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About a century ago, color scientists learned how to pre-
dict when two lights with different spectral energy will look
the same. About 50 y ago, practical standards were cre-
ated to quantify the size of the perceptual difference
between two lights. These developments are based on cre-
ating three-dimensional color spaces. One type of space, a
color-matching space, captures equivalence. The second
type of space builds on the color-matching representation
to include a distance metric that represents perceptual dif-
ferences. The mathematics and biology of the color match-
ing space are well in hand; the specification of a space
with a distance measure that represents perceptual color
differences is an ongoing project.

In their paper “The non-Riemannian nature of percep-
tual color space,” Bujack et al. (1) tackle the fundamental
question of how to structure a color space that explains
color differences as well as color matching. By deploying
an elegant psychophysical procedure in which observers
judged the relative magnitude of pairs of stimulus differ-
ences, they show that it is not possible to use either Euclid-
ean or Riemannian geometry to describe both small and
large perceptual color differences. Their results clarify the
limits of current approaches that attempt to capture color
perception using simple geometric representations and
point the way toward future experimental and theoretical
projects that might allow a more satisfactory account.

A long-standing goal of perceptual psychology is to develop
principles and methods that provide accurate descriptions
of our mental representations of physical phenomena (2).
A celebrated example comes from color science. Maxwell
(3) quantified the observation that humans can match the
appearance of arbitrary light spectra with a weighted super-
position of three primary lights, leading to the idea that the
mental representation of light may be characterized as a
point in a three-dimensional color mixture space, with the
tristimulus coordinates of a particular spectrum taken as
the weights on the primaries that provide a match to that
spectrum (Fig. 1). At around the same time, Grassmann (4)
formulated the key principles of linearity that describe color
matching; the color coordinates of a match to the superpo-
sition of two spectra are the sum of the color coordinates
of each alone. The quantitative description of color match-
ing together with the machinery of linear algebra enables
modern color reproduction technology, in which colors are
reproduced as mixtures of three primaries on our televi-
sions, phones, and computers. We now understand that
the three-dimensional nature of color space as well as the
linearity of matching derives because the initial visual encod-
ing of spectra is the excitations of just three classes of light-
sensitive photopigment contained in the cone photoreceptors
of the retina (5).

What about representing not only color matching but
also the perceptual differences between color stimuli?
Specification of such differences is important at multiple

scales. At the scale of small color differences, for example,
tools are required to decide whether color reproduction
has been accomplished to a satisfactory tolerance. Here,
the goal is to define a metric over positions in color space
so that the distance between two points allows accurate
prediction of whether two color stimuli will appear suffi-
ciently similar to satisfy a discerning customer. At the scale
of large color differences, tools are required to determine
whether the two colors intended to convey distinct mean-
ing successfully do so. For example, are the green and red
signals of a traffic light sufficiently different so as to have a
low probability of being confused in an emergency? Here,
a goal is to define a metric over positions so that the dis-
tance between two points allows for accurate prediction of
the probability of confusion between two discriminable
stimuli.

Color spaces that do a good job of both describing color
matching and predicting the visibility of small color differ-
ences have been developed. A widely used example is the
Commission Internationale de l'Elcairage (CIE) Lab uniform
color space. In its original formulation, the Lab coordinates
(referred to as L*, a*, and b*, respectively) were obtained
as an invertible nonlinear transformation of a tristimulus
space that describes human color matches (specifically,
the CIE XYZ tristimulus space) (6). The transformation was
designed so that the Euclidean distance between two
closely located stimuli provided a reasonable prediction of
their discriminability. This system is widely used in specifying
industrial tolerances for color reproduction, with a more
recent version applying a metric that varies systematically
with the location of stimuli in the space (7). Although the CIE
Lab system was designed to predict small color differences,
it has also been widely adopted to equate larger color differ-
ences: for example, in studies of color in cognition (e.g., refs.
8 and 9 are just two of many examples). Although such use
is reasonable given the current state of our knowledge, it is
important to recognize that this generalization is not secure. It
relies on the idea that large color differences may be pre-
dicted by integrating small color differences along a path
between two well-separated points in color space. This idea
has a long history, going back at least to Helmholtz (10). When
the metric is the familiar L2 norm, the space is Euclidean.
When the metric varies as one traverses the space, the
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underlying geometry is the more general Riemannian formu-
lation. In the latter case, the distance between two points is
taken to be that found by integrating along a geodesic—
that is, along a path where the integrated distance is the
least. In this tradition, the space-varying metric is called a
line element (Fig. 1). Different realizations of the idea are
based on different transformations of the underlying tri-
stimulus color matching space and on different formula-
tions of the line element (11).

