knowl-

edge, this was the first study that used the differential correlation metabolomics approach to

classify participants with pre- and post-menopause state. The metabolic profiling reflects

directly what is happening in pre-and post menopause and yields the most accurate and real-

time metabolic profile that is relevant to menopause. We studied differential correlation of

pairwise metabolites in women pre-menopause and post-menopause, and identified a set of

metabolites that were significantly associated with menopause. On progression to menopause,

women experience unique changes in the metabolism of SMs, PCs, acylcarnitines and amino

acids that are significantly different from pre-menopausal women. The findings of this study

furthers our understanding of metabolomic changes induced by menopause. These findings

will be of value to future studies investigating the effects of menopause on health and towards

diminishing the adverse metabolic effects during post-menopausal life.

There are some limitations. First, we did not have detailed dietary and drug used informa-

tion on the study participants, which might have had an influence on metabolite concentra-

tions. Second, our sample size was modest and a follow-up study with a large sample size is

required to verify these findings. Third, we used a targeted metabolomics approach, thus, we

might have missed important menopause-associated metabolites which we were unable to

measure.
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