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Currently, the most used method to measure brain activity under a non-invasive

procedure is the electroencephalogram (EEG). This is because of its high temporal

resolution, ease of use, and safety. These signals can be used under a Brain Computer

Interface (BCI) framework, which can be implemented to provide a new communication

channel to people that are unable to speak due to motor disabilities or other neurological

diseases. Nevertheless, EEG-based BCI systems have presented challenges to be

implemented in real life situations for imagined speech recognition due to the difficulty to

interpret EEG signals because of their low signal-to-noise ratio (SNR). As consequence,

in order to help the researcher make a wise decision when approaching this problem,

we offer a review article that sums the main findings of the most relevant studies on this

subject since 2009. This review focuses mainly on the pre-processing, feature extraction,

and classification techniques used by several authors, as well as the target vocabulary.

Furthermore, we propose ideas that may be useful for future work in order to achieve a

practical application of EEG-based BCI systems toward imagined speech decoding.

Keywords: EEG, BCI, review, imagined speech, artificial intelligence

1. INTRODUCTION

One of the main technological objectives in our current era is to generate a connected environment
in which humans can be able to create a link between their daily and real life physical activities
and the virtual world (Chopra et al., 2019). This type of applications are currently developed
under a framework denominated as Future Internet (FI). There is a wide range of technological
implementations that can benefit from FI, such as human-computer interaction and usability (Haji
et al., 2020). For example, speech driven applications such as Siri and Google Voice Search are
widely used in our daily life to interact with electronic devices (Herff and Schultz, 2016). These
applications are based on a speech recognition algorithm, which allows the device to convert human
voice to text. Nevertheless, there are certain health issues that may impede some people from using
these applications.

Verbal communication loss can be caused by injuries and neurodegenerative diseases that
affect the motor production, speech articulation, and language understanding. Few examples of
these health issues include stroke, trauma, and amyotrophic lateral sclerosis (ALS) (Branco et al.,
2021). In some cases, these neurodegenerative conditions may lead patients to fall into a locked-
in syndrome (LIS), in which they are not capable to communicate due to the complete loss of
motor control.
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To address this problem, Brain Computer Interfaces (BCI)
have been proposed as an assistive technology to provide a
new communication channel for those individuals with LIS. BCI
technologies offer a bridge between the brain and outer world,
in such a way that it creates a bi-directional communication
interface which reads the signals generated by the human brain
and converts them into the desired cognitive task (Gu et al., 2021;
Rasheed, 2021; Torres-García et al., 2022). In such manner, a
thought-to-speech interface can be implemented so that people
who are not able to speak due to motor disabilities can use their
brain signals to communicate without the need of moving any
body part.

Generally speaking, BCI for imagined speech recognition can
be decomposed into four steps:

1. Signal acquisition: this step involves a deep understanding of
the properties of the signals that are being recorded, as well as
how the signals are going to be captured.

2. Pre-processing: the main objective of this step is to unmask
and enhance the information and patterns within the signal.

3. Feature extraction: this step involves the extraction of the
main characteristics of the signal.

4. Classification: this is the final step, in the different mental
states are classified depending on their features.

Several methods, both invasive and non-invasive, have been
proposed and studied in order to acquire the signals that
the brain produce during the speech imagining process.
Some of these methods are magnetoencephalography (MEG),
functional magnetic resonance imaging (fMRI), functional near-
infrared spectroscopy (fNIRS), electrocardiography (ECOG), and
electroencelography (EEG) (Sereshkeh et al., 2018; Angrick et al.,
2019; Dash et al., 2020b; Fonken et al., 2020; Si et al., 2021).
Invasive methods, such as ECOG, have proven to provide,
in average, greater classifying accuracies than non-invasive
methods (MEG, fMRI, fNIRS, and EEG) during imagined speech
decoding. In fact, invasive techniques have more easily exceeded
the threshold for practical BCI imagined speech application
(70%), in contrast to non-invasive techniques (Sereshkeh et al.,
2018). Among the mentioned techniques for imagined speech
recognition, EEG is the most commonly accepted method
due to its high temporal resolution, low cost, safety, and
portability (Saminu et al., 2021). Nevertheless, speech-based BCI
systems using EEG are still in their infancy due to several
challenges they have presented in order to be applied to solve real
life problems.

