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Abstract: Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest malignancies. Present-
day treatments have not shown real improvements in reducing the high mortality rate and the
short survival of the disease. The average survival is less than 5% after 5 years. New innovative
treatments are necessary to curtail the situation. The very dense pancreatic cancer stroma is a
barrier that impedes the access of chemotherapeutic drugs and at the same time establishes a pro-
proliferative symbiosis with the tumor, thus targeting the stroma has been suggested by many
authors. No ideal drug or drug combination for this targeting has been found as yet. With this
goal in mind, here we have explored a different complementary treatment based on abundant
previous publications on repurposed drugs. The cell surface protein CD44 is the main receptor for
hyaluronan binding. Many malignant tumors show over-expression/over-activity of both. This is
particularly significant in pancreatic cancer. The independent inhibition of hyaluronan-producing
cells, hyaluronan synthesis, and/or CD44 expression, has been found to decrease the tumor cell’s
proliferation, motility, invasion, and metastatic abilities. Targeting the hyaluronan-CD44 pathway
seems to have been bypassed by conventional mainstream oncological practice. There are existing
drugs that decrease the activity/expression of hyaluronan and CD44: 4-methylumbelliferone and
bromelain respectively. Some drugs inhibit hyaluronan-producing cells such as pirfenidone. The
association of these three drugs has never been tested either in the laboratory or in the clinical setting.
We present a hypothesis, sustained by hard experimental evidence, suggesting that the simultaneous
use of these nontoxic drugs can achieve synergistic or added effects in reducing invasion and
metastatic potential, in PDAC. A non-toxic, low-cost scheme for inhibiting this pathway may offer an
additional weapon for treating pancreatic cancer.

Keywords: pancreatic ductal adenocarcinoma; pancreatic cancer stroma; bromelain;
4-methylumbelliferone; pirfenidone; desmoplastic reaction; stellate cells; hyaluronan; CD44

1. Introduction

Pancreatic ductal adenocarcinoma (PDAC), the most aggressive type of pancreatic
cancer, is characterized by its very important fibro-inflammatory stromal reaction and
low vascularity [1], findings that can be considered pathognomonic for the disease. This
feature, known as a desmoplastic reaction, creates a stroma that does not allow the ar-
rival of chemotherapeutic drugs to malignant cells and is one of the fundamental reasons
for treatment failures [2]. The desmoplastic reaction entails a fibroblast-rich stroma with
an increased dense extracellular matrix (ECM). PDAC stroma provides “protection” to
malignant epithelial cells and participates in cancer progression [3]. The intense desmo-
plastic reaction originates in pancreatic stellate cells (PSCs) that proliferate and produce
extracellular matrix proteins, namely fibronectin and collagen creating a particularly dense
environment surrounding the malignant cells [4,5]. The unique features of the ECM in
pancreatic cancer go beyond “protection” modulating cancer growth through angiogenesis
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and growth factors [6]. Table 1 shows the evidence that sustains the pro-tumoral concept
of the desmoplastic reaction.

Table 1. Evidence of pro-tumoral effects of the desmoplastic reaction.

Ref. Finding

[7]
Gemcitabine resistance was promoted by collagen I through a metalloproteases

(MT1-MMP) expression that in turn increases high mobility group AT 2 (HMGA2)
protein which is an indirect transcription promoter.

[8] Extracellular matrix proteins showed pro-proliferative activity in PDAC in vitro.

[9] Pancreatic stromal fibroblasts showed the ability to promote cancer progression.

[10] Matrix collagen significantly increased the production of MMPs in PDAC impacting cell
migration and invasive potential.

[11] Suppressing the desmoplastic process with metformin inhibited pancreatic
cancer progression.

[12] Desmoplasia promoted pancreatic cancer progression.

[13]

Extracellular matrix composition modulated PDAC and stem cells. An increased in
collagen I introduced a switch in rapidly growing CSCs to a slower-growing avascular
niche endothelial-type of cells, creating a supportive mechanism for tumor progression
and mainly for tumor invasion. An active cross-talk between PDAC cells, CSCs, and

matrix was carried out through the secretome. This process led to less proliferation but
more invasion of PDAC cells into the CSCs derived vascular network.

