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Abstract

The cable equation is a proper framework for modeling electrical neural signalling that takes place at a timescale at which
the ionic concentrations vary little. However, in neural tissue there are also key dynamic processes that occur at longer
timescales. For example, endured periods of intense neural signaling may cause the local extracellular K+-concentration to
increase by several millimolars. The clearance of this excess K+ depends partly on diffusion in the extracellular space, partly
on local uptake by astrocytes, and partly on intracellular transport (spatial buffering) within astrocytes. These processes, that
take place at the time scale of seconds, demand a mathematical description able to account for the spatiotemporal
variations in ion concentrations as well as the subsequent effects of these variations on the membrane potential. Here, we
present a general electrodiffusive formalism for modeling of ion concentration dynamics in a one-dimensional geometry,
including both the intra- and extracellular domains. Based on the Nernst-Planck equations, this formalism ensures that the
membrane potential and ion concentrations are in consistency, it ensures global particle/charge conservation and it
accounts for diffusion and concentration dependent variations in resistivity. We apply the formalism to a model of
astrocytes exchanging ions with the extracellular space. The simulations show that K+-removal from high-concentration
regions is driven by a local depolarization of the astrocyte membrane, which concertedly (i) increases the local astrocytic
uptake of K+, (ii) suppresses extracellular transport of K+, (iii) increases axial transport of K+ within astrocytes, and (iv)
facilitates astrocytic relase of K+ in regions where the extracellular concentration is low. Together, these mechanisms seem
to provide a robust regulatory scheme for shielding the extracellular space from excess K+.
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Introduction

The interaction between neurons and glial cells has been the

topic of many recent studies within the field of neuroscience (see

reviews in [1–3]). Astrocytes (a species of glial cells) play an

important role in modulating excitatory and inhibitory synapses by

removal, metabolism, and release of neurotransmitters [4],

homeostatic maintenance of extracellular K+, H+, and glutamate

[5], supply of energy substrates for neurons [6], and neuronal

pathfinding during development and regeneration [7]. Astrocytic

cells seem to have key roles in many central nervous system

disorders, ranging from neuropathic pain and epilepsy to

neurodegenerative diseases such as Alzheimers, schizophrenia

and depression [8]. Computational models of neuron-glia inter-

actions is a prerequisite for understanding the dysfunctional

situations, and for assessing glial cells as a potential therapeutic

target [9]. To give a few examples, such models have been used to

simulate glial regulation of extracellular K+-concentration [10–

13], and the relation between extracellular K+-dynamics and

epileptic seizures [14–16] and spreading depression [17,18].

Regulation of the extracellular K+-concentration is considered

one of the key cellular functions of astrocytes [2]. During normal

conditions, the extracellular K+-concentration (½Kz�E ) is typically

maintained close to the baseline level (*3mM). However, when

neurons fire action potentials, they expel K+ into the extracellular

space. During periods of intense neural activity, the local

extracellular K+-concentration may increase by several millimo-

lars, and may interfere with neural activity [10,19,20]. Concen-

trations between 8 and 12 mM are often considered a limit to

pathological conditions [3,12,21].

Orkand (1966) [22] discovered that astrocytes can funnel out

excess K+ from high concentration regions by a process coined

spatial buffering [12,21,22]. According to this concept, K+ is taken

up by the glial cell from high-concentration sites, evoking a local

depolarization of the glial membrane. K+ is then transported

longitudinally inside the glial cell (and possibly through several glial

cells connected by gap junctions into a glial syncytium [10,23]), and

eventually expelled into the ECS at more distal cites where ½Kz�E is

lower. However, it has also been argued that astrocytes may reduce

½Kz�E by local uptake and temporal storage, not necessarily

including transport over distances [19,24]. Furthermore, diffusion

through the ECS is also involved in transporting excess K+ out from

high concentration regions. The relative importance of these

different clearance mechanisms are under debate [25].
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Electrical neural signalling is typically modeled using the cable

equation, where dendrites and axons are represented as one-

dimensional, possibly branching, electrical cables, and the

transmembrane potential is the key dynamical variable [26,27].

With the possible exception of the signalling molecule Ca2+ (see

e.g., [28,29]), ion concentrations are typically assumed to be

constant. The effect of ionic diffusion (due to concentration

gradients) on the net electrical currents is neglected in standard

cable theory, and resistivities (which in reality depend on ion

concentrations) are assumed to be constant. These are often good

approximations, as concentrations of the main charge carriers (K+,

Na+ and Cl2) in the extracellular- (ECS) or intracellular space

(ICS) typically vary little at the short time-scale relevant for

electrical neural activity (v100ms).

Glial function typically involves processes that take place at a

longer time-scale (w1s), at which significant variations in ionic

concentrations may occur. For example, the process of spatial K+-

buffering involves local uptake, a local depolarization of the

astrocytic membrane, and longitudinal electrodiffusive transports

through the intracellular- (ICS) and extracellular space (ECS)

propelled both by voltage- and concentration gradients [30]. A

mechanistic understanding of glial function thus requires a

modelling scheme that in a consistent way can capture the

intricate interplay between ion concentration dynamics and the

dynamics of vM . Physically, vM is determined by the total electrical

charge on the inside (or outside) of the membrane, which in turn is

uniquely determined by the concentrations (½k�) of all ionic species

that are present there [31]. In some heart cell models, ion

concentrations have been reported to drift to unrealistic values in

long-term simulations, while vM maintain realistic values [32–34].

Whether the relationship between vM and ½k� is consistent, is a

general concern with models that explicitly depend on both. If

applied to general problems, and in particular in long-term

simulations, models that do not ensure an internally consistent

½k�{vM relationship may give erroneous predictions.

Gardner-Medwin (1983) [10] proposed a pioneering computa-

tional model of the spatial buffering process, later re-analyzed by

Chen and Nicholson (2000) [12]. In this model, spatial buffering

was considered as an essentially one-dimensional transport

process. The complex composition of the tissue (Fig. 1A) could

then be simplified to a two-domain model as that illustrated in

Fig. 1B [10,12]. There, the ICS of all cells participating in the

transport process (i.e. the astrocytes) have been represented as an

equivalent cable (I-domain) which is coated by ECS (E-domain).

The I-E system could be pictured phenomenologically as an

representative single astrocyte, coated with the average proportion

of available ECS per astrocyte. This geometrical simplification was

motivated for one-dimensional transport phenomena through the

glial syncytium [10,12], but could in principle apply to any

transport phenomena that justifies a geometrical simplification as

that in Fig. 1. A limitation with these modelling studies [10,12],

and related modelling studies by Newman and coworkers [11,21],

is that vM was derived from standard cable theory, which neglects

effect from diffusive currents on vM . The concern regarding a

consistent relationship between vM and the ionic concentrations

thus also applies to these models.

Qian and Sejnowski (1989) have previously developed a

consistent, electrodiffusive scheme for modelling the dynamics

on vM and ion concentrations [31]. Like the standard cable model,

the electrodiffusive model assumes that transport phenomena are

essentially one-dimensional. Unlike the standard cable model, the

Figure 1. A two domain-model for ion concentration dynamics
in the intra- and extracellular space, when macroscopic
transport is essentially one-dimensional. (A) A piece of neural
tissue with cross section area Aref and an arbitrary extension l in the x-
direction. The tissue contains cells (dark grey) that participate in the
transport process, and cells that do not (light grey). (B) The interior of all
participatory cells represented as a single, equivalent cylindrical cable
(I ), coated by ECS (E). The geometry is specified by three parameters,
where aI and aE are, respectively, the fractions of Aref occupied by the

ICS of participatory cells and the ECS, and OM (m{1) is the amount of
membrane area per tissue volume (or, equivalently, the circumference
of the equivalent cable divided by Aref ). Due to the presence of other
cells (non-participatory), we generally have that aI zaEv1. The
concentration of ion species k is denoted ½k�n where n represents
domain I or E. Ionic movement is described by the transmembrane flux
density (jkM ) and the longitudinal flux densities due to electrical

migration (jf
kn) and diffusion (jd

kn).
doi:10.1371/journal.pcbi.1003386.g001

Author Summary

When neurons generate electrical signals they release
potassium ions (K+) into the extracellular space. During
periods of intense neural activity, the local extracellular K+

may increase drastically. If it becomes too high, it can lead
to neural dysfunction. Astrocytes (a kind of glial cells) are
involved in preventing this from happening. Astrocytes
can take up excess K+, transport it intracellularly, and
release it in regions where the concentration is lower. This
process is called spatial buffering, and a full mechanistic
understanding of it is currently lacking. The aim of this
work is twofold: First, we develop a formalism for
modeling ion concentration dynamics in the intra- and
extracellular space. The formalism is general, and could be
used to simulate many cellular processes. It accounts for
ion transports due to diffusion (along concentration
gradients) as well as electrical migration (along voltage
gradients). It extends previous, related formalisms, which
have focused only on intracellular dynamics. Secondly, we
apply the formalism to model how astrocytes exchange
ions with the extracellular space. We conclude that the
membrane mechanisms possessed by astrocytes seem
optimal for shielding the extracellular space from excess
K+, and provide a full mechanistic description of the spatial
(K+) buffering process.