One of the main challenges that imagined speech EEG signals
present is their low signal-to-noise ratio (SNR). This low SNR
cause the component of interest of the signal to be difficult to
recognize from the background brain activity given by muscle
or organs activity, eye movements, or blinks. Furthermore, even
EEG equipment is sensitive enough to capture electrical line
noise from the surroundings (Bozhkov and Georgieva, 2018).
Moreover, despite EEG having high temporal resolution, it lacks
from spatial resolution which can lead to low accuracy on
the source of information on the brain cortex, distortion of
topographical maps by removing high spatial frequency, and
difficulty to reject artifacts from the main signal (Kwon et al.,

2019). Because of these issues, classical machine learning (ML)
methods that have proven to be successful in the recognition
of motor imagery tasks have not obtained good performance
when applied to imagined speech recognition. Thus, deep
learning (DL) algorithms, along with various filtering and feature
extraction techniques, have been proposed to enhance the
performance of EEG-based BCI systems (Antoniades et al., 2016).

That being said, imagined speech recognition has proven
to be a difficult task to achieve within an acceptable range of
classification accuracy. Therefore, in order to help researchers
to take the best decisions when approaching this problem, the
main objective of the present review is to provide an insight
about the basics behind EEG-based BCI systems and the most
recent research about their application toward imagined speech
decoding, as well as the most relevant findings on this area. The
rest of the paper is organized as follows: Section 2 investigates
the current applications of BCI systems and their classification.
Section 3 discusses the characteristics of electroencephalography
(EEG) and the different frequency bands that can be found
in it. Section 4 presents the different prompts that have been
studied in literature; while Sections 5, 6, and 7 discuss about the
pre-processing, feature extraction and classification techniques,
respectively. Section 8 offers a summary of the reviewed works
and techniques. Finally, Section 9 presents the findings of this
work and proposes future directions for the improvement of
imagined speech recognition.

2. BRAIN COMPUTER INTERFACE

The advent of Future Internet has caused a widespread
connectivity between everyday electronic devices and the human
body (Zhang et al., 2018). One example is Brain Computer
Interface, which is a technology that uses brain activity and
signals to create a communication channel between external
electronic devices and the human brain (Abiri et al., 2019). BCI
has been used for several applications in various areas, as shown
in Figure 1. For example, BCI systems have been applied toward
neuromarketing, security, entertainment, smart-environment
control, emotional education, among others (Abdulkader et al.,
2015; Abo-Zahhad et al., 2015; Aricò et al., 2018; Padfield et al.,
2019; Mudgal et al., 2020; Suhaimi et al., 2020; Moctezuma and
Molinas, 2022). One of the most explored applications of BCI
is toward the medical area to treat and diagnose neurological
disorders such as epilepsy, depression, dementia, Alzheimer’s,
brain stroke, among others (Subasi, 2007; Morooka et al., 2018;
Saad Zaghloul and Bayoumi, 2019; Hashimoto et al., 2020;
Rajagopal et al., 2020; Sani et al., 2021). Moreover, it has also
been used to recognize and classify emotions (Kaur et al., 2018;
Suhaimi et al., 2020) and sleep stages (Chen et al., 2018), as well
as to bring the opportunity of performing normal movements to
people with motor disabilities (Antelis et al., 2018; Attallah et al.,
2020; Al-Saegh et al., 2021; Mattioli et al., 2022). Furthermore,
one of the most interesting, yet difficult, tasks that are being tried
to be accomplished using BCI is imagined speech recognition, in
which the objective is to convert the input brain signal to text,
sound, or control commands. Different types of BCI systems have
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FIGURE 1 | Technology map of BCI applications.

been proposed by researchers to be able to use them in real-life
scenarios. Some of the most important BCI classifications are:
synchronous vs. asynchronous, online vs. offline, exogenous vs.
endogenous, invasive vs. non-invasive (Portillo-Lara et al., 2021).