[14] The extracellular matrix of PDAC and focal adhesion kinase (FAK) were found to
regulate CSCs

[15] When PDAC cells were co-cultured with fibroblast, the latter acquired a myofibroblastic
morphology expressing desmoplastic markers.

[16] Adding stellate cells to a PDAC 3D cell culture generated a rich stroma similar to that
found in vivo.

Conclusions of Table 1: There are an intense interrelation and cross-talk between PDAC
cells and fibroblasts that adopt the form of stellate cells which results in the production of a
rich desmoplastic reaction that favors invasion and cancer progression.

Originally, the cancer cell was thought to be the main producer of the ECM [17],
however, now it is evident that specialized cells, stellate cells, are the main ECM source.
PSCs are in a quiescent stage surrounding pancreatic acini but when malignancy develops,
they adopt active participation. A symbiotic relationship between malignant and stellate
cells was proposed [9,18,19].

Figure 1 shows a surgically removed PDAC specimen where the relationship between
tumor cells (ducts and acini) and the high levels of the intense desmoplastic stroma can
be seen.

Recently, Ogawa et al. [20] have distinguished three types of ECMs that differentially
influence survival and molecular characteristics. These stromas had different fibroblast
populations and transcriptome signatures. Thus, the PDAC matrix is a complex and
heterogeneous issue that has direct implications in tumor progression and patient sur-
vival [21]. Furthermore, different types of fibroblasts have also been found in the normal
pancreas which expands during carcinogenesis with a different prevalence according to
subtypes [22].
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Figure 1. Tissue specimen of a pancreatic ductal adenocarcinoma (PDAC). Intense stromal reaction 
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Figure 1. Tissue specimen of a pancreatic ductal adenocarcinoma (PDAC). Intense stromal reaction
surrounding tumoral ducts and acini (from the personal collection of TK). Magnification 150×.

Interestingly, there are drugs with the ability to inhibit fibroblastic proliferation and
their production of collagen and pro-inflammatory cytokines. Pirfenidone is one of such
drugs that have been FDA approved for the treatment of pulmonary fibrosis [23]. On
the other hand, there are also non-toxic drugs that inhibit the enzymes intervening in
hyaluronan production and drugs that decrease the expression of its receptor, CD44.

Targeting pancreatic extracellular environment has been investigated and proposed
by many authors [24–30]. Many “repurposable” drugs with stromal inhibiting abilities
have been identified, including metformin [31], all-trans retinoic acid [32], curcumin [33],
glutamine analogs such as 6-diazo-5-oxo-L-norleucine (DON) [34], among others.

This manuscript will analyze separately the characteristics of these drugs and finally
propose a unified vision of how they should act on the tumor stroma.

We strongly believe that there will be no real breakthrough in PDAC treatment unless
the stroma is simultaneously targeted. Pancreatic stroma and tumor should be viewed
as one pathological entity in which even if we can separate the parts, functionally they
represent a non-divisible unit and so it should be treated.

2. Hyaluronan

Hyaluronan (hyaluronic acid), a glycosaminoglycan, is a major component of the
extracellular matrix [35–37]. Its presence is also prominent in many inflammatory diseases
and cancer [38]. Interestingly, when hyaluronan synthesis is pharmacologically decreased
in animal models a clear benefit can be achieved in these pathological conditions [39].

Hyaluronan is consistently increased in pancreatic cancer stroma and it exerts a
pro-tumoral action [40], including tumor growth [41], proliferation, invasion [42], and
metastasis [43–45]. Hyaluronan is overexpressed in many inflammatory diseases, [46,47]
and certain malignant tumors [48,49].

Hyaluronan consists of a large repeating disaccharide chain (Figure 2).
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Figure 2. Chemical structure of hyaluronan.

