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Abstract 

Congenital anomalies of the kidney and urinary tract (CAKUT) are among the most common 
developmental defects in humans. Despite of several known CAKUT-related loci (HNF1B, PAX2, EYA1, 
etc.), the genetic etiology of CAKUT remains to be elucidated for most patients. In this study, we report 
that disruption of the Holliday Junction resolvase gene Gen1 leads to renal agenesis, duplex kidney, 
hydronephrosis, and vesicoureteral reflux (VUR) in mice. GEN1 interacts with SIX1 and enhances the 
transcriptional activity of SIX1/EYA1, a key regulatory complex of the GDNF morphogen. Gen1 mutation 
impairs Grem1 and Gdnf expression, resulting in excessive ureteric bud formation and defective ureteric 
bud branching during early kidney development. These results revealed an unidentified role of GEN1 in 
kidney development and suggested its contribution to CAKUT. 

 

Introduction 
Congenital anomalies of the kidney and urinary 

tract (CAKUT) occur in three to six per 1000 live births 
and serve as the leading cause of renal failure in 
infants and children (1-3). CAKUT cover a wide range 
of structural malformations of the kidney and/or the 
urinary tract, such as renal agenesis, duplex kidneys 
or ureters, vesicoureteric reflux, pelviureteric junction 
obstruction, and ureterovesical junction obstruction. 
Monogenic causes of CAKUT are supported by 
familial clustering as well as mouse genetic models 
(4). To date, more than twenty disease-causing genes 
have been identified for human CAKUT and 
mutations in 12 dominant CAKUT genes are reported 
to be responsible for over 6% of families with isolated 

CAKUT (5). However, most CAKUT patients still lack 
any molecular diagnosis (5-7).  

CAKUT result from abnormal nephrogenesis. In 
mammals, kidney and urinary tract development is 
initiated upon the specification of metanephric 
mesenchyme (MM) in the nephrogenic cord (NC), 
followed by reciprocal interactions between MM and 
the adjacent nephric duct (ND) (8). A single ureteric 
bud (UB) is firstly induced on ND by signals from 
MM, then invades into and branches in MM to form 
the future collecting duct system. At the same time, 
MM cells are specialized by signals from UB tips to 
form future nephrons and fuse with the collecting 
duct (9). The formation and initial branching of UBs 
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are critical for the development of the kidney and 
urinary tract (9). Blockage of either process could 
result in solitary kidney or renal agenesis, while extra 
UB formation usually leads to duplex kidney or 
ureters (3, 9). 

During the early stages of kidney development, 
the secreted growth factor GDNF is expressed by MM 
to interact with its cognate receptor RET/GFRα-1 on 
ND to induce UB formation and branching (10, 11). 
GDNF expression is positively regulated by a group 
of transcription factors such as SIX1, SIX2, SIX4, 
PAX2, and EYA1. Disruption of any of these genes 
would block kidney development in mice (12-15). 
Meanwhile, GDNF expression are restricted by 
SLIT2/ROBO2 pathway that regulates the separation 
between ND and NC, such that supernumerary 
kidneys were observed in Robo2 mutants (16, 17). 
GDNF signal is transduced by the negative regulator 
Spry1, which acts downstream of Ret (18, 19). In 
addition to GDNF, Spry1 also modulates FGF signals. 
Deletion of Fgf10, which is expressed during the 
period of UB formation, caused less severe renal 
agenesis than Gdnf or Ret mutations. As expected, the 
renal phenotype in Fgf10 mutants could be rescued by 
heterozygous Spry1 deletions (19). BMPs provide 
another type of signals to UB development. In 
particular, BMP4 is expressed in stromal cells 
enveloping ND to inhibit UB branching but promote 
ureteric stalk elongation (20). BMP4 activity is locally 
restricted by GREMLIN1 (GREM1), a DAN domain 
protein that preferentially binds to BMP2/4 (21). 
GREM1-mediated reduction of BMP4 activity is 
essential to initiate UB outgrowth (22, 23). Loss of 
Grem1 causes arrested kidney development prior to 
UB invasion into MM (22). 