Synchronous BCI are systems that cannot be used freely by
the users because they are fixed in determined periods of time.
This means that, for imagined speech decoding, the user needs
a cue that indicates when to begin the imagination process.
Then, the selected time window is analyzed, discarding any other
EEG signals that do not belong to that time constraint. On
the other hand, asynchronous BCI can be used without any
time constraint and they do not need any cue, meaning that
it is a more natural process that can be more practical toward
real-life applications. However, these systems have shown less
accuracy than synchronous ones because of the difficulty on
distinguishing intentional mental activity from unintentional one
(Han et al., 2020).

Among BCI classification, there are also online and offline
systems. Online BCI, just as asynchronous BCI, are promising
toward real-life applications because they allow real-time data
processing. In other words, during an online setting, the feature
extraction and classification processes are done several times
during each trial. However, because of this same advantage, the
computational complexity that an online system can employ is
limited. On the other hand, offline systems do not have this
problem as they can use as much computational resources as
needed because the feature extraction and classification processes
are done until all trails are available and the sessions are
over. Nevertheless, because of this same reason, an offline BCI
system will be hardly applied under real-life circumstances
(Chevallier et al., 2018).

Depending of the type of stimulus that the BCI uses, there
can be exogenous and endogenous systems. Exogenous ones use
external stimulus to generate the desired neural activation; while

endogenous ones can operate independently of any stimulus. For
a real-life application of imagined speech decoding, the most
appropriate between these two systems would be the endogenous
BCI (Lee et al., 2021a).

Brain computer interfaces can also be classified as invasive and
non-invasive. The invasive techniques, despite offering the best
representation of the brain signals, have the risk of scaring brain
tissue, at the same time that are more costly and difficult to use.
On the other hand, non-invasive techniques, such as EEG, are
used through scanning sensors or electrodes fixed on the scalp to
record the brain signals. Due to its easiness to use, its portability
and its safety, EEG based BCI have been broadly explored to be
applied toward imagined speech recognition.

3. ELECTROENCEPHALOGRAPHY (EEG)

Electroencephalography, also known as EEG, is the most
common non-invasive method to measure the electrical activity
of the human brain. The signals are acquired by electrodes
placed over the scalp that record the voltage difference generated
during neural communication (Singh and Gumaste, 2021). The
electrodes are then connected to an amplifier and are typically
distributed in a standard 10–20 placement (Sazgar and Young,
2019). Commonly, EEG systems consist of 14–64 electrodes (also
called channels), thus creating a multi-dimensional signal.

Along with its easiness to use and safety, EEG also has a high
temporal resolution, characteristics that make it the most suitable
option for imagined speech recognition. The reason behind this
is that the analysis of imagined speech signals requires to track
how the signal changes over time. However, one of the main
disadvantages of EEG is that it can be easily contaminated by
surrounding noise caused by external electronic devices. Hence,
before being able to analyze EEG waves for imagined speech
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tasks, they must be pre-processed to enhance the most important
information within the signal.

3.1. EEG Waves
EEGwaves consist of a mixture of diverse base frequencies. These
frequencies have been arranged on five different frequency bands:
gamma (>35 Hz), beta (12–35 Hz), alpha (8–12 Hz), theta (4–8
Hz), and delta (0.5–4 Hz) (Abhang et al., 2016). Each frequency
band represents a determined cognitive state of the brain. Each
of these frequency bands plays a determined role at the different
stages of speech processing. Thus, recognizing them may aid to
better analyze the EEG signal.