This polysaccharide has basically two functions:

(1) Structural
(2) Signaling

As a structural component of the extracellular matrix, it is the main molecule that
provides strength and lubrication [48] playing an active role in cell adhesion [50,51] and
motility [52–54].

As a signaling molecule, it intervenes in proliferation [55,56] and differentiation [57].
Hyaluronan’s structural functions, namely lubrication, and strength, can be fulfilled

by this molecule without any receptor. However, signaling and motility require that
hyaluronan binds to a specific receptor. The main binding receptor, CD44, is located on
the cell surface. There is also another receptor for binding hyaluronan: the intracellular
RHAMM (receptor for hyaluronan-mediated motility) While some authors have reported
that RHAMM does not seem to have a direct connection with pro-tumoral activities [58],
others have found that RHAMM is “an oncogene that regulates signaling through Ras and
controls mitogen-activated protein kinase [extracellular signal-regulated protein kinase
(ERK)] expression in embryonic murine fibroblasts” [59].

Hyaluronan is produced inside the cell membrane by the enzyme hyaluronan syn-
thase [60]. There are three isoforms of hyaluronan synthase: HAS1, HAS2, and HAS3
(Figures 3 and 4). The production and regulation of each of these enzymes are differ-
ent. HAS2 produces the longest chain of hyaluronan. HAS2 over-expression produces
a hyaluronan that diminishes contact inhibition and promotes cell growth. This was not
found with HAS1 and HAS3 over-expression [61]. Therefore, we may assume that HAS2 is
the origin of pro-tumoral hyaluronan.

The different molecular weights of hyaluronan are important in cancer [62]: increasing
molecular weight (up to 1000 kD) shows increased CD44 binding affinity [63,64].
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The chemical structure of hyaluronan is shown in Figure 2 [65], and its interactions in
Scheme 1.
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Scheme 1. Interactions of hyaluronan. Versican is a chondroitin sulfate that with hyaluronan
contributes to the extracellular matrix (ECM) density [66]. It is upregulated by TGFβ [67] and also
interacts with CD44 and RHAMM.

3. The CD44 Antigen

The CD44 antigen (synonym HCAM) is a glycoprotein acting as an adhesion
molecule [68] on the cell surface. Cell adhesion molecules play an important role in
cell migration. In fact, CD44 has been shown to be strongly related to invasion [69–71] and
metastasis [72–74]. CD44 has three portions (Figure 5):
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Figure 5. The binding of hyaluronan to the extracellular domain of CD44 initiates pro-tumoral signaling. The intracel-
lular portion of CD44 undergoes intra-membrane proteolysis releasing the intra-cytoplasmic domain that promotes the
transcription of genes that induce survival, migration, invasion, metastasis, and angiogenesis. [75].
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(1) An extracellular amino-terminal domain to which hyaluronan binds activating signal-
ing. The extracellular domain is also a binding site for other adhesion molecules such
as E-selectin and fibronectin.

(2) A transmembrane single spanning domain.
(3) A short carboxy-terminal intracellular domain responsible for the signaling activity.

Importantly, there are many different isoforms produced by alternative splicing. They
all have the ability to bind hyaluronan.

The hyaluronan-CD44 association represents a pro-tumoral hub. Signaling born from
the intracellular portion of the HA-activated CD44 activates Ras, MAPK, PI3K [76], and
RUNX2-RANKL pathways [77].

Scheme 2 shows CD44 interactions.
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Scheme 2. CD44 interactions: RunX1-RANKL responsible for bone metastasis; uPA urokinase-type
plasminogen activator [78]; YAP (yes associated protein) [79] part of the Hypo signaling pathway; os-
teopontin [80] (a secreted integrin-binding protein whose association with cancer has not been clearly
established [81], but probably having a role in tumor progression [82] and angiogenesis [83,84]);
collagen type IV related with migration and invasion [85]; syndecan [86] is a proteoglycan that
facilitates metastasis [87] and it is upregulated in pancreatic cancer [88]. It has a role in pancreatic
cancer macropinocytosis [89]; metalloproteinase 9 transcription is regulated by the cytoplasmic tail of
CD44 [90]. CD44 also has a role in MMP 9 relocation, increasing metastasis [91]. A prominent place
was reserved for NHE1 because it has been shown that CD44 associates with and activates NHE1,
thus participating in the pH gradient inversion, an important event in carcinogenesis and tumor
progression [92–95]. The second prominent relationship is with the voltage-gated sodium channel
Nav1.5 [96,97].

