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Abstract: In the field of respiratory clinical practice, the importance of measuring carbon dioxide
(CO2) concentrations cannot be overemphasized. Within the body, assessment of the arterial partial
pressure of CO2 (PaCO2) has been the gold standard for many decades. Non-invasive assessments
are usually predicated on the measurement of CO2 concentrations in the air, usually using an infrared
analyzer, and these data are clearly important regarding climate changes as well as regulations of
air quality in buildings to ascertain adequate ventilation. Measurements of CO2 production with
oxygen consumption yield important indices such as the respiratory quotient and estimates of energy
expenditure, which may be used for further investigation in the various fields of metabolism, obesity,
sleep disorders, and lifestyle-related issues. Measures of PaCO2 are nowadays performed using the
Severinghaus electrode in arterial blood or in arterialized capillary blood, while the same electrode
system has been modified to enable relatively accurate non-invasive monitoring of the transcutaneous
partial pressure of CO2 (PtcCO2). PtcCO2 monitoring during sleep can be helpful for evaluating sleep
apnea syndrome, particularly in children. End-tidal PCO2 is inferior to PtcCO2 as far as accuracy, but
it provides breath-by-breath estimates of respiratory gas exchange, while PtcCO2 reflects temporal
trends in alveolar ventilation. The frequency of monitoring end-tidal PCO2 has markedly increased
in light of its multiple applications (e.g., verify endotracheal intubation, anesthesia or mechanical
ventilation, exercise testing, respiratory patterning during sleep, etc.).

Keywords: carbon dioxide; transcutaneous partial pressure; end-tidal partial pressure; Bland–Altman
analysis; blood gas analysis

1. Introduction

Atmospheric carbon dioxide (CO2) concentration is increasing worldwide by the
increasing consumption of carbon-based combustibles along with progressive deforesta-
tion [1,2]. Increases in atmospheric CO2 concentrations are thought to cause elevation
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of atmospheric temperature as a result of the greenhouse effect. High concentrations of
atmospheric CO2 can facilitate the onset of human health problems, such as increased
fatigue, headache, and tinnitus. Inhalation of 0.1% CO2 for a short time has been reported
to cause marked changes in respiratory, circulatory, and cerebral electrical activity [3,4].
More recently, continuous measurements of atmospheric CO2 concentrations have been
viewed as being helpful for the evaluation of ventilation conditions in rooms or buildings,
and it has been utilized as guidance to avoid the transmission of severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) [5]. SARS-CoV-2 can cause the coronavirus dis-
ease 2019 (COVID-19), which has emerged as a serious problem in respiratory clinical
practice [6–8].

On the other hand, arterial blood gas analysis (ABGA) is very commonly implemented
in routine clinical practice of respiratory medicine [9–11]. Arterial partial pressure of CO2
(PaCO2) is commonly evaluated in any type of respiratory disease. PaCO2 is useful for
the diagnosis of hypo- or hyperventilation and to evaluate potential respiratory drive
depression and CO2 narcosis in patients with chronic obstructive pulmonary disease
(COPD) or other conditions. The evaluation of acid–base imbalance in the context of
respiratory acidosis can be performed using pH and PaCO2 data. Non-invasive alternative
methods such as end-tidal CO2 partial pressure of exhaled gas (PetCO2) and transcutaneous
partial pressure of CO2 (PtcCO2) have been developed, and their accuracy and usefulness
have been evaluated by Bland–Altman analysis [12].

Another use of CO2 concentration measurements in exhaled air involves assessment
of CO2 production [9]. The respiratory quotient (RQ) can be calculated using the data
of CO2 production (

.
VCO2) and oxygen (O2) consumption (

.
VO2). Then, the difference

of partial pressure of oxygen (PO2) between mean alveolar gas and arterial blood can be
calculated [10]. This approach has been used for the evaluation of gas exchange impairment
in various lung diseases [9,10,13]. Energy expenditure can be also evaluated, and this is
particularly of interest in obese patients with obstructive sleep apnea syndrome (OSAS)
using CO2 production data and oxygen consumption data [14].

Thus, depending on the objectives driving the measurement of CO2 concentrations, the
most suitable method should be adopted. In order to better understand the considerations
involved in such choices, we will discuss the principles, sensitivity, and limitations of the
various methods available for measuring CO2 concentrations.