• Gamma waves. Changes in high gamma frequency (70–150
Hz) are associated with overt and covert speech. According
to Pei et al. (2011), during overt speech the temporal lobe,
Broca’s area, Wernicke’s area, premotor cortex and primary
motor cortex present high gamma changes. On the other
hand, this study also presents evidence of high gamma changes
during covert speech in the supramarginal gyrus and superior
temporal lobe.

• Beta waves. These waves are often related with muscle
movement and feedback. Therefore, it can be considered
that they are involved during auditory tasks and speech
production (Bowers et al., 2013).

• Alpha waves. During language processing, these waves
are involved in auditory feedback and speech perception.
Moreover, alpha frequency during covert speech has been
identified as weak in comparison to its behavior during overt
speech (Jenson et al., 2014).

• Theta waves. According to Kösem and Van Wassenhove
(2017), these waves become active during the phonemic
restoration, and processing of co-articulation cues to compose
words. Also, another study (Ten Oever and Sack, 2015),
identified that theta waves can help to identify consonants
in syllables.

• Delta waves. Intonation and rhythm during speech perception
have been found to fall into frequency ranges that belong
to the lower delta oscillation band (Schroeder et al., 2008).
Also, diverse studies have found other speech processes in
which delta waves are involved, such as prosodic phrasing,
syllable structure, long syllables, among others (Peelle
et al., 2013; Ghitza, 2017; Molinaro and Lizarazu, 2018;
Boucher et al., 2019).

4. IMAGINED SPEECH PROMPTS IN
LITERATURE

As said in Section 2, the main objective of applying BCI toward
imagined speech decoding is to offer a new communication
channel to people who are not able to speak due to any given
motor disability. However, as language can be decomposed in
several parts, as syllables, phonemes, vocals, and words, several
studies have been carried on in order to classify these different
parts of language.

In D’Zmura et al. (2009), Brigham and Kumar (2010), and
Deng et al. (2010), volunteers imagined two syllables, /ba/ and

/ku/. For these studies, the volunteers were given an auditory
cue indicating the syllable to be imagined. Another study done
by Callan et al. (2000) focused on the imagined speech process
of /a/, /i/, and /u/ vowels during a metal rehearsing process
after speaking them out loud. DaSalla et al. (2009) also studied
/a/, and /u/ vowels using a visual cue for both of them. Those
vowels were chosen because of them causing similar muscle
activation during real speech production. Also, in a study done
by Zhao and Rudzicz (2015) seven phonetic/syllabic prompts
were classified during a covert speech production process. In
more recent works (Jahangiri et al., 2018, 2019) four phonemic
structures (/ba/, /fo/, /le/, and /ry/) were analyzed. The difference
between these studies was that in Jahangiri et al. (2018) they used
a visual cue, while in Jahangiri et al. (2019) it was an auditory
one. Some other studies such as Cooney et al. (2019), Tamm et al.
(2020), andGhane andHossain (2020) have analyzed EEG signals
produced during the imagined speech process of five vowels: /a/,
/e/, /i/, /o/, and /u/. Besides phonemes, vowels, and syllables,
there have been other studies that have worked with imagined
words. For example, Wang et al. (2013) studied the classification
of two imagined Chinese characters, whose meanings were “left”
and “one.” In González-Castañeda et al. (2017), a study was done
to classify five different imagined words: “up,” “down,” “left,”
“right,” and “select.” Very similarly, the work done in Pawar and
Dhage (2020) worked over the same prompts, with exception
of the word “select.” Also, in the study done by Mohanchandra
and Saha (2016), they used as prompts five words, being them,
namely “water,” “help,” “thanks,” “food,” and “stop.” In Zhao and
Rudzicz (2015), apart from the phonetic classification, they also
worked toward the classification of the imagined words “pat,”
“pot,” “knew,” and “gnaw”; where “pat”/“pot” and “knew”/“gnaw”
are phonetically similar. Furthermore, in Nguyen et al. (2017)
two different groups of imagined words (short and long) were
analyzed. The former consisted on the words “in,” “out,” and “up,”
while the latter consisted on “cooperate” and “independent.”