This triad, CD44, NHE1, Nav1.5 is present in invadopodia [98–101], the invasive
structure of malignant cells, interacting and promoting invasion and metastasis [102,103].

Nav1.5 promotes invasion through the CD44-src-cortactin signaling pathway [70,104–106].
Importantly, CD44 is a marker of cancer stem cells (CSCs) and a regulator of stem-

ness [107–110], integrating signals between CSCs and pre-metastatic niches [111]. There
is evidence that CD44 knockdown can eradicate leukemia stem cells [112]. There is also
evidence showing that CD44 positive cells play an important role in gemcitabine resistance
in pancreatic cancer [113], distant metastasis, and aggressive behavior [114].

Figure 6 shows the relationship of CD44 with NHE1 and their influence on the cy-
toskeletal organization, which explains the reasons why CD44 is involved in cellular
migration, invasion, and metastasis.
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These mechanisms triggering the hyaluronan-CD44 pathway and its protumoral
activities can be interrupted by repurposing existing drugs.

In this respect, we have selected two drugs due to their different effects on part of
the pathway, and additive or synergistic effects can be expected: bromelain as an inhibitor
of CD44 and hymecromone (4-methylumbelliferone) as an inhibitor of hyaluronan. Both
drugs are available on the market (in Europe) but are not FDA approved.

3.1. Bromelain (BRO)

BRO is an extract from pineapple (Ananas comosus) from either the juice of the fruit or
from the stem. Actually, it is present in all parts of the freshly picked plant and fruit. The
Bromelain extract is a mixture of proteolytic enzymes and other substances including per-
oxidases.

It has been used for centuries as a folk medicine for the treatment of many different
ailments. It is also a meat tenderizer and has found a place in the food industry.

In Europe, it is approved for the removal of necrotic tissues in burn lesions. For the
FDA bromelain is only a dietary supplement.

The beneficial effects of bromelain are attributable to its multiple components but
mainly to the proteolytic enzymes.

BRO has been used to reduce swelling, especially in ENT surgery and odontological
procedures. Although used in folk medicine, the only approved use was issued in 2012 by
the European Medicines Agency for removing dead tissue in skin burns. The molecular
weight of purified stem bromelain determined by polyacrylamide-gel electrophoresis is
28,500 ± 1000 [122].

In 1972, Gerard was the first author to suggest an anti-cancer activity of BROs [123].
After Gerard, many publications were showed that BROs could play a role in cancer

treatment (Table 2).
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Table 2. Experience with bromelain in cancer.

Year/Ref. Tissue/Animal Finding

1985 [124]
Lewis lung carcinoma, YC-8
lymphoma, MCA-1 ascitic

tumor cells

BRO retarded tumor cell growth even when
proteolytic and platelet aggregation effects

were deactivated by heating when peroxidase
activity was conserved.

1988 [125] Mice fed with BRO Reduced lung metastasis of implanted Lewis
lung carcinoma.

1994 [126] Human leukemia cells
BRO reduced CD44 expression on the cell

surface, reducing adhesiveness to
the endothelium.

1994 [127] Breast cancer, squamous
carcinoma, and melanoma cells

Pre-treating lymphocytes with BRO inhibited
the growth of the 3 tested cell types. BRO also

had inhibitory effects when it was directly
applied to the cells.

1997 [128] Mouse melanoma cells
In vitro treatment of the melanoma cells with
BRO before i.v. injection into mice prevented

lung colonization.

2001 [129] Glioma cells
BRO reduced migratory abilities by decreasing

α3 and β1 integrin subunits and hyaluronan
receptor CD44 protein levels.