2. Atmospheric Carbon Dioxide Concentration

The World Data Centre for Greenhouse Gases reported that atmospheric CO2 concen-
trations are increasing worldwide, and they are currently around 410 ppm (Figure 1) [2].
The method to measure this concentration is by non-dispersive infrared technology
(Figure 2) [15–18]. This increase in CO2 level has been mainly attributed to increasing
the consumption of carbon-based energy sources (e.g., coal, oil) with significant concomi-
tant deforestation due to unregulated expansion of industrial agriculture initiatives [1,2].

When atmospheric CO2 concentration rises, human PaCO2 will rise, but its toxicity
has been reported to be little, if any, at 5% (50,000 ppm) or lower [19]. Atmospheric CO2
concentrations of more than 50,000 ppm may cause hypercapnia, respiratory acidosis,
and increased respiratory rate. Severe acidosis will ultimately result in depression of
the respiration and the circulation. Atmospheric CO2 concentrations of more than 10%
(100,000 ppm) may cause convulsions, coma, and death [19].

Duarte et al. showed the standard CO2 levels in air in indoors environments (i.e.,
>15,000 ppm: accident by CO2 intoxication; 10,000 ppm: submarines; 5000 ppm: crowded
indoors; 600 ppm: well-ventilated indoors) [20].

According to the documents of the World Health Organization, the amplitude (depth)
of respiratory movements was reduced by the inhalation of 0.1% (1000 ppm) CO2, while
peripheral blood flow was increased, and the amplitude of brain electrical waves was
increased [3,4]. In these documents from the 1960s, it was suggested that the indoors
concentrations of CO2 should not exceed 1000 ppm. A man engaged in light work exhales
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about 22.6 L of CO2 per hour [4], and since the recent normal concentration of CO2 in the
atmosphere is 0.04% (0.4 L/m3), the volume of required fresh air per person to ensure CO2
concentrations not exceeding 0.1% (1.0 L/m3) would be 22.6/(1.0 − 0.4) = 38 m3 per hour.
Thus, strict monitoring of air circulation and CO2 concentrations are essential in indoor
locations where the density of humans is high (e.g., cinemas, theaters, office buildings,
hospitals, etc.).
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Measuring atmospheric CO2 concentrations has been helpful for evaluation of the
ventilation conditions in rooms of buildings aiming to decrease the transmission risk of
SARS-CoV-2, which can cause COVID-19 (Figure 3) [5,21,22]. Smaller droplets (<10 µm)
with SARS-CoV-2 content expired from COVID-19 patients can travel tens of meters in
the air while indoors and cause airborne transmission [23,24]. The Japanese government
recommended the use of atmospheric CO2 sensors in rooms such as restaurants in order to
prevent COVID-19 especially in cold weather [25]. Guidelines for indoor CO2 concentra-
tions to reduce indoors COVID-19 infection risk should be more helpful if they account for
environment and activity types [5]. Marr et al. suggested that indoor CO2 concentrations
should not exceed 700 ppm in classrooms and 550 ppm in hallways in order to limit the
COVID-19 transmission in schools [26]. Teachers in many countries may be required to
keep the indoor CO2 concentrations low and decrease the students’ risk of inhaling SARS-
CoV-2 floating in the air in classrooms. By measuring indoor CO2 concentrations, teachers
can evaluate how widely the windows should be opened (e.g., fully or partially open) in
classrooms considering the meteorological conditions (especially wind) and estimate the
overall rate of ventilation in the classroom [26].
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Figure 3. Monitoring of CO2 levels in rooms. Higher levels of CO2 in a room can mean there is a
greater risk of viral transmission (Adapted with permission from Ref. [21]. Copyright 2020 Kyodo).

In addition, there was a fatal accident involving CO2 fire extinguishing equipment
in Japan in April 2021 [27]. Four people died and two people were injured due to the
high concentrations of CO2 because the equipment in the basement parking garage was
mistakenly activated. The mandate of monitoring atmospheric CO2 concentration is
increasing and is likely to become mandatory in buildings and similar public structures.
Currently, the measurement of CO2 concentrations using infrared is the fastest method to
obtain data from atmospheric samples at low cost; as such, this method is suitable in most
of the situations.