5. PRE-PROCESSING TECHNIQUES IN
LITERATURE

Asmentioned previously, EEG signals can be easily contaminated
by external noise coming from electrical devices and artifacts
such as eye blinks, breathing, etc. In order to diminish the
noise and increase the SNR of the EEG waves, several pre-
process techniques have been proposed in literature. Moreover,
pre-processing is important because it can help to reduce
the computational complexity of the problem and, therefore,
to improve the efficiency of the classifier (Saminu et al.,
2021). Generally speaking, pre-processing of EEG signals is
usually formed by downsampling, band-pass, filtering, and
widowing (Roy et al., 2019). However, the steps may vary
depending on the situation and the data quality. For example,
in Hefron et al. (2018) the pre-processing consisted on trimming
the trials, downsampling them to 512 Hz and 64 channels to
reduce the complexity of the problem. Also, a high-pass filter
was applied to the data, at the same time that the PREP (an
standardized early-stage EEG processing) pipeline was used to
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calculate an average reference and remove line noise. On the
other hand, the work carried in Stober et al. (2015) only applied
a single pre-processing step of channel rejection. In the works
done by Saha et al. (2019a,b) they used channel cross-covariance
(CCV) for pre-processing; while in Cooney et al. (2019) they
employed independent component analysis (ICA). Common
average reference (CAR) method has also been employed to
improve SNR from EEG signals by removing information that
is present in all electrodes simultaneously (Moctezuma et al.,
2019). Moreover, several studies have used temporal filtering as
pre-process technique to focus on specific frequencies among
the EEG signals (Jahangiri et al., 2018; Koizumi et al., 2018;
Jahangiri and Sepulveda, 2019; Pawar and Dhage, 2020). Another
preprocessing technique that has been applied is Laplacian
filter (Zhao and Rudzicz, 2015), which is a spatial filter. However,
this type of filters is not commonly used because it can lead
to loss of important EEG information. In fact, most of pre-
processing techniques can lead to loss of information, besides
requiring an extra computational cost. Therefore, end-to-end
learning methods that require minimum pre-processing are of
currently of interest in EEG classification. However, classifying
almost raw EEG signals is not an easy task and requires further
study (Lee et al., 2020).

6. FEATURE EXTRACTION TECHNIQUES
IN LITERATURE

During feature extraction, the main objective is to obtain
the most relevant and significant information that will aid to
correctly classify the neural signals. This process can be carried
on the time domain, frequency domain, and spatial domain. In
the time domain, the feature extraction process is often done
through statistical analysis, obtaining statistical features such
as standard deviation (SD), root mean square (RMS), mean,
variance, sum, maximum, minimum, Hjorth parameters, sample
entropy, autoregressive (AR) coefficients, among others (Riaz
et al., 2014; Iqbal et al., 2016; AlSaleh et al., 2018; Cooney
et al., 2018; Paul et al., 2018; Lee et al., 2019). On the other
hand, the most common methods used to extract features
from the frequency domain include Mel Frequency Cepstral
Coefficients (MFCC), Short-Time Fourier transform (STFT), Fast
Fourier Transform (FFT), Wavelet Transform (WT), Discrete
Wavelet Transform (DWT), and ContinuousWavelet Transform
(CWT) (Riaz et al., 2014; Salinas, 2017; Cooney et al., 2018;
García-Salinas et al., 2018; Panachakel et al., 2019; Pan et al.,
2021). Additionally, there is a method called Bag-of-Features
(BoF) proposed by Lin et al. (2012), in which a time-frequency
analysis is done to convert the signal into words using Sumbolic
Arregate approXimation (SAX). In the case of spatial domain
analysis, the most common method used in several works is
Common Spatial Patterns (CSP) (Brigham and Kumar, 2010;
Riaz et al., 2014; Arjestan et al., 2016; AlSaleh et al., 2018; Lee
et al., 2019; Panachakel et al., 2020). Moreover, it is important
to mention that these feature extraction methods can be done in
two different ways: from individual channels and simultaneously