Electrodiffusive Astrocyte Model
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electrodiffusive model derived vM from the ion concentration

dynamics, accounting for all ionic movements (membrane fluxes,

longitudinal diffusion, and longitudinal electrical migration), as

well as for the concentration-dependent variation of the intracel-

lular resistivities. An important limitation with this previous

electrodiffusive model is that it only includes intracellular

dynamics, whereas the ECS was assumed to be isopotential and

with constant ion concentrations [31]. This was a useful

simplification for simulating a small intracellular compartment,

such as a dendritic spine [31], but is not generally applicable to

macroscopic transport mechanisms. In particular, it can not be

applied for modelling the spatial buffering process, where ion

concentration dynamics in the ECS plays a paramount role. In

reality, the ECS comprises about 20% of the total neural tissue

volume, while the remaining 80% is the ICS of various cells [12].

When a large number of cells participate in simultaneous ion

exchange with the ECS, the impact on the ion concentrations in

the ICS and ECS may be of the same order of magnitude.

The aim of this work is twofold: First, we generalize the

electrodiffusive formalim [31] to a explicitly include the ECS. The

result is a general mathematical framework for consistently

modelling the dynamics of the membrane potential (vM ), the intra-

(½k�I ) and extracellular (½k�E ) ion concentrations for a set (k) of ionic

species. We believe that this framework will be of general value for

the field of neuroscience, as it can be applied to any system that

justifies a geometrical description as that in Fig. 1B. Next, we apply

the electrodiffusive formalism in a spatially explicit model of

astrocytes exchanging ions with the ECS. We run simulations to

investigate the efficiency of the spatial K+-buffering process, relative

to that of local uptake/storage by astrocytes, and that of diffusion in

the ECS alone. Unlike the previous models [10–12,21], our astrocyte

model is based on the prevailing view that Na+/K+/ATPase-pump is

the main uptake mechanism for K+ [3]. Furthermore, as our model

was based on a physically consistent electrodiffusive formalism, we

arrive at a full mechanistic description of the buffering process, which

quantitatively describes the intricate interplay between vM and the

dynamics of ion concentrations.

This article is organized in the following way: The Model

section contains two main parts. In the first part, we present the

electrodiffusive formalism for computing the ion concentration

dynamics in a system described by the geometry depicted in

Fig. 1B. We consider this theoretical framework a key contribution

of this work. However, the key concepts introduced in this part are

summarized in Table 1, and with this in hand, the reader who is

mainly interested the biological process of spatial K+-buffering by

astrocytes may therefore skip to second part of the Model-section.

There, the model for astrocytes exchanging ions with the ECS is

presented. The Results section is devoted to simulations on the

astrocyte model, and provides an improved biophysical insight in

the electrodiffusive mechanisms utilized by astrocytes to spatially

buffer K+. By comparing different versions of the model, we also

assessed the importance of spatial buffering, relative to that of

other clearance mechanisms such as local uptake/storage by

astrocytes and diffusion through the ECS alone. Finally, in the

Discussion section we address how our mathematical framework

relates to previous electrodiffusive modeling frameworks. We also

summarize the new insights that our simulations have given in the

process of spatial K+-buffering by astrocytes.

Model

Electrodiffusive formalism
In Fig. 1B, particles in I or E may move along the x-axis or

across the membrane. In a segment Dx of I, centered at x, and

Table 1. List of symbols and definitions.

Symbol Explanation Units

k (index) Ion species: Kz , Naz or Cl{

n (index) Domain: I (ICS) or E (ECS)

½k�n Ion concentration of species k in domain n mM

rn Charge density C/m3

½ez�n Charge density, represented as concentration of unit charge mM

vM Membrane potential mV

jkM Membrane flux density of species k mmol=(m2s)

j
f
kn

Axial flux density due to electrical migration mmol=(m2s)

jd
kn

Axial flux density due to diffusion mmol=(m2s)

Dk Diffusion constant in diluted media m2/s

ln Tortuosity (effective diffusion constant = Dk=l2
n)

rn Resistivity Vm

gk Membrane conductance for passive ion channels S/m2

Pmax Maximum Na+/K+ pump-rate mol/(m2s)

l Length of astrocyte mm

aI Astrocyte volume/total tissue volume

aE ECS volume/total tissue volume

OM Membrane area/total tissue volume m21

kdec Rate for concentration dependent output m/s

jin Constant input flux density in input zone mol/(m2s)

doi:10.1371/journal.pcbi.1003386.t001

Electrodiffusive Astrocyte Model
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with volume aIDx, the particle concentration dynamics of an ion

species k is determined by:

{OMDxjkM (x,t)zaI jkI (x{Dx=2,t)){

aI jkI (xzDx=2,t)~aIDx
L½k�I (x,t)

Lt
,

ð1Þ

where the transmembrane- (jkM ), the intracellular- (jkI ) and the

extracellular (jkE ) flux densities of particle species k, have units

mol/(m2s). The first term on the left represents the ionic flux that

enter this segment through the piece of the membrane with area

OMDx. The negative sign follows from jkM (by convention) being

defined as positive in the direction from I to E. The second and

third terms represent the ionic fluxes that enter(+)/leave(2) the

section through the left/right boundaries, with cross section areas

aI . If the net flux into the segment is nonzero, the ion

concentration will build up over time, according to the right hand

side of Eq. 1.

We divide Eq. 1 by aIDx, and take the limit Dx?0, to obtain

the continuity equation on differential form:

LjkI (x,t)

Lx
z

OM

aI

jkM (x,t)z
L½k�I (x,t)

Lt
~0 ð2Þ

LjkE(x,t)

Lx
{

OM

aE

jkM (x,t)z
L½k�E(x,t)

Lt
~0: ð3Þ

We have also written up the continuity equation for the

extracellular domain.

The axial flux densities are described by the generalized Nernst-

Planck equation:

jkn(x,t)~{
Dk

l2
n

L½k�n(x,t)

Lx
{

Dkzk

l2
ny
½k�n(x,t)

Lvn(x,t)

Lx
, ð4Þ

where zk is the valence of ion species k, and the index n represents

I or E. The first term on the right in Eq. 4 is the diffusive flux

density (jd
kn), driven by the concentration gradients, and the last

term is the field flux density (j
f
kn), i.e., the flux density due to ionic

migration in the electrical field. The effective diffusion constant

D�k~Dk=l2
n is composed of the diffusion constant Dk (m2=s) in

dilute solutions and the tortuosity factor ln, which summarizes the

hindrance imposed by the cellular structures [12,35]. We use

y~RT=F (mV), where R~8:3144621J=(molK) is the gas con-

stant, T the absolute temperature, and F~96,485:3365C=mol is

Faraday’s constant.

The formalism is general to the form of jkM , which may include

contribution from multiple membrane mechanisms, such as ion

pumps, co-transporters and ion channels. It is sufficient to require

that jkM is known at any point in time given the voltage across the

membrane, the ionic concentrations on either side of the

membrane, and possibly some additional local information

( ~mm1, ~mm2,:::) reflecting the local state of the membrane:

jkM (x,t)~f (½k�I (x,t),½k�E(x,t), vM (x,t), ~mm1(x,t), ~mm2(x,t),:::): ð5Þ

As boundary conditions, we shall apply the sealed-end

condition, i.e., we assume that no fluxes enter or leave through

the ends (x~0 and x~l) of I or E:

jkn(0,t)~jkn(l,t)~0: ð6Þ

Equations 2–3, together with with Eqs. 4, 5 and 6, specify the

system we want to solve. Before we derive the electrodiffusive

formalism for this problem, we recall how the standard cable

equation can be derived from the principles of particle conserva-

tion.

Charge conservation. The particle conservation laws (Eqs.

2–3) can be transformed to charge conservation laws by the use of

the general relations (see e.g., [27]):

rn(x,t)~F
X

k

zk½k�n(x,t)zrsn(x) ð7Þ

iM (x,t)~F
X

k

zkjkM (x,t) ð8Þ

in(x,t)~F
X

k

zkjkn(x,t): ð9Þ

Here, rn (C=m3) is the charge density, iM (A=m2) is the

transmembrane current density, and in (A=m2) is the axial current

density. For practical purposes, we have included a density of static

charges (rsn) in Eq. 7, representing contributions from ions/

charged molecules that are not considered in the conservation

equations. If the set ½k�n include all present species of ions, then

rsn~0. To keep notation compact, we from here on omit the

functional arguments (x,t).

If we multiply the particle conservation laws (Eqs. 2–3) by Fzk,

take the sum over all ion species, k, and use Eqs. 7–9, we obtain

the equivalent laws for charge conservation:

aI
LiI

Lx
zOM iMzaI

LrI

Lt
~0 ð10Þ

aE
LiE

Lx
{OMiMzaE

LrE

Lt
~0: ð11Þ

Note that the last term only depends on the mobile ions, as

Lrsn=Lt~0.

Standard cable equation. The standard cable equation may

be derived by combining the charge conservation laws (Eqs. 10–

11) with three simplifying assumptions: (i) E is assumed to be

isopotential and with zero resistivity, (ii) the membrane is a

parallel-plate capacitor, and (iii) ion concentrations are effectively

constant, i.e., diffusive currents are negligible and resistivities (see

Eq. 15 below) are constant.

Assumption (i) implies that we only need to consider charge

conservation in I explicitly. To obtain the cable equation in the

standard form, we must express rI and iI in Eq. 10 in terms of vM

and LvM=Lx.

Assumption (ii) allows us substitute vM for rI . A capacitor with

capacitance dC separates a charge dQ from the opposite charge

{dQ, and generates a voltage difference v~dQ=dC. The charge

inside a piece (dx) of membrane with area OM dx is dQI~rI aI dx.