3. Blood Gas Analysis: Principle of PaCO2 Electrode

Apart from atmospheric CO2 concentration measures, it is frequently necessary to
measure the partial pressure of CO2 (PCO2) in blood in respiratory clinical practice. The
analysis of blood gas values has been performed by means of electrochemical devices [28].
The traditionally used electrode for measuring PCO2 is termed the Severinghaus PCO2
electrode, per the last name of the inventor of this electrode, Dr. John Severinghaus
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(Figure 4) [28,29]. This PCO2 electrode contains the CO2-permeable membrane and the
principle of pH meter with a pH-sensitive glass membrane. PaCO2 is usually measured
for the evaluation of any type of lung disease [9,10]. PaCO2 is useful for the diagnosis of
hyperventilation, hypoventilation, CO2 retention, and CO2 narcosis in patients with COPD
and many other pulmonary conditions [10,30,31].
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Figure 4. PCO2 electrode. (a) The CO2 from the blood diffuses through the membrane (red) into the bicarbonate solution
(light blue). The hydrolysis reaction occurs in the bicarbonate solution and results in the production of hydrogen ions
(H+) in proportion to the amount of dissolved CO2 present. The difference in voltage between the reference solution (light
green) and the bicarbonate solution (light blue) is measured. Ag/AgCl, Silver electrode plated with silver chloride; HCO3

−,
Bicarbonate ion; H2CO3, Carbonic acid (Adapted with permission from Ref. [28]. Copyright 2005 Elsevier). (b) Severinghaus
PCO2 electrode. The principle of pH meter with pH-sensitive glass membrane is used (Adapted with permission from
Ref. [28]. Copyright 2005 Elsevier).

The evaluation of acid–base imbalance (i.e., respiratory acidosis, respiratory alkalosis,
metabolic acidosis, and metabolic alkalosis), with the consideration of compensation, can
be performed using simultaneous arterial pH and PaCO2 measurements [32,33]. The
majority of CO2 is transported in the body as bicarbonate ion (HCO3

−) [34]. HCO3
− plays

a central role in maintaining the pH level in blood [32–34]. Therefore, it is important to
calculate its concentration ([HCO3

−]) in blood using the Henderson–Hasselbalch equation.
[HCO3

−] is calculated using the following equation on devices such as Rapidlab 1265
(Siemens Healthcare Diagnostics, Sudbury, UK).

[HCO3
−] = 0.0307 × PCO2 × 10(pH−6.105)

The normal ranges for PaCO2, arterial pH, and arterial [HCO3
−] are 35–45 mmHg,

7.35–7.45, and 22–26 mEq/L, respectively [35]. These data are useful for the calculation
of anion gap (AG) [32,34,36]. Using the plasma sodium concentration ([Na+]) and plasma
chloride concentration ([Cl−]), AG is calculated by the following equation.

AG = [Na+] − ([Cl−] + [HCO3
−])

The normal range for AG is 6–12 mmol/L [32]. AG is utilized for the differential
diagnosis of metabolic acidosis. High-AG metabolic acidosis due to increased fixed acid
includes ketoacidosis, lactic acidosis, renal failure, toxin by salicylates, etc. [32,34,36].
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Normal-AG metabolic acidosis includes renal tubular acidosis, HCO3
− loss from the

gastrointestinal tract, etc. [32,34,36].
The usual clinical practice for ABGA in conscious patients involves a single arterial

puncture; however, the procedure may cause pain and cause hyperventilation [11]. PaCO2
via the arterial puncture performed after a resting period of 20–30 min has been understood
as the gold standard, because arterial blood samples must be drawn when the patient is in
a steady state [11,37]. Therefore, newly developed surrogates should be compared with
this gold standard PaCO2 data.

PaCO2 is also useful for the evaluation of the ventilatory support being provided to
patients with respiratory insufficiency [38]. However, an arterial puncture is necessary
for measuring PaCO2, and it is sometimes difficult and painful, e.g., for pediatric patients.
Therefore, less invasive or non-invasive surrogate measurements have been sought, and
they include venous or capillary partial pressure of CO2, PetCO2, and PtcCO2.