from multiple channels. Despite individual channel analysis
being easier, extracting features from diverse channels at the same
time is more useful because it helps to analyze how information
is transferred between the different areas of the brain. In order
to do a simultaneous feature extraction, the most common
method is the channel cross-covariance (CCV) matrix; in which
the features of each channel are fused together to enhance the
statistical relationship between the different electrodes (Nguyen
et al., 2017; Saha and Fels, 2019; Singh and Gumaste, 2021).
In fact, Riemannian geometry is an advanced feature extraction
technique that has been used to manipulate covariance matrices.
It has been successfully applied toward several applications, such
as motor imagery, sleep/respiratory states classification, EEG
decoding, etc. (Barachant et al., 2010, 2011; Navarro-Sune et al.,
2016; Yger et al., 2016; Chu et al., 2020).

7. CLASSIFICATION TECHNIQUES IN
LITERATURE

In order to classify the features extracted from the EEG signal,
researchers have used both classical machine learning and deep
learning algorithms. Both of them are methods that provide
computers the capacity of learning and recognizing patterns. In
the case of BCI, the patterns to be recognized are the features
extracted from the EEG waves, and then, based on what the
computer learnt, some predictions are made in order to classify
the signals. Several classical machine learning techniques have
been used to approach imagined speech decoding for EEG-
based BCI systems. Some on the most common algorithms
include Linear Discriminant Analysis (LDA) (Chi et al., 2011;
Song and Sepulveda, 2014; Lee et al., 2021b), Support Vector
Machines (SVM) (DaSalla et al., 2009; García et al., 2012; Kim
et al., 2013; Riaz et al., 2014; Sarmiento et al., 2014; Zhao and
Rudzicz, 2015; Arjestan et al., 2016; González-Castañeda et al.,
2017; Hashim et al., 2017; Cooney et al., 2018; Moctezuma and
Molinas, 2018; Agarwal and Kumar, 2021), Random Forests
(RF) (González-Castañeda et al., 2017; Moctezuma and Molinas,
2018; Moctezuma et al., 2019), k-Nearest-Neighbors (kNN) (Riaz
et al., 2014; Bakhshali et al., 2020; Agarwal and Kumar, 2021;
Rao, 2021; Dash et al., 2022), Naive Bayes (Dash et al., 2020a;
Agarwal and Kumar, 2021; Iliopoulos and Papasotiriou, 2021;
Lee et al., 2021b), and Relevance Vector Machines (RVM) (Liang
et al., 2006; Matsumoto and Hori, 2014). Furthermore, deep
learning approaches have recently taken a huge role for
imagined speech recognition. Some of these techniques are Deep
Neural Networks (DBN) (Lee and Sim, 2015; Chengaiyan
et al., 2020), Correlation Networks (CorrNet) (Sharon
and Murthy, 2020), Standardization-Refinement Domain
Adaptation (SRDA) (Jiménez-Guarneros and Gómez-Gil,
2021), Extreme Learning Machine (ELM) (Pawar and Dhage,
2020), Convolutional Neural Networks (CNN) (Cooney et al.,
2019, 2020; Tamm et al., 2020), Recurrent Neural Networks
(RNN) (Chengaiyan et al., 2020), and parallel CNN+RNN with
and without autoencoders autoencoders (Saha and Fels, 2019;
Saha et al., 2019a,b; Kumar and Scheme, 2021).
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TABLE 1 | Imagined speech classification methods summary.

References Task Methods Brain area and waves Performance

D’Zmura et al.