The capacitance of this piece of membrane is dC~CM OMdx,

where CM denotes the membrane capacitance per membrane

area. We therefore obtain:

Electrodiffusive Astrocyte Model
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vM~
dQI

dC
~

rI aI dx

CMOMdx
~

aI

OM

rI

CM

: ð12Þ

According to assumption (iii), diffusive currents are negligible,

and Eq. 4 reduces to:

jkI~j
f
kI~{

Dkzk

l2
I y
½k�I

LvI

Lx
: ð13Þ

If we insert Eq. 13 into Eq. 9, we see that the axial current density

obeys Ohm’s current law:

iI~i
f
I ~{

X
k

FDkz2
k

l2
I y
½k�I

LvI

Lx
~{

1

rI

LvI

Lx
, ð14Þ

where we have identified the resistivity, rn(Vm):

1

rn

~
X

k

FDkz2
k

l2
ny
½k�n, ð15Þ

in the ICS (n~I ). Finally, we insert Eqs. 14 and 12 into Eq. 10 to

obtain the cable equation:

{
aI

OM

1

rI

L2vM

Lx2
ziMzCM

LvM

Lt
~0: ð16Þ

Note that rn generally depends on ½k�n. However, we have here

assumed that rn is constant (cf. assumption (iii)). Furthermore, we

have used the identity: LvI=Lx~LvM=Lx, which follows from the

definition

vM~vI{vE , ð17Þ

together with the assumption (i) that E is isopotential. Eq. 16 is the

most commonly used form of the cable equation, although there are

versions that also explicitly considers spatiotemporal variations of the

potential in the extracellular domain [26].

Two-domain electrodiffusive model. The cable equation

only considers the net electrical transports, and ‘‘hides’’ the

underlying transports of different ionic species. We now develop

the electrodiffusive formalism for computing the ion-concentration

dynamics. Like in standard cable theory, we limit the study to the

one-dimensional geometry in Fig. 1B. Unlike standard cable

theory, we explicitly consider both domains I and E, and we do not

neglect diffusive currents nor concentration dependent variations

of the resistivities.

The conservation equations (Eqs. 2–3), with the Nernst-Planck

equation (Eq. 4) for jkn specify the system we want to solve. As in

standard cable theory, the formalism is general to the form of jkM

(Eq. 5). With N ion species, Eqs. 2–3 represent a system of 2Nz3
variables which are functions of x and t. These are the 2N
concentration variables (½k�n for k~1,2,:::N and n~E,I ), and the

three additional variables (vM ,LvI=Lx and LvE=Lx) occurring in

the expressions for the flux densities.

To reduce the number of independent variables to the 2N state

variables (½k�n) we need three conditions relating vM , LvI=Lx and

LvE=Lx to ½k�n. The first two conditions we recognize from

standard cable theory, while the third is new:

N C1: vM is determined by the charge density (Eq. 12).

N C2: vM is defined as vM~vI{vE (Eq. 17).

N C3: The charge densities in I and E fulfill the charge symmetry

condition (Eg. 18).

aI rI~{aErE : ð18Þ

We here explain the origin of C3. According to condition C1, vM

is given by:

vM~
aI

CMOM

rI~
aI

CMOM

(F
X

k

zk½k�IzrsI ) ð19Þ

where we have inserted Eq. 7 for rI , so that vM is expressed in

terms of ionic concentrations. Equivalently, we may also express

vM in terms of the ion concentrations in the ECS:

vM~{
aE

CMOM

rE~{
aE

CMOM

(F
X

k

zk½k�EzrsE), ð20Þ

where the negative sign follows from the convention that vM is

positive when I is positively charged. By demanding consistency

between Eq. 19 and Eq. 20, we can derive the charge symmetry

condition (Eq. 18), which states that the charge on the inside of a

piece of membrane is equal in magnitude and opposite in sign to

the charge on the outside. C1 and C3 are both implicit when the

membrane is assumed to be a parallel plate capacitor. C3 is also

related to the issue of electroneutrality (see Discussion).

The next step is to express the voltage gradients (Lvn=Lx) in

terms of ionic concentrations. The constraints C2 (Eq. 17) and C3

(Eq. 18) allow us to derive two independent equations that relate

LvE=Lx and LvI=Lx. The first equation is obtained by differen-

tiating Eq. 17:

LvM (x)

Lx
~

LvI (x)

Lx
{

LvE(x)

Lx
: ð21Þ

We recall that vM is already a known function of ion

concentrations (Eq. 19 or Eq. 20).

A second equation relating LvI=Lx to LvE=Lx may be derived

by combining Eq. 18 with the charge conservation laws. If we sum

Eqs. 10 and 11, we immediately see that the terms involving iM
cancel out. Due to Eq. 18, also the last terms on the left cancel, so

that we are left with:

aI
LiI

Lx
~{aE

LiE

Lx
: ð22Þ

Due to sealed end-condition (Eq. 6), in(0)~0, so that Eq. 22 takes

the simple form:

aI iI~{aEiE : ð23Þ

If the charge symmetry condition (C3) is satisfied at a given time

t~0 (and we must specify the initial concentrations so that this is

true), Eq. 23 is the condition that it remains satisfied at all times t.

We now decompose the current density into a diffusive term

and a field term: in~id
nzif

n , and express if
n in terms of Ohm’s law

(cf. Eq. 14). If we insert this into Eq. 23, we obtain the second

equation relating LvE=Lx and LvI=Lx:

aI id
I {

1

rI

LvI

Lx

� �
~{aE id

E{
1

rE

LvE

Lx

� �
: ð24Þ

Finally, Eq. 21 and Eq. 24 can be solved for the voltage

gradients. After some simple algebra we obtain:

Electrodiffusive Astrocyte Model
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LvI

Lx
~

LvM

Lx
z

rEaI

aE

id
I zrEid

E

� �
1z

rEaI

rI aE

� �{1

ð25Þ

LvE

Lx
~ {

LvM

Lx
zrI id

I z
rI aE

aI

id
E

� �
1z

rI aE

rEaI

� �{1

: ð26Þ

Here, rn is given by Eq. 15, id
n by Eq. 4, and vM by Eq. 19 or Eq.

20. All voltage terms are thereby expressed in terms of ionic

concentrations. With this, the conservation equations (Eqs. 2–3)

are fully specified, and can be solved numerically with appropriate

boundary conditions. The final set of equations is summarized in

Fig. 2.

External input to the electrodiffusive model. As we have

indicated in Fig. 2, an external input to the system can be

incorporated in the formalism by adding terms (OM=an)jin
kn to the

left hand sides of Eqs. 2 and/or 3. In order not to invalidate

the charge symmetry condition (C3), such an input needs to fulfill

the relation:

X
k

zkjin
kE~{

X
k

zkjin
kI : ð27Þ

This means that input current density into the ECS and ICS must

have the same absolute value and the opposite sign (iin
E ~{iin

I ), so

that no net electrical current enters the system at a given x. If only

one domain receives external input, Eq. 27 reduces to:

X
k

zkjin
kE~0 ð28Þ

To give a practical, illustrative example, let us assume that we

want to inject a K+-influx to the ECS (as we later do in the

astrocyte/ECS-model). We would then add the term (OM=aE)jin
KE

to the left hand side of Eq. 3 (the version where k represents K+).

To fulfill Eq. 28, such an external influx of cations would need to

be compensated by a corresponding efflux of cations of another

species (e.g, Na+), or a corresponding influx of anions (e.g., Cl2), or

a combination of the two. In the astrocyte model we applied the

former, i.e., we defined jin
NaE~{jin

KE . This was implemented by

adding the term (OM=aE)jin
NaE to the left hand side of Egn. 3 (the

version where k represents Na+).

Electrodiffusive formalism vs. cable equation. From Eq.

10, following from charge conservation in I, we may derive a

differential equation for the dynamics of vM . We use Eq. 19 to

substitute vM for rI . Furthermore, we use the decomposition

iI~id
I zi

f
I , with Eq. 14 for i

f
I , and Eq. 25 for LvI (x)=Lx. We then

obtain:

aI

OM

L
Lx

id
I {

rE

rI

id
E{

1

rI

LvM

Lx

� �
1z

rEaI

rI aE

� �{1
" #

z

iMzCM
LvM

Lt
~0:

ð29Þ

This is the equivalent to the standard cable equation (Eq. 16), for

the electrodiffusive two-domain system.

A few notes: Firstly, a corresponding dynamical equation for vM

could have been derived from the extracellular conservation law

(Eq. 11). Due to the charge symmetry condition, the two equations

would be equivalent. Secondly, unlike the standard cable equation,

Eq. 29 does not provide a complete system description, as Eqs. 2–3

must be solved to determine id
n and rn. Thirdly, when the ionic

concentrations are known, Eq. 29 is not necessary for computing

vM , as vM can be computed algebraically from Eq. 19. Eq. 29 is

mainly useful for comparison with the standard cable equation.

We can immediately see that if we make the common

assumptions (i) that the extracellular resistivity (rE ) is zero, (ii) that

the diffusive currents (id
n ) are zero, and (iii) that the intracellular

resistivity (rI ) is constant, then Eq. 29 reduces to the standard cable

equation (Eq. 16). We should note that there are two-domain

versions of the cable equation where the first assumption is not

made [26]. The two other assumptions are warranted only in cases

when the spatiotemporal variations in ionic concentrations is such

that rI varies little, and id
n%if

n during the time course of a

simulation.

Astrocyte model
We here present a model of astrocytes exchanging ions with the

ECS, as sketched in Fig. 3, and defined in further detail below.