4. Non-Invasive Alternative Methods to Estimate PaCO2

4.1. Venous Blood Gas Analysis (VBGA)

The pulse oximeter allows the measurement of the levels of systemic O2 by deter-
mining the degree of percutaneous O2 saturation (SpO2) [39,40]. Therefore, peripheral
VBGA with simultaneous evaluation of SpO2 offers an alternative to arterial blood gas
analysis [41–43]. This approach has become standard practice, particularly among pediatric
patients and in the emergency department, owing to its advantages (i.e., easiness and less
invasive nature) over arterial blood gas analysis [44–46]. Capillary blood gas analysis
can also be performed. This is particularly useful in children and involves warming the
extremity to arterialize the subcutaneous vascular bed and extracting a minute amount of
blood using a lancet. The gas content of this sample should be similar to the values obtained
for actual arterial blood samples [47–49]. It has been demonstrated that intentional hyper-
ventilation increases venous–arterial PCO2 differences and pH differences [50]. Moreover,
in patients with respiratory alkalosis who did not receive treatment, the condition may be
underestimated by the “SpO2 plus VBGA” method [50]. Furthermore, hyperventilation
increases differences in the concentration of venous–arterial bicarbonate [51]. Therefore,
these changes may be attributed to a reduction in peripheral blood perfusion induced by
hyperventilation-associated systemic vasoconstriction [50,51].

4.2. End-Tidal PCO2

Traditionally, the concentration of CO2 in an exhaled gas is calculated by determin-
ing the levels of chemically absorbed CO2 and other gases [52–54]. The absorbed CO2 is
subsequently compared with the total volume of the gas, thereby revealing the levels of
CO2 present. The concentration of CO2 in an exhaled gas can also be measured by gas
chromatography and/or mass spectrometry, but these systems are voluminous, sturdy,
and expensive [55–57]. The technological advancement of exhaled CO2 monitoring has
enabled the reduction of system size and the adequate monitoring of ventilation using the
infrared analyzer. PetCO2 is the highest and closest estimate of PaCO2 in the time course
of continuous sampling of expiratory PCO2 data [54,58]. Typically, PaCO2 and PetCO2
differ by 2–5 mmHg. However, the presence of lung disease, such as acute respiratory
distress syndrome, COPD, and asthma, ventilation/perfusion (

.
V/

.
Q) mismatch (especially

relative increase in high
.

V/
.

Q regions) in the lungs can cause the PaCO2–PetCO2 difference
to increase, in which case the non-invasive measurements may be potentially misleading.
Patients with gas exchange impairments may be unable to efficiently exhale CO2. Therefore,
PetCO2 is not a good surrogate of PaCO2 for patients with pulmonary diseases. Further-
more, PetCO2 cannot replace PaCO2 [58,59]. Nevertheless, PetCO2 has been reported to be
a useful indicator of pulmonary perfusion and cardiac output during cardiopulmonary
resuscitation [54,58–60], and its use was recommended by numerous guidelines (American
Heart association [61], European Resuscitation Council [62], and American College of Emer-
gency Physicians [63]). Particularly, the use of waveform capnography was recommended
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during cardiopulmonary resuscitation [59,61,62]. The return of spontaneous circulation
is indicated by a sudden continuous rise in PetCO2 (≥40 mmHg) [61]. Patients with an
average PetCO2 of 15 mmHg are more likely to be successfully resuscitated than those
with a value of 7 mmHg [64]. In patients with a low or decreasing PetCO2, reassessment of
cardiopulmonary resuscitation is recommended [61]. In adults and children, capnometry
or capnography can be utilized to continuously monitor alterations in exhaled CO2 from
the onset of intubation to extubation [54,58,65,66]. Both PetCO2 and (PaCO2–PetCO2) are
useful for monitoring

.
V/

.
Q mismatch especially (physiologic deadspace)/(tidal volume)

evaluation, and useful to assess pulmonary embolism [58,59]. PetCO2 monitoring is a
faster indicator than pulse oximetry or ECG tracing in order to find patient mishaps such
as a ventilator becoming disconnected or other catastrophic events [58].