The Rad2/XPG family member GEN1 was 
initially identified as a Holliday junction resolvase in 
mammalian cells (24). It has been shown that GEN1 is 
involved not only in DNA homologous 
recombination, but also in maintaining centrosome 
integrity (24-26). To explore the physiological role of 
Gen1, we analyzed mice carrying an insertion 
mutation in this gene. Here we report that disruption 
of Gen1 affects the expression of both Gdnf and Grem1 
in mice, and caused multiple congenital anomalies of 
the kidney and urinary tract. These results revealed 
an unidentified role of GEN1 in kidney development 
and suggested its contribution to CAKUT. 

Results 
Gen1 mutants display multiple congenital 
defects in the kidney and urinary tract 

We identified a Gen1 mutation (Gen1PB) in a 
large-scale mutagenesis project in mice (27, 28). This 

allele carries a piggyBac (PB) transposon insertion in 
the second intron (Fig. 1A). Real-time RT-PCR 
detected severely compromised gene expression in 
the mutant mice. Gen1 transcription in homozygous 
(Gen1PB/PB) and heterozygous (Gen1PB/+) embryos was 
reduced to 11.6% and 62.6% of that in the wild type, 
respectively (Fig. 1B).  

Gen1PB/PB mice are viable and fertile, but 
frequently developed kidney and urinary tract defects 
(Fig. 1C-O). We detected thirty-one abnormal 
individuals from sixty newborn pups by ultrasonic 
imaging. Varied and sometimes overlapped 
morphological defects were further revealed by 
following anatomical and histological analysis (Fig. 
1C). We found unilateral duplex kidneys in fifteen 
mutants (Fig. 1F, J, N), bilateral duplex kidneys in one 
mutant, unilateral renal agenesis in eleven mutants 
(Fig. 1E, I, M), and unilateral hydronephrosis in eight 
mutants (Fig. 1G, K, O). The duplex kidneys in 
Gen1PB/PB mice are bi-papillary (Fig. 1J). Tubular 
elements and glomeruli were readily detected in 
solitary or duplex kidneys, but not in severe 
hydronephrotic kidneys. In addition to these 
morphological changes, we also observed two cases of 
unilateral vesicoureteric reflux (VUR) in nine 
Gen1PB/PB mice at weaning stages (Supplementary Fig. 
1A and B). Gen1PB/+ mice have similar but weaker 
malformations (Fig. 1C). We only detected eleven 
unilateral duplex kidneys from forty-nine newborn 
Gen1PB/+ pups. No renal agenesis or hydronephrosis 
were observed. We also checked the renal function by 
measuring blood urea nitrogen (BUN) and creatinine 
concentration in the serum of four-month Gen1PB/PB 
mice. No significant differences were observed for 
both parameters (Supplementary Fig. 1C and D). 

Other than the kidney and urinary tract defects, 
Gen1PB/PB mice have kinky tails as a result of delayed 
neural tube closure (Supplementary Fig. 2). All 
congenital defects were caused by the PB insertion. 
Generating revertant animals by removing PB in Gen1 
could result in normal animals with no kidney and 
urinary tract defects or delayed neural tube closure 
(Supplementary Fig. 3). 

Excessive UB formation accompanied by 
altered Grem1 and Gdnf expression in Gen1 
mutants 

The congenital kidney and urinary tract 
malformations observed in Gen1PB mutants were 
reminiscent of the defects in CAKUT patients. To 
identify the developmental abnormalities that may 
cause the kidney and urinary tract malformations, we 
followed the formation of ureteric buds (UB), a key 
event that leads to the development of the renal 
collecting system and renal vesicles (8). In mice, UB 
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formation starts around embryonic day 10.5 (E10.5) in 
mice. At E11.0, a single UB is readily observed on each 
side in wild type embryos (Fig. 2A). We examined 
eleven Gen1PB/PB embryos at this stage (Table 1). 
Surprisingly, nine of the mutant embryos (81.8%) 
possessed an ectopic UB on one side (Fig. 2B). The 
others developed single UBs in a more anterior 

position to the end of the nephric duct on one or both 
sides (Fig. 2C). Gen1PB/+ mice exhibit less severe 
defects, as only three of twenty-one (14.3%) Gen1PB/+ 

embryos at E11.0 were detected to have an ectopic UB. 
Thus, disruption of Gen1 leads to excessive UB 
formation in mice. 