The astrocyte model was developed for macroscopic transport

Figure 2. Summary of the two-domain electrodiffusive formal-
ism. The set of equations summarizes the electrodiffusive formalism. In
equations containing the symbol ‘‘6’’,‘‘+’’ should be used for
intracellular domain (n~I ) and ‘‘2’’ should be used for the extracellular
domain (n~E). The formalism is general to the choice of membrane
mechanisms. jkM , representing system specific membrane mechanisms
(ion pumps, ion channels, cotransporters ect.), must to be specified by
the user. External input to the system must also be specified. The input
must be locally electroneutral, i.e., must fulfill

P
k zkjin

kE~{
P

k zkjin
kI .

doi:10.1371/journal.pcbi.1003386.g002
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processes, involving a collection of astrocytes (possibly connected

via gap junction into a syncytium) in a piece of tissue. For this

problem, we used the geometrical simplification motivated in

Fig. 1, i.e., we applied the geometry in Fig. 1B. We took the

intracellular domain I to represents a phenomenological ‘‘aver-

age’’ astrocyte (the cable, I ), surrounded by a sheet of ECS (the

coating, E). We used the empirical estimates that a fraction

aE~0:2 of neural tissue volume is ECS, while astrocytes take up a

fraction of about aI~0:4 of the total tissue volume [12]. The

intracellular domain was therefore twice as voluminous as the

intracellular.

Table 1 contains a list of definitions that are necessary for the

reader to follow the remainder of the paper. The dynamics in the

system was due to fluxes of ions crossing the membrane jkM , or

axial fluxes in the ECS or ICS due to diffusion (jd
kn) or migration in

the electrical field (j
f
kn). We assumed that only the three main

charge carriers (K+, Na+ and Cl2) contributed to electrodiffusive

transport. For the diffusion constants (Dk), we used values valid for

electrodiffusion in diluted media [36], modified with the tortuos-

ities (ln) estimated in [12]. The same values have also been used in

earlier, related studies [31,37]. All relevant model parameters are

listed in Table 2. The system input, and the astrocytic membrane

mechanisms are defined in further details below.

Input/output. Our model system explicitly includes astro-

cytes and the ECS. Neurons were not explicitly modelled.

However, we assumed that any external input to or output from

this system reflects the activity of local neurons.

We were interested in simulating how astrocytes are involved in

transferring K+ out from high concentration regions. To induce

such a high-concentration region, a selected region (0vxvl=10)

of the ECS, was exposed to a constant influx of K+ and (in order

not to introduce any net charge to the system) a corresponding

efflux of Na+:

jin
K ~{jin

Na~jin for 0vxvl=10

:
ð30Þ

The input mimics the effect of enhanced activity of local neurons,

taking up Na+ and expelling K+ into the ECS, thus causing the

local extracellular K+-concentration (½Kz�E ) to rise. We refer to

the region receiving the input as the input zone.

During normal conditions, neurons maintain their resting

condition partly by uptake of K+ and release of Na+ via Na+/

K+-exchangers. As opposed to the system input, this process would

produce an efflux of K+ from the ECS of the model-system, and an

influx of Na+. With reference to the K+-efflux, we refer to this

process as the system output. Our model of the output differed

from that of the input in two important ways: (i) Unlike the input,

the output was applied over the full system axis (0vxvl), i.e., was

contributed to by the highly active neurons in the input zone as

well as normally functioning neurons outside this zone. (ii) Unlike

the constant input, the output was assumed to depend on the local

K+-concentration, causing ½Kz�E to decay towards the baseline

concentration ½Kz�0E :

Figure 3. Astrocyte model. A representative astrocyte (I) exchanging
ions with the ECS (E). As indicated, ions could cross the astrocytic
membrane via passive Na+ or Cl2 channels, via the K+ Kir channel or the
Na+/K+-pump. Ions could also be transported longitudinally by electrical
migration j

f
kn or diffusion jd

kn through the ICS (n~I ) or ECS (n~E). The
cation-exchange input was a constant influx of K+ and efflux of Na+ to/
from the ECS of the input zone (defined as the region 0vxvl=10). The
cation-exchange output was an efflux of K+ and influx Na+ from/to the
ECS. The output was proportional to the local K+-concentration, and
occurred over the whole axis. The decay zone was defined as the part of
the axis where no input was applied (xwl=10), i.e., the region where
there was a net efflux of K+ from the system.
doi:10.1371/journal.pcbi.1003386.g003

Table 2. Model parameters.

Parameter Value Reference

l (length of astrocyte) 300mm

DK (K+ diffusion constant) 1:96|10{9 m2=s [31,36,37]

DNa (Na+ diffusion constant) 1:33|10{9 m2=s [31,36,37]

DCl (Cl2 diffusion constant) 2:03|10{9 m2=s [31,36,37]

lI (intracellular tortuosity) 3.2 [12]

lE (extracellular tortuosity) 1.6 [12]

CM (specific membrane capacitance) 1mF=cm2 [38]

gK0 (baseline K+-conductance) 16:96S=m2 [38]

gNa0 (baseline Na+-conductance) 1S=m2 [38]

gCl0 (baseline Cl–conductance) 0:5S=m2 [38]

Pmax (maximum Na+/K+ pump-rate) 1:12|10{6 mol=(m2s) [20]

KKE (½Kz�E -threshold for Na+/K+ pump) 1:5mol=m3 [20]

KNaI (½Naz�I -threshold for Na+/K+ pump) 10mol=m3 [20]

½Kz�0E (initial ECS K+-concentration) 3:0z0:082mM* [20]

½Kz�0I (initial ICS K+-concentration) 100:0{0:041mM* [20]

½Naz�0E (initial ECS Na+-concentration) 145:0{0:378mM* [20]

½Naz�0I (initial ICS Na+-concentration) 15:0z0:189mM* [20]

½Cl{�0E (initial ECS Cl–concentration) 134:0{0:29mM* [20]

½Cl{�0I (initial ICS Cl–concentration) 5:0z0:145mM* [20]

vM0
* (initial membrane potential) {85z1:4mV [20]

kdec
{ (decay factor for ½Kz�E ) 2:9|10{8 m=s [54]

jin (constant input in input zone) 7|10{8 mol=(m2s)

*Initial concentrations are given as ½k�0n~Value from ½20�+ Correction, where
the sum gives the baseline (resting) concentration in the default
parametrization of the model.
{The maximum average Na+/K+-pump rate for a single neuron was estimated to

A~2|10{7 mol=(m2s) [54]. We obtained kdec by solving

kdec(½Kz�max
E {½Kz�0E )~A, assuming that ½Kz�max

E ~10mM.

doi:10.1371/journal.pcbi.1003386.t002
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jout
K ~{jout

Na ~{kdec(½Kz�E{½Kz�0E) for all x ð31Þ

The decay factor (kdec) was set to a realistic value for maximal

neuronal Na+/K+-exchange under physiological conditions (see

Table 2). The input flux density reflected the activity level of local

highly-active neurons. In our simulations, we specified jin to a

value that gave a K+-concentration of about 10 mM in the input

zone during constant input (see Results for details). This

concentration level is on the critical threshold between functional

and pathological conditions [3,12,21], and should thus represent a

case where the spatial buffering process plays a critical role.

We note that the distinction between an input and an output

flux density had a practical motivation, as we wanted to to

distinguish between processes causing K+ to enter/leave the

system (we could instead have defined a net input as jin{jout). We

also note that both the input and output were cation-exchanges,

and thus did not introduce any net charge to the system (cf. Eq.

28).

Astrocytic membrane mechanisms. Four selected astro-

cytic membrane mechanisms were adopted from a previous point-

model of an astrocyte [38]. The included mechanisms were

standard, passive Na+ and Cl2 channels, the inward rectifying K+-

channel (Kir), and the Na+/K+-pump, as sketched in Fig. 3. The

transmembrane ion fluxes in the astrocyte model were:

jKM~
gK fKir

F
vM{eKð Þ{2P ð32Þ

jNaM~
gNa

F
vM{eNað Þz3P ð33Þ

jClM~{
gCl

F
vM{eClð Þ: ð34Þ

Here, gk are the passive conductances of the K+ (Kir), Na+ and

Cl2 channels. The currents depend linearly on the difference

between vM and the reversal potential,

ek~y log(½k�E=½k�I ), ð35Þ

for the respective ion types (k). The potassium current was

modified by the Kir-function [12]:

fKir(½Kz�E ,Dv,vM )~ffiffiffiffiffiffiffiffiffiffiffi
½Kz�E
½Kz�0

E

r
1zexp(18:4=42:4)

1zexp½(Dvz18:5)=42:5�

h i
1zexp½{(118:6zeK0)=44:1�
1zexp½{(118:6zvM )=44:1�

h i ð36Þ

where Dv~vM{eK , and eK0 is the Nernst potential for K+ at

basal concentrations ½Kz�0E and ½Kz�0I .

The K+/Na+-pump uses energy (ATPase) to exchange 2

potassium ions with 3 sodium ions. We used a pump-rate per

unit area defined by:

P(½Naz�I ,½Kz�E)~Pmax
(½Naz�I )1:5

(½Naz�I )1:5zK1:5
NaI

½Kz�E
½Kz�EzKKE

: ð37Þ

The maximum pump rate, Pmax, and the threshold concentra-

tions, KNaI and KKE , are given in Table 2.