Monitoring with capnography is recommended not only in intubated patients but
also in non-intubated patients undergoing non-invasive positive pressure ventilation
(NPPV) [67]. Figure 5 shows the new CO2 sensor, TG-980P (Nihon Kohden, Tokyo, Japan)
and a mask, cap-ONE (Nihon Kohden, Tokyo, Japan) in the NPPV system with the recently
rolled out ventilator, NKV-330 (Nihon Kohden, Tokyo, Japan). In cap-ONE, the inner cup
is included, and exhaled air will efficiently reach TG-980P. Monitoring with capnography
is possible at a remote place. The electromechanical response of the new devices for NPPV
(NKV-330 with cap-ONE and TG-980P), as shown by breathing on the sensor measuring
atmospheric PCO2, elicited an increase in PCO2 within 3 s even at remote places such as a
nurse station in a hospital ward.
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sensor (TG-980P, Nihon Kohden, Tokyo, Japan) is used in a mask (cap-ONE, Nihon Kohden, Tokyo, Japan). (b) The inner cup
is attached inside the mask. (c) Air flow from respirator and exhaled flow from mouth or nose are shown. (d) Capnographic
waveform on the monitor of non-invasive positive pressure ventilator (NKV-330, Nihon Kohden, Tokyo, Japan) is shown.
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There are two methods to sample and detect CO2 in clinical situations: mainstream
and sidestream [57,68]. Mainstream CO2 is measured using a sensor inserted in an air-
way adapter, and the sample is directly taken from the airway, providing accurate data.
Sidestream CO2 is measured by pulling the patient’s exhalation air through a small tube
into a CO2 detector that is placed at the end of the small tube. Although mainstream CO2
measurement requires a relatively large amount (150 mL/min) of sample gas, only a small
amount (50 mL/min) of gas is sufficient for sidestream [68]. Currently, TG-980P is the
smallest and the lightest mainstream PetCO2 sensor, where special anti-fog film is used on
the window of specimens, and therefore, the heater to avoid fog is unnecessary (Figure 6).
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Figure 6. Technology of size reduction of end-tidal PCO2 sensors. In the new CO2 sensor, the use of heaters to avoid water
drops is unnecessary. (a) In ordinary CO2 sensors, heaters are necessary to prevent windows from being clouded by water
vapor in expired air. Water drops on windows cause refraction and reflection of infrared lights. (b) The hydrophilic coating
film used in the new CO2 sensor (TG-980P, Nihon Kohden, Tokyo, Japan) disabled the surface tension of water drops.
Thanks to this anti-fog film, the new sensor does not require the use of heaters.

4.3. Transcutaneous Blood Gas Analysis

Evaluation of dissolved gases diffusing into the surface of the skin can be used to
determine the partial pressure of gases in blood [69–73]. Heating of the skin locally, occa-
sionally accompanied by measurement of transcutaneous PO2, is necessary for determining
the PtcCO2. This dilation of vessels increases the flow of arterial blood to the skin capillary
bed below the detector, thereby accelerating the diffusion of gas [69,70,74,75] (Figure 7).
According to Severinghaus et al., the PtcCO2 electrode contains a relatively large solid silver
reference electrode inside the glass pH sensor, which enhances the transfer of heat from
the heater to the skin via the glass pH electrode [69,70]. The presence of an ultra-thin film
of buffer electrolyte between the silver and glass appeared to be important. This internal
electrolyte contains reference solution (e.g., phosphate buffer) (light green, Figures 4 and 7).
The external electrolyte contains bicarbonate solution (light blue, Figures 4 and 7). The
precise blueprints of recent PtcCO2 sensors are different according to manufacturing com-
panies. This approach is commonly used to evaluate the pulmonary gas exchange function
in pediatric patients as well as in adults with acute/chronic respiratory failure [76–78].
Moreover, this methodology can be employed to monitor patients receiving mechanical
ventilation and managing limb ischemia [79–81].
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the glass electrode. The external electrolyte (light blue) contains sodium bicarbonate. According to the manufacturing
companies, the precise blueprints of recent products differ.

4.4. Comparison of Accuracy

The accuracy of an alternative new method has been evaluated by Bland–Altman
analysis for use in respiratory clinical practice (Table 1) [12,45,50,82–89].

Table 1. Alternative non-invasive methods for measuring PaCO2.