2007 [130]
Leukemia, sarcoma, Lewis lung
carcinoma, Ehrich ascites, breast
carcinoma, and melanoma cells.

These cells were injected into mice. Treatment
with BRO started 24 hrs. later. With the

exception of melanoma, the mice treated with
BRO had significantly prolonged survival as
compared with mice treated with 5FU used

as controls.

2009 [131] Mouse skin
tumorigenesis model

Pre-treatment with BRO reduced the total
number of tumors and an average number of

tumors per mouse. It inhibited COX2
expression and NF-kB activation.

2010 [132] GI-101A breast cancer cell Dose-dependent apoptosis through the
caspases pathway.

2012 [133] GI-101A breast cancer cell Dose-dependent apoptosis through the
caspases pathway.

2012 [134] Melanoma and epidermoid
carcinoma cells

BRO induced apoptosis through inhibition of
NF-kB nuclear translocation. BRO increased
ROS by depleting intracellular glutathione.

2013 [135] Human gastrointestinal
carcinoma cells

Cytotoxic effects of BRO were confirmed on
these cells involving the caspases system, but
also blocking Akt and attenuating Bcl2 and

MUC1 oncoproteins.

2013 [136] Human umbilical vein
endothelial cells (HUVEC)

BRO showed anti-angiogenic activity in vitro,
inhibiting cell proliferation and tube formation.

2014 [137] Peritoneal Mesothelioma cells
Cells expressing MUC1 were treated with BRO.

BRO induced cell death and increased
cisplatin cytotoxicity.

2015 [138] Gastric and colorectal cancer BRO and n-acetylcysteine showed synergistic
inhibition of tumor growth in vivo.
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Table 2. Cont.

Year/Ref. Tissue/Animal Finding

2016 [139]
Peritoneal dissemination of

gastrointestinal
mucin-producing cells

BRO and n-acetylcysteine reduced the
dissemination and proliferation of

gastrointestinal mucin-producing cancers.

2016 [140] Cholangiocarcinoma cells
BRO decreased proliferation, migration, and

invasion. BRO inhibited
NF-kB/AMPK signaling.

2018 [141] Lymphoma cells BRO with peroxidases induced
mitochondrial apoptosis.

2019 [142] Oral cancer cells Viability was reduced in a
dose-dependent manner.

2019 [143] Non-Hodgkin lymphoma BRO with peroxidases reduced progression of
non-Hodgkin lymphoma in vivo.

Furthermore, BRO inhibits/blocks CD44 and reduces its expression on the cell surface
but does not reduce its transcriptional output. The relation between BRO and CD44 is
shown in Table 3.

Table 3. BRO-CD44 relationship.

Year/Ref Tissue Findings

1992 [144] Human T cells BRO removed CD44 from the cell surface

1994 [145] Human peripheral
blood lymphocytes

BRO reduced the CD44 mediated adhesion of
human lymphocytes to human umbilical vein

endothelial cells.

1994 [126] Leukemia and melanoma cells BRO modulated CD44 expression

1996 [146] Lymphocytes BRO modulated CD44 expression and reduced
lymphocyte adhesiveness.

2001 [129] Glioma cells BRO reduced invasiveness of glioblastoma
cells by downregulating CD44

2016 [147] Human and mouse tumor cells BRO reduced CD44 expression from the
surface of tumor cells.

BRO was tested on MCF-7 breast cancer cells and the gene profiling showed differences
in 1102 genes. The genes with more than 1.5-fold change in expression were: RNA-binding
motif, single-stranded interacting protein 1 (RBMS1), ribosomal protein L29 (RPL29),
glutathione S-transferase mu 2 (GSTM2), C15orf32, Akt3, B cell translocation gene 1 (BTG1),
C6orf62, C7orf60, kinesin-associated protein 3 (KIFAP3), FBXO11, AT-rich interactive
domain 4A (ARID4A), COPS2, TBPL1|SLC2A12, TMEM59, SNORD46, glioma tumor
suppressor candidate region gene 2 (GLTSCR2), and LRRFIP [148].