 

 
Figure 1. Kidney and urinary tract defects in Gen1 mutants. (A) Genomic structure of the Gen1PB allele. A PB[Act-RFP] transposon was inserted in the 
second intron (solid lines) of Gen1. Open boxes, exons; black arrow, transcription direction; green arrows, PB termini; red arrow, RFP expression cassette. (B) 
Real-time PCR analysis of Gen1 expression in E12.5 embryos. Data is shown as the mean ± s.e.m. *** P < 0.001 determined by t test. (C) Percentages of newborn mice 
with normal number of kidneys (NK), unilateral renal agenesis (URA), or duplex kidneys (DK). Percentages of mice having accompanying hydronephrosis (HN) are 
indicated at the top of each column. (D-G) Representative images of the urinary system in newborn mice. URA (E), unilateral DK (F,G), severe HN and hydroureter 
(G) are presented. (H-O) Hematoxylin-eosin (H&E) staining of the paraffin sections of kidneys in newborn mice. A wild type kidney (H), URA (I), DK (J), and severe 
HN (K) are presented. Details within the boxes are enlarged in (L-O), respectively. DK is defined by double renal pelvises (arrowheads). Well differentiated glomeruli 
(arrows) could be observed in the wild type, URA, and DK. In contrast, tubular elements and glomeruli are almost missing in severe HN (O). Scale bars, 2 mm in D-G; 
250 µm in H-K; 50 µm in L-O. 
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Figure 2. Gen1 mutation leads to ectopic UBs accompanied by altered Grem1 and Gdnf expression. (A-C) Ectopic UBs detected in E11 embryos by 
c-Ret RNA in situ hybridization. (D-F) Gdnf RNA in situ hybridization in E10.5 embryos. Homozygous embryos (E,F) express less Gdnf than the wild type (D). (G) 
Real-time RT-PCR of Grem1 from E10.5 wild type (n=4) and homozygous mutant (n=6) kidney primordia. Dashed lines indicate UB. Scale bars, 0.2 mm. * P<0.05. 

 

Table 1. Defective UB formation cases in E11 Gen1 
mutant embryos. The percentage of the embryos with 
indicated phenotype is shown in brackets. WT, wild type. 

 Total embryos Normal Embryos with 
ectopic buds 

Embryos with 
anterior buds 

WT 8 8 (100%) 0 0 
PB/+ 21 18 (85.7%) 3 (14.3%) 0 
PB/PB 11 0 9 (81.8%) 2 (19.2%) 

 
Gen1 is ubiquitously expressed in the mesoderm 

of E10.5 embryos, including MM and UB regions 
(Supplementary Fig. 4). To explore if Gen1 mutation 
alters the signals controlling UB formation, we 
examined the expression of genes belong to the 
GDNF, FGF, SLIT, and BMP pathways in E10.5 
kidney primordia (Supplementary Table 1) (8, 9). 
Among them, the BMP4 antagonist Grem1 is the only 
gene that was significantly upregulated, as revealed 
by RNA-seq. Real-time RT-PCR of E10.5 kidney 
primordia confirmed significant Grem1 upregulation 
in Gen1PB/PB embryos (Fig. 2G). In addition to Grem1, 
RNA-seq revealed significantly lower expression of 
GDNF pathway genes Eya1, Pax2, Pax8, Sall1, Six2, 
and Wt1 (Supplementary Table 1). We thus examined 
the expression of Gdnf in Gen1PB mutants by in situ 
hybridization, despite the fact that Gdnf expression 
alteration was not recognized by RNA-seq. We 
detected reduced Gdnf expression in six of eleven 
(54.5%) homozygous embryos (Fig. 2D-F).  