Initial conditions. Initial conditions were determined in the

following way: As a starting point, we used ½k�0n~½k�
L
n and

vM0~vML as our initial conditions, where ½k�Ln and vML were the

resting concentrations and resting membrane potential found in a

previous study [20]. We then ran a simulation with no system

input or output. With the membrane mechanisms included in Eqs.

32–34, the system had a simulated resting state (½k�Sn and vMS )

which was close to, but not identical with ½k�Ln and vML. For all

subsequent simulations, we set the initial conditions to the

simulated resting conditions (½k�0n~½k�
S
n and vM0~vMS ). The

estimated values and the values from the literature are given in

Table 2.

Prior to all simulations, we defined the static charge densities:

rsI~
OM

aI

CMvM0{F (½Kz�0I z½Naz�0I {½Cl{�0I ) ð38Þ

rsE~{
OM

aE

CM vM0{F(½Kz�0Ez½Naz�0E{½Cl{�0E): ð39Þ

The static charge densities ensure that the total charge density in I

and E are consistent with vM0, according to Eq. 7.

Comparison of concentrations and charges. To allow

direct comparison with ion concentrations, we represent the

charge density in Eq. 7 as an equivalent concentration of unit

charges, defined by:

½ez�n~½Kz�nz½Naz�n{½Cl{�nzrsn=F , ð40Þ

with Eq. 38 or Eq. 39 for rns. Likewise, we represent the current

densities as equivalent unit-charge flux densities, defined by:

jf
en~j

f
Knzj

f
Nan{j

f
Cln ð41Þ

jd
en~jd

Knzjd
Nan{jd

Cln ð42Þ

Implementation. The model was implemented in Matlab,

and the code will be made publicly available at ModelDB (http://

senselab.med.yale.edu/modeldb). Simulations were run using the

Matlab-solver pdepe, which uses variable time steps. For the

simulations presented below, we used a maximum time step of

0.1 s, and used 100 segments in the x-direction. A single

simulation (e.g., producing Figs. 4 and 5) then took about 1 min

to run on a standard laptop. Improving the resolution had no

visible impact on the predicted results. Initial conditions were as

listed in Table 2, and the sealed-end boundary conditions (Eq. 6)

were applied.

Results

An important contribution of this work was the general

electrodiffusive formalism presented in the Model section. This

formalism represents a framework for modeling the dynamics of

the membrane potential (vM ), the intra- (½k�I ) and extracellular

(½k�E ) ion concentrations. The formalism is general to the choice of

membrane mechanisms, and could be applied to model any

transport process that justifies the geometrical simplification

depicted in Fig. 1.
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Here, we have applied the formalism to simulate spatial K+-

buffering by astrocytes, using the specific implication to the atrocyte/

ECS-model, also presented in the Model section. Our main objective

has been to investigate the transport routes of K+ ions, from entering

the system in the ECS of the input zone, to leaving the system at

some point along the x-axis. We remind the reader that a useful list

of symbols and definitions can be found in Table 1.

Ion concentration dynamics in the Astrocyte/ECS system
We investigated the ion concentration dynamics in the astrocyte

model (Fig. 3) in full detail. Fig. 4A–D shows the dynamics of

selected variables in the input zone (at x~0). Fig. 4E–H shows

how the same variables depend on x at a time tSS~400s when the

system was in SS. We explain this further below.

The input was applied from t~100s to t~400s in the input

zone (0vxvl=10~0:03mm). This is illustrated in Fig. 4A (solid

line), which shows the flux density of K+ (jin
K ) entering the system in

the input zone. We recall that the input was a cation exchange, so

that there was an equal flux density of Na+ leaving the system

Figure 4. Dynamics and steady state profiles for the astrocyte/
ECS-system. (A–D) Dynamics of selected variables in a point (x~0) in
the input zone. (E–H) Spatial profiles of selected variables at a time
t~400s, when the system was in steady state. The constant cation-
exchange input was applied to the ECS of the input (0vxv0:03mm)
zone from t~100s to t~400s. (A) The input and output flux densities
of K+ to the point x~0. We recall that the Na+ input/output (not shown)
was the opposite of that of K+: jin

Na~{jin
K and jout

Na ~{jout
K . (B,D) During

the input, ion concentrations in the ECS and ICS changed, but reached
steady state after about 10–50 s after stimulus onset. (B) ½Kz�E (at
x~0) had then increased by about 7.7 mM with respect to the baseline
value. (C) ½Kz�I had increased by about 12.5 mM due to uptake by the
astrocyte. (D) The astrocytic membrane potential had been depolarized
to about 259 mV at x~0. The impact of the input was smaller outside
the input zone. (F–H) Deviations from the baseline ionic concentrations
and vM typically decreased with x. Far away from the input zone
(x~0:3mm), the conditions were close to the baseline conditions. (B–C,
F–G) Ionic concentrations were represented in terms of deviations from

resting concentrations: D½k�n~½k�n{½k�
0
n for n~I ,E. For direct com-

parison with ion concentrations, the charge density was represented as
an equivalent concentration of unit charges ½ez�n .
doi:10.1371/journal.pcbi.1003386.g004

Figure 5. Transports in the astrocyte/ECS system during steady
state. (A) Total flux densities into system (input{output). (B)
Transmembrane flux densities. (C–F) Longitudinal flux densities due
to (C) electrical migration in the ECS, (D) electrical migration in the ICS,
(E) diffusion in the ECS and (F) diffusion in the ICS. (A–D) To aid
comparison, flux densities jkn were scaled by the relative area fraction an

(e.g., if aEjkE~aI jkI , I and E carry the same the net flux of ion species
k). (G) A flow chart that qualitatively summarizes the essential
information in (A–F), showing the main transport routes of K+ and
Na+ during SS (Cl2 excluded from the overview). K+ generally entered
the system in the input zone and left the system from some point along
the astrocyte axis. The transport route of K+ (from entering to leaving
the system) was predominantly intracellular, demonstrating the
astrocyte’s efficiency as a spatial buffer. Na+ entered in the decay zone
and left from the input zone. Na+ transport predominantly took place in
the ECS. The illustration (G) is qualitative - longer arrows mean higher
flux densities, but the mapping from (A–F) to (G) is not quantitatively
exact. The input zone was in the region 0vxv0:03mm. Units on the y-
axis are mmol=(m2s) in all panels.
doi:10.1371/journal.pcbi.1003386.g005
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(jin
Na~{jin

K ). For simplicity, jin
Na was not included in the figure, but

we keep in mind that whenever K+ entered/left the system, an

equal amount of Na+ left/entered. The cation-exchange input thus

caused an increase in ½Kz�E and a decrease in ½Naz�E in the

input zone. This can be seen in Fig. 4B. The notation D½k�n
represents the deviations from baseline concentration (cf. Table 2).

As ½Kz�E increased, the output from the system (being

proportional to ½Kz�E ) increased. Also this is illustrated in

Fig. 4A (dashed line), which shows the flux density of K+ (jout
K )

leaving the system from a point x~0 in the input zone. We recall

that also the output was a cation exchange, so that the efflux of K+

implied a corresponding influx Na+.

The input was given in the input zone, while the output

occurred over the full axis, depending on the local value of ½Kz�E .

During a transient period, the constant input changed the ion

concentrations in the system. The system reached steady state (SS)

when ½Kz�E became sufficiently high. Then, the total amount of

K+ entering the system per second, and the total amount of K+

leaving the system per second, coincided (with the same being true

for Na+). This is illustrated in Fig. 4E, which shows how the jin
K and

jout
K are distributed over the x-axis at a time t~400s, when the

system was in SS. The areas under the curves for jin
K and jout

K were

then equal. In the input zone, however, the output rate was about

1/3 of the input rate (Fig. 4A). This means that about 2/3 of the

K+ that entered the system was transported in the positive x-

direction, and left the system from the decay zone. (We recall from

Fig. 3 that the decay zone is defined as any part of the x-axis

outside the input-zone).

Fig. 4B–D shows how the local (at x~0) intracellular ion

concentrations, the extracellular ion concentrations and vM

changed from the input had been turned on until the system

reached SS. For the present example it took 49 s from the constant

input had been turned on until the slowest variable (D½Cl{�E )

reached 99% of its SS value. The other variables approached SS

faster than this (e.g., 12 s for D½Kz�E and 19 s for DvM ). During

SS, D½Kz�E was about 7.7 mM, corresponding to a concentration

½Kz�E^10:8mM (as the baseline concentration was *3:1mM).

Although the input was applied to the ECS of the input zone, the

local intracellular K+-concentration had increased even more

(D½Kz�I^12:5mM). This reflects the astrocyte’s propensity for

local K+-uptake. The changes in ionic concentrations in the ECS

and ICS coincided with a local depolarization of the astrocytic

membrane, from the resting potential (vM0*{84mV) to about

vM~{59mV, reflecting concentration dependent changes in the

reversal potentials of the involved ionic species.

From here on, we focus on the SS-situation, i.e., on the activity

of astrocytes during periods of on-going intense neural activity. For

all system variables, the devition from the baseline (resting)

conditions were generally biggest at the point x~0, i.e., in the part

of the input zone which is furthest away from the decay zone

(Fig. 4E–H). The average value of ½Kz�E , taken over the input

zone (0vxv0:03mm) was approximately 10 mM (about 6.9 mM

above the resting concentration). During the model calibration,

the constant input rate (jin) was tuned to obtain this value, which is

on the threshold between functional and pathological conditions

[3,12,21]. During SS, the gradients in ionic concentrations

(Fig. 4F–G) and vM (Fig. 4H) were quite pronounced. We thus

expect that both diffusive and electrical forces contribute to

transporting ions through the system (from entering to leaving).