At the cellular level, BRO has shown clear anti-tumoral effects and inhibitory activity
on CD44. The exact nature of this inhibition is not fully known, but it is not at the transcrip-
tional level. Probably BRO’s proteolytic activity is involved in the mechanism [149].

However, BRO seems to reduce both the CD4+ and CD8+ T- lymphocyte populations
and the ratio [150]. Furthermore, BRO also removed CD44 expression from the surface of
dendritic cells [151], suggesting that there might be incompatibilities with immunological
checkpoint inhibitors. This anti-immune feature may be compensated by BRO’s ability to
increase CD2 activation of T-cells [152] in mice. Further research is necessary to find out
the exact nature of BRO’s effects on the immune system in humans.

An important question that remains to be answered is: can orally administered BRO
achieve therapeutic concentrations at the tumor level?
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Bioavailability

Oral BRO has been tested in rats [153]. One hour after administration the plasma
concentration reached a maximum of 270 mg/mL, which represented 0.003% of the admin-
istered dose. In human volunteers, the administration of high doses of BRO resulted in an
average plasma concentration of 10 picograms after 48 h [154].

There is clinical evidence that oral BROs have measurable clinical effects.
Heinicke et al. [155] administered oral BRO to 20 volunteers and it decreased platelet

aggregation in 17 of them. Another experiment with orally administered BRO in rats
showed decreased thrombus formation [156].

The anti-edematous and anti-fibrinolytic activity of BRO was tested in rats that re-
ceived the medication through an esophageal tube. The antiphlogistic response was
proportional to the dose [157].

While the evidence on achieving concentrations necessary for blocking CD44 with
orally administered bromelain remains inconclusive, it has been shown that BRO can be
absorbed by the human intestine without losing its biological activity [154].

In European markets, BRO formulations between 40 and 750 mg are found. The
necessary dose to achieve clinical effects is around 1500 to 2000 mg. These doses are not
toxic, and actually, a dose of 12 g/day has been found to lack toxicity [154,158].

3.2. 4-Methylumbelliferone (Hymecromone)

Hyaluronan is known to

• increase the adhesion and motility of metastatic cells in melanoma [159];
• increase the motility of pancreatic cancer cell [42] and prostate cancer cells [53];
• decrease drug delivery to tumors [160–162];
• increase proliferation [163].

Increased hyaluronan expression in tumor stroma is a sign of poor prognosis [164–167]
and there is also evidence of hyaluronan building a pre-niche for driving metastasis [168].

4-methylumbelliferone (4MU) is a hydroxycoumarin that is umbelliferone replaced by
a methyl group at position 4. It is an inhibitor of hyaluronan synthase and decreases the
production of hyaluronan. Table 4 lists studies showing MU’s anti-tumoral properties.

Table 4. Evidence of 4MU’s anti-tumoral effects.

Year/Ref. Tissue Findings

2006 [169] Pancreatic cancer cells 4MU increased the cytotoxicity of gemcitabine.

2010 [170] Prostate cancer cells
4MU inhibited motility, invasion, and proliferation,
inducing apoptosis of four different prostate cancer

cell lines. It also inhibited NF-kB activity.

2011 [171] Hepatocarcinoma In an orthotopic model of hepatocarcinoma, 4MU
reduced proliferation and induced apoptosis.

2011 [172] Osteosarcoma
4MU suppressed hyaluronan production and matrix
formation in osteosarcoma cells, with reduction of
proliferation in vitro and lung metastasis in vivo.

2012 [173] Breast cancer 4MU inhibited tumorigenicity in vitro. It reduced
tumor metastasis in vivo.

2013 [174] Canine mammary
tumor cells

4MU showed anti-tumoral actions in
mesenchymal-like tumor cells.

2013 [175] Anti-angiogenic effects in vitro and in vivo

2014 [176] Anti-angiogenic effects in vitro and in vivo
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Table 4. Cont.

Year/Ref. Tissue Findings

2014 [177] Ovarian cancer cells

4MU inhibited ovarian cancer cell proliferation
in vitro, without affecting migration and invasion.