Defective UB branching with decreased GNDF 
signal in Gen1 mutants 

Excessive UB formation usually leads to duplex 
kidneys. To explore the reason for frequently 
observed renal agenesis in Gen1 mutants, we further 
examined the branching process after UB formation. 
In wild type mice, UB always branches in the 
metanephric mesenchyme (MM) to form a T-shaped 
bifurcation at E11.5 (Fig. 3A). In contrast, Gen1PB/PB 
embryos are often affected by UB branching failure at 
this stage (Table 2). In fact, we observed eleven 
branching failure events in forty-seven UBs from 
nineteen E11.5 homozygotes (Fig. 3B). Of eleven 
embryos without ectopic UBs, three had unilateral 
branching failures. In seven embryos with a unilateral 
ectopic UB, we observed three embryos with one 
unbranched UB and two with both on the side of two 
UBs, respectively (Fig. 3B). The only embryo with 
bilateral ectopic UBs also had branching failure in one 
of the UBs. UB branching defects were weaker in 
Gen1PB/+ mice. In twenty-five E11.5 heterozygous 
embryos, no branching failure was observed in 
eighteen embryos without ectopic UB, while one out 
of seven embryos with a unilateral ectopic UB had one 
UB failed to branch on that side. These results suggest 
that UB branching failure as the reason for renal 
agenesis in Gen1 mutants. 
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Figure 3. Ureteric branching defects in Gen1 mutants. (A) c-Ret RNA in situ hybridization at E11.5 showed normal branch in wild type embryos. (B) Both UBs 
at the same side failed to branch in some E11.5 Gen1PB/PB embryos. (C) Gdnf RNA in situ hybridization showed Gdnf expression around the UB branches in E11.5 wild 
type embryos. (D) No Gdnf expression was detected around the un-branched UBs in E11.5 Gen1PB/PB embryos. (E) Quantitative RT-PCR showed decreased Gdnf 
expression in MM of E11.5 Gen1PB/PB embryos. Dashed lines indicate UB. Scale bars, 0.2 mm.  

 
In wild type embryos, presence of GDNF in the 

condensed mesenchyme surrounding the tips of UB is 
essential for branching (Fig. 3C) (8). In E11.5 Gen1PB/PB 
embryos, Gdnf expression was present surrounding 
the tips of all thirty branched UBs but was 
undetectable in any of the seven unbranched UBs 
(Fig. 3D). Quantitative RT-PCR also detected 
approximately 50% drop of Gdnf transcription in 
Gen1PB/PB MM than that in wild type embryos (Fig. 
3E). These results suggest that lower Gdnf expression 
caused by the Gen1 mutation may critically contribute 
to UB branching defects in the mutants. 

GEN1 binds with SIX1 and regulates the 
transcriptional activity of SIX1/EYA1 complex 

We next explored the molecular mechanism 
through which Gen1 regulates Gdnf during UB 
formation and branching. As a HJ resolvase, GEN1 
was originally identified from nuclear extracts (24). It 
has been shown that approximately 20% of GEN1 
proteins exist in the nuclear fraction during 
interphase (29). Since several transcription factors 
have been identified as regulators of Gdnf expression 
during early kidney development (12-14, 30-34), we 
hypothesize that GEN1 may interact with the 
upstream transcription factors to regulate Gdnf 
expression and tested potential interactions among 
them by Co-IP. We found that GEN1 could interact 
with SIX1, but not with its molecular partner EYA1, 
nor with SIX2, SIX4, PAX2, or FOXC1 in HEK293T 
cells (Fig. 4A, B and supplementary Fig. 5). Thus, 
GEN1 may interact with SIX1 to affect Gdnf 
expression. 

SIX1 was proposed to form a functional complex 
with EYA1 in regulating Gdnf during early kidney 
development (9). We thus examined if GEN1 could 
alter the transcription activity of SIX1/EYA1 complex. 
Consensus SIX1 binding sites have been identified in 
the intron of Gdnf (35). We found the expression of a 
luciferase reporter driven by a minimal promoter and 
consensus SIX1 binding sites (Gdnf-luc2) remained at 
the basal level in HEK293T cells when GEN1 was 
provided alone. The presence of both SIX1 and EYA1 
increased luciferase expression by about six times, 
while GEN1, SIX1 and EYA1 together enhanced the 
transcription by approximately twenty folds (Fig. 4C). 
Metanephric mesenchyme expression of Six2 was also 
reduced in half (3/6) of the E10.5 Gen1PB/PB embryos 
(Fig. 4D, E). Taken together, these results suggested 
that GEN1 could enhance Gdnf expression by 
stimulating the transcriptional activity of the 
SIX1/EYA1 complex during early kidney 
development. 

 

Table 2. Defective UB branching cases in E11.5 Gen1 
mutant embryos. The percentage of the embryos with 
indicated phenotype is shown in brackets. *, The only Gen1PB/+ 

embryo with one unbranched UB has two buds on that side. 