Surrogate Average Bias 1.96 SD Accuracy
Usefulness for
Patients with

Pulmonary Diseases
References

PvCO2
Approximately 5 mmHg

higher than PaCO2
14.7–15.0 mmHg Worst Limited [45,50]

PetCO2
2–5 mmHg lower than

PaCO2
6.9–14.4 mmHg Second best Limited [83–88]

PtcCO2
4–5 mmHg higher than

PaCO2
4.6–10.4 mmHg Best Good

(still not replaceable) [83–89]

PaCO2, arterial partial pressure of CO2; PetCO2, end-tidal CO2 partial pressure of
exhaled gas; PtcCO2, transcutaneous partial pressure of CO2; PvCO2, venous partial
pressure of CO2; SD, standard deviation. The width of ± 1.96 SD means the 95% limits
of agreement.
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5. Usefulness and limitation of Transcutaneous Blood Gas Analysis

Currently, the most accurate non-invasive alternative surrogate of PaCO2 is PtcCO2
(Table 1). We performed various subgroup analyses on the PtcCO2 bias (PtcCO2—PaCO2)
in order to use PtcCO2 efficiently in the future [89].

5.1. Various Subgroup Analyses on the PtcCO2 Bias

Subgroup analyses (sex, age, PaCO2 level, and PaO2 level) were performed using the
data at 30 min after the placement of detectors (n = 272).

5.1.1. Sex

The results of the analysis did not show significant differences in the PtcCO2 bias
(males/females: 168/104 [89]).

5.1.2. Age

Comparison of the PtcCO2 bias between four age groups: 20–39 years (n = 11);
40–59 years (n = 12); 60–79 years (n = 138); and ≥80 years (n = 111) (Figure 8a). The
PtcCO2 bias was significantly lower in young adults (20–39 years) versus those aged
40–59 years and ≥80 years (p < 0.05, respectively). PtcCO2 and PtcO2 are frequently uti-
lized in newborns. The increases in PtcCO2 bias induced by aging may be due to the
thickness of the skin with increasingly reduced permeability to gas exchange.

5.1.3. PaCO2 Level

Comparison of the PtcCO2 bias between the severe hypocapnia group (PaCO2 <
31 mmHg; n = 7), mild hypocapnia group (31 mmHg ≤ PaCO2 < 35 mmHg; n = 24), and
normal range group (35 mmHg ≤ PaCO2 ≤ 45 mmHg; n = 202) is shown in Figure 8b.
The PtcCO2 bias was significantly higher in the severe hypocapnia group versus the
normal range group (p < 0.01), and this was an intensity-dependent effect. Comparison
of bias between the normal range group (35 mmHg ≤ PaCO2 ≤ 45 mmHg; n = 202), mild
hypercapnia group (45 mmHg < PaCO2 ≤ 50 mmHg; n = 26), and severe hypercapnia
group (50 mmHg < PaCO2; n = 13) is shown in Figure 8c. The PtcCO2 bias was significantly
lower in the mild hypercapnia group versus the normal PaCO2 group (p < 0.01). The
hypocapnic systemic vasoconstriction is thought to be the mechanism of increases in the
PtcCO2 bias [50]. CO2 concentration in blood is very important for peripheral blood
perfusion. On the other hand, severe hypercapnic subjects (>50 mmHg) frequently have
comorbid conditions such as circulatory failure, heart failure, edema, infection, etc.

5.1.4. PaO2 Level

Comparison of the PtcCO2 bias between the hypoxemia group (PaO2 < 80 mmHg;
n = 158), normal range group (80 mmHg ≤ PaO2 ≤ 100 mmHg; n = 102), and hyperoxemia
group (100 mmHg < PaO2, n = 12) is shown in Figure 8d. The PtcCO2 bias was significantly
lower in the hypoxemia group versus the normal PaO2 group (p < 0.05), and this was
thought to be a PaO2 level-dependent effect. Previous studies have investigated hypoxemic
systemic vasodilation [90]. The concentration of O2 in blood appears to be associated with
peripheral perfusion and PtcCO2 bias.
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diseases in the data of [89] (Figure 9). The breakdown of respiratory diseases was as fol-
lows: asthma–COPD overlap (n = 39), COPD due to emphysema (n = 25), interstitial lung 
disease (n = 41), pneumonia (n = 74), asthma (n = 27), lung cancer (n = 10), acute bronchitis 
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Figure 8. Comparisons of PtcCO2 and PaCO2 bias (n = 272). (a) Comparison of bias between four age groups. The bias
was significantly lower in young adults (20–39 years) versus those aged 40–59 years and ≥80 years. (b) Comparison of
bias between the severe, mild hypocapnia group, and normal range group. The bias was significantly higher in the severe
hypocapnia group than the normal range group, and this was an intensity-dependent effect. (c) Comparison of bias between
the normal range group and mild, severe hypercapnia group. The bias was significantly lower in the mild hypercapnia
group versus the normal range group. (d) Comparison of bias between the hypoxemia group, normal range group, and
hyperoxemia group. The bias was significantly lower in the hypoxemia group versus the normal range group, and this was
a PaO2 level-dependent effect. Bars: SEM, *: p < 0.05, **: p < 0.01 [89]. PaCO2, arterial partial pressure of CO2; PaO2, arterial
partial pressure of O2; PCO2, partial pressure of CO2; PtcCO2, transcutaneous partial pressure of CO2; SEM, standard error
of the mean.