In a peritoneal carcinomatosis model, 4MU inhibited
tumor growth and prolonged survival. The authors
suggest that thymidine phosphorylase inhibition is

the reason for this anti-cancer activity.

2015 [178] Melanoma 4MU reduced liver metastasis in a melanoma
in vivo model.

2016 [179] Pancreatic cancer cells 4MU derivatives were studied, showing a more
powerful inhibition on the hyaluronan inhibition.

2016 [180] Pancreatic cancer cells 4MU reduced hyaluronan production and
suppressed cell proliferation in vitro and in vivo.

2016 [181] Non-malignant
endometriotic lesions 4MU reduced angiogenesis.

2017 [182] Implanted pancreatic
cancer cells

SCID mice with cancer cells implanted in the
peritoneum and treated with 4MU showed

decreased progression, migration, and invasion.

2018 [183] Pancreatic cancer cells 4MU decreased hyaluronan production and
increased cytotoxicity of 5-fluorouracil.

2018 [184] Pancreatic cancer cells 4MU decreased motility of pancreatic cancer cells.

2019 [185] Breast cancer cells 4MU showed higher anti-tumoral activity in ERα
negative tumors.

2019 [186] Ovarian cancer 4MU decreased chemoresistance and inhibited
cancer stem cell activation.

2019 [187] Fibrosarcoma cells 4MU increased radiosensitivity by decreasing IL6
and IL8.

2019 [188] Colon cancer

Hyaluronan is a pro-tumoral molecule that also
binds to TLR4 increasing proliferation and blocking
apoptosis. Blockade of hyaluronan binding by any
method, including decreased production with 4MU

decreased proliferation.

2020 [189] Human normal
endometrial cells

Reduced attachment, invasion, and invasion of
endometrial epithelial and stromal cells.

2021 [190] Glioblastoma cells 4MU diminished proliferation, cell migration, and
metalloproteases inducing apoptosis.

From Table 4 we can conclude that 4MU has clear anti-tumoral effects by decreasing
hyaluronan synthesis.

3.3. Pirfenidone

A third drug that could independently target the fibrotic process is pirfenidone.
Pirfenidone is a pyridine that has been approved by the FDA for the treatment of

pulmonary fibrosis [191–193]. It has also been tested in other fibrogenic diseases such
as diabetic nephropathy [194], liver fibrosis [195], and for the normalization of tumor
microenvironment increasing chemotherapeutic drugs access to the tumor by reducing
hyaluronan and collagen levels in the ECM [196].

Desmoplastic tumors, such as pancreatic cancer, show a very dense ECM that com-
presses blood vessels [197,198] with two direct effects:

• increased hypoxia with its pro-tumoral consequences and;
• inability of chemotherapeutic drugs to reach their target cells.



Int. J. Mol. Sci. 2021, 22, 3953 13 of 23

Importantly, it was found that pirfenidone could block the desmoplastic process in
pancreatic cancer [199].

Mechanism of action: Pirfenidone achieves its anti-fibrosis effects through different
mechanisms of action. Pirfenidone:

(a) inhibits collagen fibrils assembly [200];
(b) down-regulates the intercellular adhesion molecule-1 (ICAM1) [201];
(c) decreases transformation grow factor-beta (TGFβ) [202] at the translational level [203];
(d) down-regulates the pro-fibrotic hedgehog signaling pathway [204];
(e) decreases fibroblast proliferation [205];
(f) blocks myofibroblast differentiation [206];
(g) suppresses tumor necrosis factor alpha (TNFα) [207];
(h) decreases cell migration-inducing and hyaluronan-binding protein [208];
(i) inhibits MUC1 [209].

In summary, pirfenidone is a small molecule that reduces fibrogenesis and shows anti-
inflammatory effects, for which it has been proposed as a therapeutic drug for advanced
COVID-19 infection [210].