 Total 
embryos 

Normal Embryos with one 
unbranched UB 

Embryos with two 
unbranched UBs 

WT 14 14 (100%) 0 0 
PB/+ 25 24 (96%) 1 (4%)* 0 
PB/PB 19 10 (52.6%) 7 (36.8%) 2 (10.5%) 
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Figure 4. GEN1 binds with SIX1 and enhances transcriptional activity of the SIX1/EYA1 complex. (A) HA-tagged SIX1 can be pulled down by 
FLAG-tagged GEN1. (B) GFP-tagged GEN1 can be pulled down by FLAG-tagged SIX1. (C) Luciferase activity of a SIX1/EYA1 reporter. Supplemented by SIX1, EYA1, 
and GEN1, the luciferase became more active than under any other environment. * P < 0.05, ** P < 0.01, *** P < 0.001 determined by t test. (D,E) In situ hybridization 
at E10.5 revealed lower Six2 expression in homozygous (E) than in wild type embryos (D). Dashed lines indicate UB. Full-length blots are presented in Supplementary 
Figure 6. Scale bar, 0.1 mm. 

 
Previous studies have identified two conserved 

glutamic acid residues (E134/E136) required for 
GEN1 nuclease activity (24). We found the presence of 
a nuclease-inactive mutant, GEN1-2A 
(E134A/E136A), enhanced the expression of 
luciferase to similar levels as the wild type did (Fig. 
5A, B). Thus, the resolvase activity of GEN1 is not 
required for GEN1 to promote SIX1/EYA1-mediated 
transcription. We also tested truncated GEN1 protein 
using the same assay. We found that a truncated 
GEN1 fragment (GEN1-N1, residues 1-585) that 
contains the potent resolvase fragment (24, 36) is able 
to enhance the activity of the SIX1/EYA1 complex, 
while two shorter fragments (GEN1-N2, residues 
1-399; GEN1-N3, residues 1-319) could not (Fig. 5C). 
Co-IP experiment also proved impaired interaction 
between GEN1-N2/N3 and SIX1 (Fig. 5D). These data 
suggests that amino acids 400-585 are important for 
the transcriptional stimulation activity of GEN1.  

Discussion 
Initially purified as a mammalian Holliday 

junction resolvase, GEN1 was later reported necessary 
for centrosome integrity in mammalian cells (24-26, 
29, 37). Here we found that Gen1 is required for 

kidney and urinary tract development and neural 
tube closure in mice. These are the first evidence 
showing that Gen1 is involved in developmental 
regulation. During UB formation, GEN1 not only 
affects the expression of BMP antagonist GREM1, but 
also stimulates the transcription of UB promoting 
signal GDNF, which may imply its role as a 
coordinator of both pathways to ensure normal 
nephrogenesis.  

Intracellular localization was proposed as a 
critical factor for GEN1 activity. GEN1 was reported 
to be spatially regulated during cell cycle, such that its 
resolvase activity is restricted until mitosis when the 
nuclear membrane breaks down. With the strong 
nuclear exporting signal, it has been shown that 
approximately 80% of GEN1 proteins are presented in 
the cytoplasm (29). We have shown that GEN1 
proteins could bind with the transcription factor SIX1 
and enhance the transcriptional activity of the 
SIX1/EYA1 complex. Consistently, Gen1 mutations 
led to decreased expression of SIX1 downstream 
genes during kidney development. These results 
suggest that the apparently minor nuclear fraction of 
GEN1 may be critical for developmental regulation.  
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Figure 5. Impaired interaction between mutant GEN1 and SIX1. (A) Schematic view of mutant GEN1 proteins. (B) Luciferase assay showed potent activity 
of GEN1-2A in enhancing the transcriptional activity of SIX1/EYA1 complex. (C) Luciferase assay showed impaired activity of truncated GEN1s in enhancing the 
transcriptional activity of SIX1/EYA1 complex. (D) Co-IP experiments showed impaired binding activity between truncated GEN1s and SIX1. Full-length blots are 
presented in Supplementary Figure 7. XPG-N, N-terminal nuclease domain; XPG-I, internal nuclease domain; H3TH, helix-hairpin-helix DNA binding domain. FL, full 
length; 2A, E134A/E136A.  
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Not all Gen1PB/PB mice display kidney and 
urinary tract abnormalities. This may be due to the 
fact that Gen1PB is a partial loss-of-function allele, such 
that significant amount of potent GEN1 still exist in 
the homozygous mutant mice. In fact, incomplete 
penetrance is not uncommon for mutations that affect 
kidney development. Heterozygotes of Six1, Eya1, or 
Foxc1 knock out mutant mice all have varied kidney 
abnormalities (13, 15, 34). In addition, varied kidney 
and urinary tract abnormalities in Gen1PB/PB mice may 
reflect the complexity of the regulatory signals during 
early kidney development.  