This is explored further in the following section.

Ion transport pattern in steady state. Fig. 5 shows spatial

profiles of all ionic flux densities during SS. As Fig. 5A shows, there

is a net external influx of K+ (blue line) to the in the ECS of the

input zone (jin
K {jout

K w0), and a net external efflux of K+ in the

ECS of the decay zone (jin
K {jout

K v0). In the case of Na+, the

situation is opposite.

We first focus on the transports of K+, from entering the system

in the input zone (xv0:03mm), to leaving from some point along

the x-axis. From Fig. 5B we see that K+ is taken up by the

astrocyte in the input zone (negative jKM represents an inward flux

density), and released from the astrocyte to the ECS in the decay

zone. This implies that there must be longitudinal transport of K+

inside the astrocyte, out from the input zone. The longitudinal flux

densities are shown in Figs. 5C–F. We have distinguished between

field flux densities (j
f
kn), driven by voltage gradients, and diffusive

flux densities (jd
kn), driven by concentration gradients (cf. Eq. 4). In

the ECS, the electrical migration of K+ (Fig. 5C) was in the

negative x direction, while diffusion was in the positive x-direction

(Fig. 5E). Inside the astrocyte, diffusion and electrical migration

were both in the positive x-direction (Figs. 5D, F). Transport of K+

in the positive x-direction (out from the input zone) therefore had

the best conditions in the ICS.

In the case of Na+, the situation was different. Firstly, Na+

entered the system in the decay zone of the ECS, and left the

system from the input zone (Fig. 5A). The transmembrane Na+-

flux was very small (Fig. 5B), and the main longitudinal transport

occurred in the ECS. As in the case of K+, electrical migration of

Na+ in the ECS, was in the negative x-direction. However, for

Na+, this was also true for diffusion. Longitudinal transport of Na+

therefore had good conditions in the ECS, as diffusion and

electrical migration both drove Na+ in the same direction (towards

the input zone).

The main transport routes K+ and Na+ during SS are

summarized in Fig. 5G: K+ entered the system in the ECS of

the input zone, where a major fraction of it crossed the membrane.

Transport of K+ out from the input zone predominantly took place

inside the astrocyte. Outside the input zone (i.e., in the decay

zone), the astrocyte released K+ to the ECS, from where it

eventually left the system. Na+, on the other hand, entered the

system in the decay zone, and was predominantly transported

longitudinally through the ECS before leaving the system from the

input zone. The net Cl2 transport (jd
ClEzj

f
ClE ) was very small (flux

densities due to diffusion and electrical migration canceled each

others out), and was not included in the summary.

Two basic mechanisms explain the qualitative difference

between Na+ and K+ transports. Both are related to the membrane

being most depolarized in the input zone (Fig. 4F). The first

mechanism concerns the axial fluxes. As the astrocyte was most

depolarized in the input zone, the charge density (positive in the

ICS and negative in the ECS) had the highest absolute value there.

Therefore, the electrical forces on K+ and Na+ (being cations) were

in the negative x-direction in the ECS (LVE=Lxw0), and in the

positive x-direction in the ICS (LVI=Lxv0). This favoured the

ICS for transporting K+ away from the input zone, while it

favoured the ECS for transporting Na+ into the input zone.

Furthermore, this finding predicts that the astrocyte not only

provides an additional and more effective domain for longitudinal

K+-transport, but even reduces the net transport of K+ through the

ECS. To our knowledge, we are the first to suggest that astrocytes

may use this mechanism for shielding the ECS from K+.

The second mechanism for explaining the differences between

the Na+ and K+ transports concerns the transmembrane fluxes.

The Na+/K+-pump mediated an inward flux of Kz and an

outward flux of Na+. Passive fluxes in the opposite direction (Na+

in through the passive Na+-channel, and K+ out through the Kir-

channel), prevented further accumulation of ions inside the
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astrocyte. These passive fluxes were proportional to the deviation

between vM and the reversal potential (vM{ek). In the case of

Na+, the passive flux and the pump rate were locally closely

balanced across the length of the astrocyte (results not shown). The

transmembrane Na+-flux was therefore small everywhere (Fig. 5F).

During SS, the Kir-reversal potential was more negative than vM

at all points along the x-axis (Fig. 6A). Therefore, Kir exclusively

conducted an outward K+-flux. However, this outward flux was

small in the input zone, where the Kir-reversal potential eK was

close to vM . In the input zone, therefore, the Na+/K+-pump

dominated, giving rise to a net K+-uptake by the astrocyte (Fig. 6B).

Outside the input zone, Kz-release through the outward Kir-

channel dominated. These simulations support the prevailing view

that in the context of spatial buffering, Kir mainly mediates an

outward current, and that the main uptake is due to the Na+/K+-

pump (see reviews in [3,25]).

Sensitivity analysis. The qualitative model performance

was robust to parameter variations. Fig. 7 shows the sensitivity of

the peak K+-concentration in the ECS during SS (½Kz�max
E ) to

variations in selected model parameters. All peak values occurred

at x~0.

As expected, ½Kz�max
E depended on the balance between the

input rate (jin) and decay factor (kdec). Fig. 7A shows that ½Kz�max
E

increased with increasing jin and decreased with increasing kdec.

The default parameter values (see Table 2) are indicated with a

black circle, while green and red circles indicate two other

combinations of jin and kdec which gave similar peak amplitudes

(½Kz�max
E ^10:8mM) at x~0.

½Kz�max
E increased smoothly with increasing input zone length

(liz) (Fig. 7B). The sensitivity to the tortuosities (lE and lI ) was also

as expected (Fig. 7C–D). Increasing ln corresponds to decreasing

the effective diffusion constant (Dk=l2
n), and thus had a negative

impact on the system’s ability to buffer K+ spatially.

Variations in the membrane parameters (gK , gNa, gCl and Pmax)

led to changes, not only in ½Kz�max
E , but also in the baseline

concentration (½Kz�0E ) prior to the input (Fig. 7E–H). As long as

the parameters were kept reasonably close (within +50%) to the

default parameter values, the system behaviour was qualitatively

similar to that observed in Figs. 4 and 5. The sensitivity to gCl0 was

low.

The high sensitivity to Pmax (Fig. 7H) can be understood quite

intuitively: An increased Na+/K+-pump rate led to more K+

leaving the astrocyte, and thus an increased ECS concentration.

The sensitivity to gNa (Fig. 7F) has a more indirect interpretation:

When gNa was decreased, the passive Na+ current into the

astrocyte decreased, and the outward current through the Na+/

K+-pump led to a hyperpolarization of the astrocyte. For example,

with gNa~0:5S=m2, the resting membrane potential was

vM~{104mV. An equilibrium between K+ influx through the

pump and efflux through the Kir-channel then required a

corresponding hyperpolarization of the K+ reversal potential

(eK ), i.e., an increase of ½Kz�I on behalf of ½Kz�E (cf. Eq. 35).

The sensitivity of ½Kz�max
E and ½Kz�0E to variations in gK was

low (Fig. 7E). This, somehow counterintuitive, finding was likely

due to the Kir-channel being the most abundant membrane

mechanism, with gK being about 17 times as high as gNa by

default. Despite moderate variations of gK , vM therefore always

resided relatively close to eK (results not shown). A low sensitivity

to pharmacological intervention with astrocytic Kir-channels has

also been found experimentally [39]. In our simulations, however,

a further reduction of gK (below the parameter range in 7E),

caused ½Kz�0E to drop rapidly towards 0, where the mathematical

system is singular. We did not explore this effect further, but note

that egn. 36 for the Kir-channel was empirically determined for

retinal Müuller cells [12,21], and it is questionable whether it is

applicable at extreme parameter values (i.e., extremely low

concentrations).

Electroneutrality. It has been previously withheld that to

preserve electroneutrality, an influx of K+ from the ECS to the glia

cell must be accompanied with an influx of an anion (such as Cl2)

or an efflux of another cation (such as Na+) [30]. Physically,

however, the system is not strictly locally electroneutral in the thin

Debye-layer surrounding the capacitive membrane. Before the

system reaches steady state, there must be a net transfer of charge

into the astrocyte, consistent with the depolarization of the

membrane.

A consistent relationship between vM and ionic concentrations is

implicit in the electrodiffusive formalism presented here. To get an

insight in the relationship between vM and ionic concentration, we

have presented the charge density in Fig. 4 as an equivalent

concentration of positive unit charges ½ez� (cf. Eq. 40). In the

astrocyte model, the resting potential vM0~{83:6mV correspond-

ed to concentrations ½ez�E^0:36mM and ½ez�I^{0:18mM (the

negative concentration of ez unit charges could be read as a

positive concentration of negative unit charges e{.) Physically

(although this is not explicit in a one dimensional model) this

represents the charges stuck on both sides of the membrane. These

Figure 6. Membrane mechanisms involved in spatial K+-
buffering. (A) The K+ reversal potential (eK ) was more negative than
vM at all points along the x-axis. The Kir-channel thus exclusively
mediated an outward K+-current. (B) In the input zone eK was close to
vM , and the outward Kir-current was small compared to the inward
current through the Na+/K+-pump. In the decay zone, the outward Kir-
current was bigger, and dominated over the inward current through
the Na+/K+-pump. Therefore, the astrocyte took up up K+ in the input
zone, and released K+ in the decay zone (as indicated by arrows in (B)).
doi:10.1371/journal.pcbi.1003386.g006
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are equal in magnitude, but have opposite signs (the concentrations

differ by a factor 2 due to the ICS having twice the volume of the

ECS). At SS, vM had increased from the resting potential to about

260 mV, consistent with small absolute changes (D½e{�I^
0:05mM and D½e{�E^0:10mM) in the concentration of unit

charges. As seen in Fig. 4B–C, these changes were very small

compared to the changes D½k� in any of the ionic concentrations.