5.1.5. Among Various Respiratory Diseases

There were not significant differences in the PtcCO2 bias among various respiratory
diseases in the data of [89] (Figure 9). The breakdown of respiratory diseases was as follows:
asthma–COPD overlap (n = 39), COPD due to emphysema (n = 25), interstitial lung disease
(n = 41), pneumonia (n = 74), asthma (n = 27), lung cancer (n = 10), acute bronchitis (n = 15),
bronchiectasis (n = 7), sleep apnea syndrome (n = 6), pleural diseases (n = 5), and others
(n = 15).
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5.2. Usefulness

The use of this non-invasive PtcCO2 monitor leads to an accurate assessment of
CO2 retention. All hypercapnia patients with PaCO2 > 50 mmHg (n = 13→20) showed
PtcCO2 ≥ 50 mmHg until 12 min [89] (additional data). Utilization of thinner films for
CO2-permeable and/or pH-sensitive membranes (Figure 7) may accelerate the speed to
equilibration in order to reach the accurate data. The American Association for Respiratory
Care has recommended an acceptable clinical range of agreement between PtcCO2 and
PaCO2 (±1.96 standard deviation: ±7.5 mmHg or narrower) [80]. This range of agreement,
determined through TCM4 with a tcSensor 84 (Radiometer Medical AsP, Copenhagen,
Denmark), was reduced over time: ±13.6 mmHg at 4 min, ±7.5mmHg at 12–13 min, and
±6.3 mmHg at 30 min [89].

5.3. Limitations

Although PtcCO2 is currently the best non-invasive surrogate of PaCO2, there were
still some cases with large bias over 10 mmHg. PaCO2 cannot be replaced with PtcCO2
completely even after considering the average bias of 4–5 mmHg (Table 1) [89]. Other
limitations include the occurrence of technical drift; therefore, the baseline calibration
is necessary [91,92]. In addition, rapid results are not available, and the results are not
independent of dermal perfusion, edema, or increased skin thickness [91,93].

5.4. Future Use

PtcCO2 monitoring during sleep study has been reported to be useful for eval-
uating the necessity of ventilatory support especially in patients with neuromuscular
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disorders [94,95]. PtcCO2 monitoring with polysomnography may become the standard
method of sleep study in the future [94]. PtcCO2 monitoring during rehabilitation may be
the promising method, too [96–98]. However, the actual PaCO2 will not be disregarded, be-
cause the PCO2 bias is sometimes large, and PtcCO2 cannot replace PaCO2 completely [89].
Therefore, future use of PtcCO2 monitoring will be limited and may be just focusing on
relative evolution.

6. Other Applications of Measuring CO2 Mainly for Research Use

Measuring CO2 in exhaled gas is also used for assessment of the metabolic condition
of subjects. Energy expenditure (EE) is determined using the Weir equation (e.g., MK-5000,
Muromachi Kikai, Tokyo, Japan) (Figure 10) [99–101]. RQ is calculated using the pulmonary
exchange ratio (
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Figure 10. The system of measuring CO2 production and O2 consumption in mice. Inlet air routes
from animal chamber, control air, and reference gases are periodically changed. CO2 concentration
is measured by infrared absorption analysis. O2 concentration is measured by magneto-electrical
analysis (MK-5000) [100].

The measurement of
.

VCO2 and
.