During UB formation, we have detected 
down-regulation of Gdnf signals but up-regulation of 
Grem1. Gdnf is usually considered as a UB promoting 
signal since complete ablation of Gdnf would lead to 
failed UB formation in mice (38). However, it needs to 
be pointed out that UB formation is sensitive to the 
dosage of Gdnf signals. In Six1-/- and Sall1-/- mutant 
embryos, Gdnf expression was partially decreased, 
which did not interfere with normal UB formation, 
but caused failure of the first UB branching (13, 39). 
On the other hand, GREM1-mediated BMP 
antagonism is essential to initiate UB formation (23). 
Grem1 knockout mice exhibited disrupted 
metanephric development at the stage of UB 
formation; while additional recombinant GREM1 
protein could induce additional budding of the wild 
type nephric duct (23, 40). In Gen1PB/PB mutants, Gdnf 
expression was partially reduced (Fig. 2E and F), 
while Grem1 transcription was increased to four folds 
of wild type embryos (Fig. 2G). It is likely the 
decreased Gdnf signal did not affect UB formation in 
E10.5 Gen1PB/PB embryos, while the extra UB formation 
was due to the elevated Grem1 expression. Thus, 
varied Grem1 expression may lead to partially 
unobserved ectopic UB formation. During UB 
branching, ectopic UB in a single nephric duct may 
not always develop into a duplex kidney due to the 
lack of adequate GDNF signals so that less duplex 
kidney mutants were observed after birth. Unlike 
kidney defects, kinky tails were consistently observed 
in all Gen1 homozygotes. This suggests that a different 
threshold of GEN1 activity or a different mechanism 
is required for neural tube development. 

The trunk of the initial UB differentiates into 
ureter, connecting the kidney with the bladder (41). 
Higher or lower UB formation on the nephric duct 
causes abnormal positioning of the ureter orifice in 
the trigone, leading to obstruction or reflux (42). We 
have observed single UBs at more anterior position in 
two Gen1PB/PB embryos (Fig. 2C). These abnormally 
positioned ureters may join the bladder at a position 
more lateral or anterior to the proper site in the 
trigone. This could shorten the intra-vesicular ureteral 

segment and disrupt the valve mechanism that 
prevents the urine backflow to the kidney, thus 
resulted in VUR. On the other hand, although we 
didn’t observe proximal ureteral atresia or PUJO in 
Gen1 mutants (Fig.1), we could not exclude the 
possible contribution of potential ureteral atresia to 
the severe hydronephrotic phenotype. Similarly, our 
study did not exclude the possibility that Gen1 
mutation may cause delayed kidney development. To 
distinguish this event, global quantification of tissue 
dynamics can be applied to monitor the 
developmental process of nephron number and 
branching at different stages in Gen1 mutant mice 
(43).  

Our study raises the possibility of GEN1 as a 
disease gene of human CKAUT. To date, more than 
90% of CAKUT patients still lack any molecular 
diagnosis (5-7). We have detected CAKUT 
phenotypes in both heterozygous and homozygous 
Gen1 mutant mice and shown that GEN1 proteins 
containing the N-terminal 399 amino acids could not 
function properly in regulating the transcriptional 
activity of SIX1/EYA1. At the same time, thirty-seven 
loss-of-function variants have been reported in the 
Exome Aggregation Consortium (ExAC) database 
(http://exac.broadinstitute.org), all of which are 
presented in heterozygosity and predicted to encode 
truncated GEN1 proteins with less than 400 residues 
in the N-terminus. Although incomplete penetrance, 
as implied by the mouse data, may bring 
complications in human genetic analysis, it is still 
worth to explore the genetic burden of GEN1 
mutations in CAKUT patients. 

Methods 
Mice 

All animal experiments were performed in 
accordance with protocols approved by the Animal 
Care and Use Committee of the Institute of 
Developmental Biology and Molecular Medicine 
(IDM) at Fudan University. The Gen1 mutant strain 
(081125049-HLA) was established and maintained on 
the FVB/N background. In the Gen1PB allele, the PB 
insertion was mapped in the second intron of Gen1 
(Chr:12.11268138, Ensembl release 54).  