Anions and cations were thus always closely balanced in numbers,

reflecting the nearly electroneutral nature of the system.

Only when the system had reached SS (and the capacitive

current LvM=Lt was zero), the net charge crossing the membrane

was zero. However, this applied to the astrocyte as a whole, and

was not locally true. During SS, there was a net influx of charge in

the input zone due to the large uptake of K+ there. This is evident

in Fig. 5F, where net electrical currents have been represented as

equivalent flux densities of unit charges (cf. Eqs. 41–42). This did

not lead to any accumulation of charge inside the astrocyte, as the

charge that entering was transported intracellularly out from the

input zone (Fig. 5B,D) before being re-released to the ECS in the

decay-zone (Fig. 5F). During SS, the sum of the Na+ and K+

transports gave rise to a net electrical current which cycled in the

system (Fig. 5G).

We also add a remark regarding the limitations of standard

cable theory. In standard cable theory, diffusive currents are

assumed to have a negligible impact on vM , and intra- and

extracellular resistivities are assumed to be constant (i.e., not

dependent on ion concentration variations). During our simula-

tions ionic concentrations changed by several mM before the

system reached SS (Fig. 4). These changes corresponded to a 10%

decrease and 20% increase, respectively, in the intra- and

extracellular resistivities (cf. Eq. 15, results not shown). Further-

more, Fig. 5 showed that the diffusive current contributed quite

significantly to the net electrical transport, and was about 25–30%

of the field current in the ECS. Hence, for the process simulated

here, standard cable theory would give relatively poor predictions

of vM .

The relative importance of spatial buffering in K+-
clearance

In addition to spatial buffering, K+ may also be buffered by

diffusion through the ECS alone, or by local (space independent)

storage by the glial cell, to be later released in the same region of

the ECS [19,24]. To investigate the relative importance these

clearance mechanisms, we compared the 6 six model versions

depicted in Fig. 8A, including one group of three spatially

extended models (solid lines), and one group of three point

models (dashed lines). Both groups included one model version

with an active astrocyte, one model version where the astrocyte

had been replaced by a corresponding increase in the ECS

volume (the total ECS volume fraction increased to aE~0:6), and

one version where the original ECS volume fraction (aE~0:2)

was kept when the astrocyte was removed. The spatially extended

model including the astrocyte, is the one we studied in the

previous sections. The other models were reduced versions of

this.

All model versions were exposed to the input signal described by

Eq. 30, causing an increase in ½Kz�E . The input was applied in the

time window 5svtv40s, which was sufficient for ½Kz�E to reach

its SS-value in all models. Fig. 8B shows the dynamics of the K+-

concentration in the ECS at the point where the concentration was

the highest (½Kz�max
E ). In the spatially extended models, this

occurred at x~0, i.e. in the part of the input zone furthest away

from the decay zone.

During SS, the net K+ efflux and influx from/to the system

coincided. For the point models, having no spatial resolution, there

was no distinction between the input zone and decay zone, as the

input and output were injected to/subtracted from the same single

compartment. The net output rate thus depended on ½Kz�E in this

single compartment. Therefore, all point models approached the

same SS value (½Kz�max
E &22mM). For the spatially extended

models ½Kz�max
E was lower, as parts of the K+ could leave the

system also outside the input zone. For these models, ½Kz�max
E

Figure 7. Sensitivity analysis. Sensitivity of ½Kz�max
E (maximal extracellular ½Kz� in the input zone) to variation in selected model parameters. (A)

Sensitivity to input flux density (jin) and the output rate constant (kdec). Similar values of ½Kz�max
E &11mM were obtained for the three marked data

points: (i) black: kdec~2:9|10{8 m=s, jin~5:5|10{8 mol=(m2s) (default conditions), (ii) green: kdec~1|10{8 m=s, jin~3|10{8 mol=(m2s), and (iii)
red: kdec~5|10{8 m=s, jin~8|10{8 mol=(m2s). B–D) Sensitivity to the length of the input zone (liz), and tortuosities in the ECS (lE ) and ICS (lI ). (E–

H) Sensitivity of ½Kz�max
E and ½Kz�0E (baseline extracellular ½Kz�) to membrane conductances (gK , gNa and gCl ), and the maximal Na+/K+-pump rate

(Pmax). D½Kz�E~½Kz�max
E (i){½Kz�0E . (B–H) The legend applies to all panels. Black (i), red (ii) and green (iii) lines correspond to the input-parameter

combinations marked in (A).
doi:10.1371/journal.pcbi.1003386.g007
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depended on how efficient they were in longitudinally transporting

K+ out from input zone before (revisit Fig. 4 for more details).

To gain insight in the importance of local K+-uptake by

astrocytes, relative to diffusion in the ECS, we compared the

performance of the point model including the astrocyte (black,

dashed line in Fig. 8B) to that of the spatially extended model

including only the ECS (blue, full line). During the first few

seconds after the stimulus had been turned on, the point model

with the astrocyte (representing local uptake) was most efficient in

terms of limiting ½Kz�E . However, local uptake was limited by

the storing capacitance of the astrocyte. After seconds with

constant K+-influx to the system, the spatially extended model

(representing diffusion through the ECS) performed better, as it

could redistribute K+ over a larger spatial region. The astrocyte’s

ability to locally store excess K+ has been emphasized in previous

investigations [19,24]. Our simulations predicted that the local

storage mechanism is mainly important in relatively short time

spans after potassium release (a few seconds). A similar conclusion

was also drawn from previous modelling studies [10,12]. We here

add an additional point to this discussion: The performance of

the point model with extended ECS (dashed red lines) more or

less coincided with that of the point model including the astrocyte

(dashed black lines). In terms of local storage, the astrocyte (with

its membrane being highly permeable to K+), essentially just acts

to expand the local volume that the incoming flux of K+ enters

into.

It has been argued that because K+-transport is aided by

transmembrane processes as well as internal processes in the glial

cell, K+ can be cleared more effectively by glia than would be

possible by a much enlarged extracellular space [40]. To

investigate this claim, we compared the three spatially extended

models (solid lines). We found that the model including the

astrocyte (black, solid line) was more successful in limiting ½Kz�max
E

than any of the other model versions. It was significantly more

successful than diffusion in the ECS alone, even in the (rather

hypothetical) system where the extracellular volume had been

increased by a factor 3.

In conclusion: In terms of local storage, the astrocyte was not

significantly more efficient than an increased enlarged extracellu-

lar space. In terms of spatial buffering, however, it was.

Consistency of formalism. In all our simulations, vM was

defined in terms of the charge density in I , and computed

algebraically by solving Eq. 19 at each time step. Identical results

(down to a very small numerical error) were obtained when vM

was defined by the charge density in E (Eq. 20), and when vM was

computed differentially by using Eq. 29 (results not shown). As all

transports are included in Eq. 29, the algebraic and differential

methods yielded consistent results.

When the input was turned on and off, a small numerical error

was introduced in the conservation of ionic concentrations,

inducing a small error in the total charge in the system. The

relative deviation from global charge neutrality (Qtot~0), defined

as �Qtot~Qtot=(DQE DzDQI D), where QI and QE refer to the total

charge in I and E, was about 10{10. This gave rise to a relative

deviation from perfect charge symmetry (cf. Eq. 18), defined as

Er~(aI rI{aErE)=(DaI rI DzDaErE D), which was also on the order

of 10{10 (for all x). Accordingly, vM computed from the charge

density in E deviated by a relative factor *10{10 from vM

computed from the charge density in I . This corresponded to an

absolute difference of *10{8 mV. Errors were larger, but still

small, when the differential method was used. Then vM deviated

locally by up to *10{6 mV from vM derived from the charge

density in I or E.

Errors will generally depend strongly on the algorithm used for

solving the differential equations, the time step, and the number of

compartments in the simulated system. The errors could likely be

reduced by using a smoother input signal than the step function in

Eq. 30. We did not engage in further analysis of the origin of the

errors, as we were content with their smallness in relation to the

questions addressed here.

Discussion

We presented a one-dimensional, electrodiffusive framework

for modeling the dynamics of the membrane potential (vM ) and

the ion concentrations (½k�n) of all included ion species (k) in an

intra- and extracellular domain (Fig. 2). The framework could

have a broad range of applications within the field of

computational neuroscience. In the current work, it was applied

to simulate the role of astrocytes in K+-removal from high

concentration regions.

Figure 8. Model comparison. (A) Six model versions, three spatially
extended models (solid lines), and three point models (dashed lines).
Two versions (black lines) included an active astrocyte. In two versions
(red lines), the astrocyte volume had been exchanged with an
enhanced ECS (the total ECS volume fraction increased to aE~0:6). In
two versions (blue lines), the original ECS volume fraction (aE~0:2) was
kept when the astrocyte was removed. (B) The performance of the six
model versions were compared in terms of maximal ½Kz�E in the input
zone during a constant K+ influx to the system. (C) To compare the time
course of the ½Kz�E dynamics, the responses (in B) were normalized to
the peak amplitude for each respective trace.
doi:10.1371/journal.pcbi.1003386.g008
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Spatial K+-buffering by astrocytes
The astrocyte/ECS-model provided a mechanistic understand-

ing of how astrocytes may remove K+ from high-concentration

regions. In summary, the model astrocyte responded to a local

extracellular increase in ½Kz� by a local depolarization of the

membrane. At the same time, this depolarization (i) increased

astrocytic K+ uptake in the input zone, (ii) increased astrocytic K+-

release outside the input zone, (iii) decreased axial K+ transport in

the ECS, and (iv) increased axial K+ transport inside the astrocyte.