(2009)

Binary classification /ba/ and

/ku/ syllables

- Hilbert transform - All with exception of 18 electrodes most

sensitive to electromyographic artifact

61% Average accuracy

- Matched filters -Alpha, beta, and theta waves

DaSalla et al. (2009) Binary classification between /a/,

/u/ and rest state

- CSP - All areas 71% Average accuracy

[-3mm] - SVM - 1–45 Hz bandpass

Brigham and Kumar

(2010)

Binary classification /ba/ and

/ku/ syllables

- ICA - All with exception of 18 electrodes most

sensitive to electromyographic artifact

68% Average accuracy

- AR model - 4–25 Hz bandpass

- KNN

Deng et al. (2010) Binary classification /ba/ and

/ku/ syllables

- SOBI algorithm - All areas 67% Average accuracy

[-3mm] - Hilbert spectrum - 3–20 Hz bandpass

- FFT / STFT

- LDA

Chi et al. (2011) Binary classification of five

phoneme classes

- Naive Bayes - All areas omitting occipital and far frontal

positions

72% Average accuracy

- LDA - 4–28 Hz bandpass

- Spectrogram

TABLE 2 | Imagined speech classification methods summary (continuation).

References Task Methods Brain area and waves Performance

García et al. (2012) Multi-class classification of five

words

- Naive Bayes - Wernicke’s area 26% Average accuracy

- SVM - -25 Hz bandpass

- Random Forests

Matsumoto and Hori

(2014)

Binary classification of /a/, /e/,

/i/, /o/, and /u/ Japanese vowels

- CSP - All areas - 79% RVM Average

accuracy

- RVM - 0.1–300 Hz bandpass - 77% SVM Average

accuracy

- SVM

Sarmiento et al.

(2014)

Binary classification of /a/, /e/,

/i/, /o/, and /u/

- ANOVA - Broca’s area and Wernicke’s area - 79% RVM Average

accuracy- Power spectral density - 2–50 Hz bandpass

- SVM

Riaz et al. (2014) Binary classification of /a/, /e/,

/i/, /o/, and /u/

- AR coefficients - All areas 75% Average accuracy

- Hidden Markov Model -Alpha and beta waves

- KNN / SVM

- CSP / MFCC / LDA

Zhao and Rudzicz

(2015)

Binary classification for presence

of C/V, ± Nasal, ± Bilab,± /uw/,

± /iy/

- DBN - T7, FT8, FC6, C5, C3, CP3, C4, CP5, CP1,

P3

C/V: 18% Accuracy

- SVM - 1–50 Hz bandpass ± Nasal: 63.5% Accuracy

± Bilab: 56.6% Accuracy

± /uw/: 59.6% Accuracy

± /iy/: 79.1% Accuracy

8. DISCUSSION, APPLICATIONS, AND
LIMITATIONS OF PREVIOUS RESEARCH

Based on the previous sections and the diverse works mentioned
in them, imagined speech classification can be summed up as in
Tables 1–6.

As observed in the previous tables, there have been different
attempts to achieve a good performance of imagined speech

recognition using EEG-based BCI. These attempts involve
diverse feature extraction and classification methods. Therefore,
in Tables 7, 8 we offer a summary of the advantages and
disadvantages of some of these methods.

The main objective of most imagined speech decoding BCI is
to provide a new communication channel for those who have
partial or total movement impairment (Rezazadeh Sereshkeh
et al., 2019). Nevertheless, besides speech restoration, there are
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TABLE 3 | Imagined speech classification methods summary (continuation).

References Task Methods Brain area and waves Performance

Arjestan et al. (2016) Binary classification vowels,

syllables, and resting state

- CSP - All areas Vowels: 76.6% best

accuracy

- SVM - 8–45 Hz bandpass Syllables: 76.4% best

accuracy

Sereshkeh et al.