PCR 
Genotyping PCR was performed with a PB 

specific primer LB2 (5’-CTGAGATGTCCTAAATGCA 
CAGCG-3’) and two flanking genomic primers 
081125049-L1A (5’-TAGTGTGGGCACATGCAAGC- 
3’) and 081125049-R1A (5’-CCCCTTTGCCTGTTCTTA 
ACCTC-3’). Real-time RT PCR was performed with 
SYBR Green (Agilent) according to the manufacturer’s 
instruction. Gapdh was selected as the internal control 
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for normalization. The primers used for RT-PCR were: 
Gen1-RT-F1 in exon 2: 5’-GCACAGACAGTGAAGAA 
AATG-3’; Gen1-RT-B1 in exon 3: 5’-TGCTTATGACA 
TCAGCTTTCAG-3’; PCR product size 151 bp. 
Grem1-RT-F: 5’-CCTTTCAGTCTTGCTCCTTCTGC- 
3’; Grem1-RT-R: 5’-TTCTTCTTGGTGGGTGGCTGTA 
GC-3’; PCR product size 94 bp. Gapdh-RT-F1: 
5’-TGTTCCTACCCCCAATGTGTCC-3’; Gaphd-RT- 
B1: 5’-GGAGTTGCTGTTGAAGTCGCAG-3’. PCR 
product size 169 bp. 

Histology 
Kidneys and the urinary tract were dissected and 

embedded with paraffin according to the standard 
protocol (31). Hematoxylin-eosin (H&E) staining was 
then performed on the sections of 7 µm as previously 
described (31).  

RNA-seq 
Total RNA from kidney primordia of E10.5 

embryos was extracted by TRIzol (Invitrogen) and 
GlycoBlue (Ambion) coprecipitation. We combined 
two mice to obtain 0.5 µg of total RNA for either wild 
type or Gen1PB/PB samples. Strand-specific RNA-seq 
libraries starting with 0.5 µg of total RNA were 
constructed as previously described (44). Two 
biological replicates of RNA-seq for each group (wild 
type or mutants) were included to analyze 
differentially expressed genes. The RNA-seq libraries 
were sequenced on the Illumina HiSeq2000 platform 
(Genergy Biotechnology, Shanghai). FastQC was used 
to evaluate the quality of high-throughput sequencing 
data (http://www.bioinformatics.bbsrc.ac.uk/ 
projects/fastqc/). Paired-end reads were mapped to 
mm9 genome using TopHat2 with default parameters 
except –g –r and –mate-std-dev (45). In specificity, -g 
was set to 1 to ensure that there is only one alignment 
for a given read (45). Bowtie was used to get a good 
approximation of –r and –mate-std-dev, which is the 
expected inner distance between mate pairs and the 
standard deviation for the distribution on inner 
distances between mate pairs, respectively (46). The 
known transcripts supplied to TopHat2 were based 
on the Ensemble database and the NONCODE 
database (47). Cufflinks was used to assemble 
transcripts and estimates their abundances for each 
sample and Cuffdiff was used to get the differentially 
expressed genes (48). 

RNA in situ hybridization 
The coding sequences of Ret, Gdnf, and Six2 were 

cloned from E12.5 embryos through RT-PCR. 
Digoxigenin-labeled anti-sense probes were then 
produced by the DIG RNA Labeling kit (Sp6/T7) 
(Roche). Whole-mount in situ hybridization was 

performed as previously described (49). Frozen 
sections of 50 μm were then used for signal detection. 

Co-immunoprecipitation (Co-IP) and 
luciferase assay 

HEK293T cells were transfected with 
Lipofectamine 2000 (Invitrogen) for both 
co-immunoprecipitation and luciferase assay. Co-IP 
and immunoblot were performed as previously 
described (50). The antibodies used include mouse 
anti-HA (Covance), rabbit anti-HA (Abcam), mouse 
anti-FLAG (Sigma), and rabbit-anti-GFP (Cell 
signaling). For luciferase assay, each transfection was 
triplicated with 400 ng wild type or mutant Gen1, 100 
ng pCX-EGFP, 200 ng HA-Six1, 200 ng HA-Eya1, and 
200 ng Gdnf-luc2. Luciferase activity was scored 48 
hours after transfection and calibrated by the 
percentage of GFP positive cells (determined by 
FACS). Each experiment was performed at least twice 
independently. 

Statistics 
All data are presented as mean ± SEM. The 

comparison of two groups was performed with 
unpaired two-tailed t-test. The threshold for 
significance was set at P < 0.05. 

Data Availability 
All data generated or analyzed during this study 

are included in this published article and its 
Supplementary Information files. 
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