Furthermore, by comparing different versions of the model, we

predicted that (v) local storage of K+ by astrocytes may play an

important role at a short time scale, while (vi) at a longer time

scale, the ability to distribute K+ spatially will be crucial for

maintaining a low extracellular K+-concentration. In this regard,

we found (viii) that the astrocyte was more efficient spatial

buffering mechanism than diffusion in an enlarged extracellular

space.

The findings (i–ii) were due to well documented astrocytic

membrane mechanisms that we implemented in the model.

Uptake from high concentration regions was mediated by the K+/

Na+-pump, while release into low-concentration regions of the

ECS was mediated by the Kir-channel. This supports the

dominant view of glial K+-buffering [2,3,25,39,41].

The findings (iii–iv) were due to an interplay between electrical

and diffusive forces. When locally depolarized (in the region with

high extracellular ½Kz�), longitudinal voltage gradients arose, and

ions in the ICS and ECS were exposed to an electrical force. In the

ICS, the electrical force and diffusive force both drove K+-ions in

the same direction (out from the high concentration regions). In

the ECS, the electrical force acted in the opposite direction from

the diffusive force, and reduced the net longitudinal transport

through the ECS. Hence, in addition to being an efficient

transport route for K+ out from high-concentration regions, the

astrocyte actively reduces the extracellular K+-transport. This

represents a (to our knowledge) novel mechanism that astrocytes

may utilize to shield the extracellular space from excess K+. All

these effects (i–iv) taken together turned the astrocyte into an

efficient sluice for removing K+ from the input zone.

The findings (v–viii) shed light on the relative efficiency of

spatial buffering and other K+-clearance mechanisms, such as

local storage by astrocytes, or diffusion in the ECS alone. An

interesting prediction was that, in terms of local storage, the

astrocyte did not have a stronger effect on ½Kz�E than an enlarged

extracellular space would. In terms of longitudinal transports,

however, the astrocyte performed much better (by spatial

buffering) than diffusion in an enlarged extracellular space

(Fig. 8). We do, however, wish to comment that these mechanisms

are not mutually exclusive. In fact, an (initial) local accumulation

of intracellular K+ is required for the astrocyte to initiate the

spatial buffering process. It is this local accumulation that evokes

the intracellular voltage- and concentration gradients that the

astrocyte utilizes for intracellular K+-transport.

It is likely that the mechanisms responsible for spatial buffering

vary between brain regions and between different species of glial

cells [30]. Previous literature has suggested several mechanisms for

spatial buffering apart from the ones that were included in our

model. K+-uptake by Na+K/K+/Cl2-cotransporters and K+/Cl2-

cotransporters are two candidate mechanisms that likely could

affect the simulated results [38]. Furthermore, regions in the

endfoot processes of astrocytes have been shown to have an

extremely high K+-conductance compared to the membrane in

general [42]. Such high concentration regions could improve the

buffering process by transferring (siphoning) excess K+ into the

vitreos humor or vasculature [43]. The buffering process may also

be affected by water influx and swelling experienced by the

astrocyte during the uptake process [13,30,38].

Rather than increasing the biological complexity, by e.g.,

including multiple candidate buffering mechanisms, we have in

this study strived towards elucidating the fundamental physical

processes involved in spatial K+-buffering. As our simulations

demonstrated, K+-buffering is a highly complex process. It

involves an intricate and sensitive interplay between vM and ionic

concentrations, and between electrical and diffusive transports.

We therefore highlight the importance of applying an electro-

diffusive, physically consistent, modelling scheme which ensures a

complete book-keeping of ion concentration dynamics and its

effects on vM . In previous models of spatial buffering, vM was

derived from standard cable theory [10–12,21], where diffusive

currents are assumed to have a negligible impact on vM , and

where the resistivity is assumed to be constant (i.e., not dependent

on ion concentration variations). During our simulations, intra-

and extracellular resistivities changed by as much as 10% and

20%, respectively, and the diffusive current was about 25–30% of

the field current in the ECS. The assumptions underlying standard

cable theory are therefore poorly justified if applied to the spatial

K+-buffering process.

Macroscopic transports vs. single cell models
The astrocyte/ECS-model was represented phenomenologically

as a single astrocyte coated with the average proportion of

available ECS per astrocyte (see Figs. 1 and 3). This geometrical

representation is justified for macroscopic transport processes,

when a large number of astrocytes perform the same function

simultaneously [12]. For the current study, this was a reasonable

assumption, as the input was a change in the ion-concentrations in

the ECS, shared by all present astrocytes.

If we instead wanted to study a cell specific signal, such as e.g.,

the response of a single astrocyte to a transmembrane current

injection, the geometrical representation in Fig. 1B would be less

appropriate. Firstly, the notion of the ECS as a relatively thin

coating following a single cell is only motivated at the macroscopic

‘‘average transport’’-level. Secondly, if only a single cell was

involved in a particular process, we would expect that aI%aE .

That is, a single active cell would have a significantly larger

proportion of the ECS to its own disposal, compared to the

macroscopic case, where all cells in a piece of tissue are active, and

share the limited amount of available ECS. In single-cell models it

is common to assume that conditions in E are constant, so that

only I is modeled explicitly. In this limit, the electrodiffusive

formalism reduces to the one-domain model presented previously

by Qian and Sejnowski [31].

Relationship to other electrodiffusive modeling schemes
The framework presented here is essentially an expansion of the

one-domain model by Qian and Sejnowski [31] to a two-domain

model that includes both the ECS and ICS. Like the one-domain

model, the framework ensures (i) a consistent relationship between

vM and ionic concentrations ½k�. Unlike the one-domain model,

the framework ensures (ii) global particle/charge conservation,

and (iii) that the charges on either side of a piece of membrane

must be equal in magnitude and opposite in sign (dQI~{dQE ).

The latter constraint is implicit when the the membrane is

assumed to be a parallel plate capacitor, an assumption made in

most models of excitable cells (see e.g., [26,27,31]). It is also related

to the topic of electroneutrality.

Electroneutrality in electrodiffusive models of biological tissue

has been the topic of many discussions [44–46]. It is relevant for

how the electrical potential (v), occurring in the Nernst-Planck
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equation, is derived. Generally (at sufficiently course spatial

resolutions so that the charge density can be assumed to be

continuous), v obeys Poisson’s equation:

+:(E+v)~{r, ð43Þ

where E is the dielectric constant, and r~rszF
P

k (zk½k�) is the

total charge density.

In biological tissue, the charge relaxation time t~rnEn is very

small in any region except in the thin Debye layer (*1nm)

surrounding a bio-membrane. Any nonzero net charge density in

the bulk solution will decay very rapidly (t*1ns) to zero [36].

Several models have simulated electrodiffusion by solving the

Nernst-Planck equations in one or more dimensions, with

Poisson’s equation for v (see e.g., [45,47–50]). The advantage

with such a procedure is that the Poisson-Nernst-Planck (PNP)

equations can be implemented in a general way in three-

dimensional space. The challenge is then to specify the appropri-

ate boundary conditions for solving Eq. 43 in the vicinity of

membranes. Generally, PNP-solvers apply a fine spatial resolution

near the membrane, and simulation time steps smaller than the

charge-relaxation time [48]. For these reasons, they tend to be

extremely computationally demanding [51].

The formalism presented in this work belongs to a class of of

one-dimensional models, including the cable equation and several

electrodiffusive models [10,12,13,17,31,52,53], which bypasses the

computationally heavy PNP-scheme. The physical interpretation

of these models is as follows: Any net charge in a volume anDx is

implicitly assumed to be located in the thin Debye-layer

surrounding the capacitive membrane, and is identical to the

charge that determines vM . The remainder of the space (i.e., the

bulk) will therefore be electroneural (rtot~0). Note that any finite

volume, enclosing a piece of membrane, will also be electroneutral.

This follows from the charge symmetry condition (Eq. 18),

constraining the charge on either side of the membrane to be

equal in magnitude and opposite in sign. The charge symmetry

condition and the electroneutrality condition are in this way

closely related. In these electroneutral models, charge relaxation is

implicit. This is a plausible assumption at time scales relevant for

most biophysical processes. Accordingly, simulations may be run

with time-steps ranging from 1 ms to 1 s, depending on the time

course of the included membrane mechanisms.

Final remarks
To our knowledge, the formalism summarized in Fig. 2 is the

first biodiffusive model where the intra- and extracellular voltage

gradients have been derived from the charge symmetry condition.

Eqs. 25 and 26 can be interpreted as summarizing all local and

global electrical forces driving the system towards electroneutral-

ity. A natural future ambition would be to generalize the

electrodiffusive formalism to 2 or 3 spatial dimensions, so it can

address the same 3-dimensional transport problems as PNP-

solvers. The challenge will be to formulate the system as a grid of

coupled constraints (electroneutrality in the bulk and Eq. 12 for

vM across the membrane) for which the Nernst-Planck equations

can be solved with time steps much longer than those involved in

the charge relaxation process.
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