VO2 is based on the principles of infrared analy-
sis [15,16] and magneto-electrical analysis [102], respectively. The administration of nasal
continuous positive airway pressure (CPAP) in patients with sleep apnea has been linked
to body weight gain [103,104]. Therefore, long-term exposure to intermittent hypoxia may
result in greater reductions in O2 consumption and EE. Human and animal studies have
examined the metabolic rates. However, the EE or metabolic rates were not found to be
decreased in animal models of intermittent hypoxia or in OSAS patients compared to after
the treatment with nasal CPAP [14,100]. Conversely, Tachikawa et al. reported significant
decreases in basal metabolic rate in OSAS patients by nasal CPAP [14]. Non-agitated sleep
without airway obstruction enabled by treatment with CPAP may contribute to this phe-
nomenon. Measure of EE and the calculation of RQ by the pulmonary exchange ratio will
undoubtedly contribute to obesity research and other research focused on lifestyle-related
diseases in the future [100,105–107].
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When carbohydrates, fat, and protein are oxydized, RQ are calculated to 1.0, 0.7, and
0.8, respectively [108]. Recently, Lin et al. monitored both CO2 and O2 concentrations in
human breath samples using a home-made gas chromatography/milli-whistle analyzer
and reported that the changes in CO2 concentrations (and the index of CO2/O2 ratio)
were related to the changes in blood sugar concentrations [109]. They sugested that their
compact gas chromatography system may be used for a non-invasive and time-dependent
(continuous and rapid) blood sugar monitoring in the future.

In addition, historically, gas chromatography and mass spectrometry had been often
used as the gas analyzer in respiratory research, and the peak expired PCO2 had been
measured by this technology [55–57]. The advantage of these methods over the infrared
CO2 analysis is that concentrations of multiple gases can be simultaneously measured.
Nevertheless, the use of mass spectrometry for respiratory research has decreased since
2000, which is likely because of cost and tehcnical fragility of the mass spectrometers, which
require more extensive technical support [57]. Furthermore, the method of photoinduced
electron transfer is rapidly developping in various research fields, and CO2 has been
reported to be detected using amine-containing fluorophores [110,111]. The evaluation
of local CO2 concentrations in various small organs of animals might be possible by
this technology.

7. Conclusions

In summary, measures of CO2 concentrations in the air are done using the infrared
analyzer. Data are important for both the climate problem and the regulatory monitoring
of buildings to avoid poor aeration and more recently COVID-19 transmission. Measure
of arterial CO2 concentration is performed by measuring PaCO2 using the Severinghaus
electrode. The most accurate non-invasive alternative method of PaCO2 is PtcCO2. Measure
of CO2 production with O2 consumption may be used for further investigation in the
various fields of metabolism, obesity with obstructive sleep apnea syndrome, and lifestyle-
related diseases.
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Abbreviations
The following abbreviations are used in this manuscript:

ABGA Arterial blood gas analysis
ACO Asthma chronic obstructive pulmonary disease overlap
Ag/AgCl Silver electrode plated with silver chloride
ANOVA Analysis of variance
[Cl−] Plasma chloride concentration
COPD Chronic obstructive pulmonary disease
CO2 Carbon dioxide
COVID-19 Corona virus disease 2019
CPAP Continuous positive airway pressure
E Emphysema
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EE Energy expenditure
H+ Hydrogen ion
HCO3

− Bicarbonate ion
[HCO3

−] Bicarbonate concentration
H2CO3 Carbonic acid
ILD Interstitional lung disease
[Na+] Plasma sodium concentration
NPPV Non-invasive positive pressure ventilation
N.S. Not significant
OSAS Obstructive sleep apnea syndrome
O2 Oxygen
PaCO2 Arterial partial pressure of carbon dioxide
PaO2 Arterial partial pressure of oxygen
PCO2 Partial pressure of carbon dioxide
PetCO2 End-tidal carbon dioxide partial pressure of exhaled gas
PO2 Partial pressure of oxygen
PtcCO2 Transcutaneous partial pressure of carbon dioxide
RQ Respiratory quotient
SARS-CoV-2 Severe acute respiratory syndrome coronavirus 2
SAS Sleep apnea syndrome
SD Standard deviation
SEM Standard error of the mean
SpO2 Percutaneous oxygen saturation
VBGA Venous blood gas analysis
VCO2 Carbon dioxide production
VO2 Oxygen consumption
V/Q Ventilation/perfusion
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