MUC1 is highly expressed in pancreatic cancer and it was associated with invasion,
metastasis, and unfavorable overall survival [211], and inducing epithelial-mesenchymal
transition [212]. Many authors consider MUC1 as a valid target in pancreatic cancer
treatment [213–217]. Therefore, the ability of pirfenidone to block MUC1 phosphorylative
activation is an added benefit of this drug.

Specifically, in pancreatic cancer, pirfenidone has shown the ability to decrease the
production of the dense ECM and suppressing cancer cell proliferation [218] and cancer-
associated fibroblasts proliferation [219] when associated with cisplatin.

All these characteristics make pirfenidone the best choice to associate with an anti-
ECM treatment.

4. Discussion

Phytochemicals have been proposed as modulators/inhibitors of the desmoplas-
tic reaction in PDAC in many previous publications (recently reviewed by Ramakrish-
nan et al. [220]).

Hyaluronan, a glycosaminoglycan, is a normal component of the extracellular stroma.
The structural functions of this polydissacharide do not need a receptor and are fulfilled
through its physical-chemical properties. PDAC is one of the tumors that usually con-
tains large amounts of hyaluronan [221] and it has been shown that this cancer is highly
dependent on hyaluronan production and signaling [182].

Indeed, hyaluronan also shows signaling abilities with a clear pro-tumoral effect and
these signaling abilities require the binding to a cell surface protein: CD44. The association
of hyaluronan with CD44 represents a pro-tumoral signaling hub. Inhibiting the CD44-
hyaluronan association decreases cell motility [222] and probably multidrug resistance
(MDR) gene expression [223].

Fortunately, both hyaluronan and CD44 can be down-regulated by existing, non-toxic,
and low-cost drugs. BRO, obtained from the pineapple, decreases CD44 on the cell surface
through posttranscriptional mechanisms that are not fully known. The most probable
mechanism is through BRO’s proteolytic activity on the extracellular domain of CD44.
4MU, on the other hand, acts as an inhibitor of hyaluronan synthase 2, thus reducing the
production of hyaluronan.

Both drugs have shown independently anti-tumoral effects. Here, we propose the
association of these two drugs to synergistically reduce hyaluronan-CD44 signaling. To the
best of our knowledge, this association was never tested either in the laboratory or in the
clinical setting.

Figure 7 shows the mechanism of action of the 4MU and BRO association and Table 4
shows many examples of interesting results obtained in pancreatic cancer by inhibiting the
hyaluronan-CD44 pathway.
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A third drug, pirfenidone, targets the myofibroblasts responsible for the production
of the unique PDAC ECM and would complement the effects of the other two.

Here we propose a triple association of three low-toxicity drugs, namely bromelain,
4-methylumbelliferone and pirfenidone to be added to classical pancreatic cancer treatment
schemes. The fundamentals behind the triple association are that the three drugs act on
different levels of the desmosomal reaction, thus an additive and possibly synergistic effect
can be expected from their combined use. Reducing the ECMs pressure will allow less
hypoxia and better arrival of cytotoxic drugs to the tumor’s core.

5. Conclusions

The hyaluronan-CD44 axis plays two essential roles in cancer: it creates a dense
ECM in association with collagen and integrins and forms part of signaling pathways that
participate in cellular motion, invasion, and metastasis. Both functions of the axis deserve
targeting. Attacking the matrix through the hyaluronan-CD44 axis will not only allow
better drug access to the malignant cells but also will reduce invasion and metastasis.

Patients with PDAC, with its dense stroma and high invasive ability, would be
particularly benefited by inhibiting collagen production and blocking CD44 activation
by hyaluronan.

The hypothesis that synergistic anti-tumoral effects can be achieved by associating
bromelain, 4-methylumbelliferone, and pirfenidone to classical pancreatic cancer treat-
ments is presented here. The fundamentals and evidence gathered on these drugs were
summarized. BRO and 4MU lack toxicity and pirfenidone have low toxicity, thus we
presume that complementing classical treatments with this association would not add to
toxicity and can increase treatment effectiveness. We believe that this non-toxic, low-cost
scheme for inhibiting this pathway may offer an additional weapon for treating pancre-
atic cancer.
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