Bujack et al. (1) step back from the details of the appropri-
ate color space transformation and line element formulation,
and ask more generally whether data collected simulta-
neously for small and large color differences are consistent
with any Riemannian geometry. To do so, they focus on test-
ing a key axiom of Riemannian geometry; if one considers
three stimuli A, B, and C that lie along a geodesic, the dis-
tance between A and C should be the sum of the distances
between A and B and between B and C. In the experiments
reported, subjects make judgments on triads of stimuli
placed along a single geodesic, indicating which of two com-
parison stimuli is most similar to a reference stimulus. In
essence, the judgment on each trial is to determine which of
two color differences is larger. Judgments are made for com-
parisons that are both close to and far from the reference
and for multiple references. Thus, the data provide percep-
tual distance judgments that constrain the transformation of
stimuli into an underlying perceptual space as well as the
line element that defines distances between them.

To bring the data to bear on the question of color space
geometry, the authors fit two scaling models (12) using
maximum likelihood methods (13). One conforms to Rie-
mannian structure; stimuli are placed along a line in per-
ceptual space so that distances between them, computed
with a line element, best predict the perceptual distance
judgments. This model enforces the key axiom mentioned
above; the distance between points A and B plus the dis-
tance between B and C is equal to the distance between
A and C. In the second model, consistency with this
key axiom is relaxed through the addition of a nonlinear
function applied to the distances before judgments are
predicted. This model is incompatible with an underlying
Riemannian geometry. Model comparison, performed using
cross-validation, shows that the non-Riemannian model

provides a substantially better account of the data. The
compressive nature of the nonlinearity obtained accounts
for the empirical observation that subjects’ responses
show a shrinkage of large stimulus distances relative to
those predicted by summing up small stimulus differ-
ences, a phenomenon the authors refer to as the law of
diminishing returns. In essence, large color differences
saturate relative to the Riemannian prediction. The fact
that the model comparison rejects a general form of Rie-
mannian representation makes the test applied by Bujack
et al. (1) compelling.

There are some caveats. First, the authors make a first
principles assumption that the achromatic locus is a geo-
desic and use this in their choice of stimuli. This assump-
tion is intuitively appealing in that it would be surprising
that the shortest path in color space between two achro-
matic stimuli would involve a detour through a chromatic
stimulus and back. However, the achromatic locus as a
geodesic was not empirically established, and more work
could be considered to shore up this aspect of the argu-
ment. Second, the data were collected using online meth-
ods and combined across subjects prior to the analysis.
This raises the question of whether the aggregate perfor-
mance analyzed could be non-Riemannian even when the
performance of each individual subject was itself Riemann-
ian. Although it is not immediately obvious whether this
could occur, it might be further considered as a possibility.

From the work of Bujack et al. (1), we learn that attempts
to place color stimuli in a space described by Euclidean or
Riemannian geometry so as to simultaneously account for
small and large color differences cannot fully succeed; such
attempts need to be regarded as approximations. As noted
above, this caution is particularly relevant because a wide
range of studies use color stimuli as a model system, with
conclusions sometimes based on the use of a uniform color
space to equate perceptual distance between stimuli. The
current work emphasizes the importance of making sure
conclusions are robust to violations of the assumption that
perceptual distance has been equated. Indeed, the fact that
intuitions about angle and distance gleaned from the famil-
iar geometries do not hold even for a perceptual system as
simple as color sounds a more general note of caution
about applying metric distance concepts to other perceptual

Fig. 1. (Left) The plot shows the spectral radiance of two different spectra that appear the same to a standard human observer. These two spectra map to
the same point in the CIE XYZ tristimulus color space (red circle in Right). The three coordinates in this space give the intensities of three theoretical primar-
ies required to match either of these spectra. (Center) Another pair of spectral radiances that match for a standard human observer. These two spectra are
represented by the blue point in the tristimulus space in Right. (Right) Each point in the CIE tristimulus space represents a set of spectral radiances that
appear the same to a human observer. The matches themselves, however, do not tell us about the perceptual distance between points, indicated by the
question mark. A local metric around each point in the color space, referred to as a line element, can be created. For example, threshold measurements
may be used to define a small ellipsoid around each point such that stimuli represented on the surface of the ellipsoid are equally discriminable from those
represented by the point (16, 17). Two such ellipsoids are shown schematically. The question asked by Bujack et al. (1) is whether it is possible to construct
a Riemannian perceptual color space such that integrating the line element along the geodesic between any two points predicts larger perceptual color
differences.
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and neural representations. An available tool in this regard
is nonmetric multidimensional scaling (14, 15).

More generally, Bujack et al. (1) motivate the develop-
ment of representations that more accurately capture
color matching, small color differences, and large color

differences within a single framework. The authors’ model-
ing in the current paper suggests one empirically driven
approach. The generality of that approach, both for stimuli off
the achromatic locus and for additional judgements that
depend on color difference, remains to be assessed.
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