(2017)

Binary classification of “yes,”

“no,” and rest state

- Multilayer perceptron - All areas 70% Average accuracy

- DWT - 0–50 Hz bandpass

- RMS / SD

Nguyen et al. (2017) Classification of vowels, short,

and long words

- Riemannian Manifold - Broca’s area, the motor cortex and

Wernicke’s area

- Vowels: 49% Average

accuracy

- RVM - 8–70 Hz bandpass - Short words: 50.1%

Average accuracy

- CSP / WT - Long words: 66.2%

Average accuracy

- S-L: 80.1% Average

accuracy

Paul et al. (2018) Classification of three Hindi

vowels

- SVM - Broca’s and Wernicke’s area 63% Average accuracy

- AR coefficients - 0.1–36 Hz bandpass

- Hjorth parameters

- Sample entropy

Cooney et al. (2018) Classification of seven phonemic

prompts and four words

- SVM - All areas - Phonemes: 20%

Average accuracy

- Decision Tree - 1–50 Hz bandpass - Pair of words: 44%

Average accuracy- MFCC

- ICA

some other novel applications of imagined speech decoding
that have been explored. In Kim et al. (2020), researchers
proposed a BCI paradigm that combined event-related potentials
and imagined speech to target individual objects in a smart
home environment. This was done through EEG analysis
and classification using regularized linear discriminant analysis
(RLDA). Moreover, the work presented in Asghari Bejestani
et al. (2022) focused on the classification of six Persian words
through imagined speech decoding. These words, as said by
the authors, can be used to control electronic devices such as
a wheelchair or to fill a simple questionnaire form. Tøttrup
et al. (2019) explored the possibility of combining motor imagery
and imagined speech recognition for controlling an external
device through EEG-based BCI and random forest algorithm.
Furthermore, the work presented by Moctezuma and Molinas
(2018) explored the application of imagined speech decoding
toward subject identification using SVM.

Regardless of the rising interest on EEG-based BCI for
imagined speech recognition, the development of systems that
are useful for real-life applications is still in its infancy. In the
case of syllables, vowels, and phonemes, the limited amount of
vocabulary that has been analyzed impedes the possibility of
applying BCI to allow people to speak through their thoughts.
Among all the reviewed proposals, the one that seems closer to
be applied in real life is the classification of words such as “up,”
“down,” “left,” “right,” “forward,” “backward,” and “select.” The
reason behind this is that those words can be used to control
external devices such as a computer/cellphone screen and robotic

prosthesis. However, the fact of those words being classified by
EEG-based BCI systems that are offline and synchronous makes
the projects less scalable to real-life applications.

Also, it is important to mention that EEG-based BCI lacks
from accuracy when compared with other methods such as
ECoG and MEG. ECoG has been applied in several studies
for either covert and overt speech decoding, achieving higher
average accuracies than EEG-based BCI. For example, in Martin
et al. (2016) imagined speech pairwise classification reached an
accuracy of 88.3% through ECoG recording. Kanas et al. (2014)
presented a spatio-spectral feature clustering of ECoG recordings
for syllable classification, obtaining an accuracy of 98.8%. Also,
a work performed by Zhang et al. (2012) obtained a 77.5%
accuracy on the classification of eight-character Chinese spoken
sentences through the analysis of ECoG recordings. Moreover,
in the work presented by Dash et al. (2019) MEG was used for
phrase classification, achieving a top accuracy of 95%. Finally,
the study in Dash et al. (2020a) aimed to classify articulated and
imagined speech on healthy and amyotrophic lateral sclerosis
(ALS) patients. In this work the best articulation decoding
accuracy for ALS patients was 87.78%, while for imagined
decoding was 74.57%.

In summary, the past research allowed to observe the
following current limitations of EEG-based BCI systems for
imagined speech recognition:

• Limited vocabulary: Most of the reviewed studies focused on
imagined vowels (/a/, /e/, /i/, /o/, /u/, /ba/, /ku/) and words
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TABLE 4 | Imagined speech classification methods summary (continuation).

References Task Methods Brain area and waves Performance

Moctezuma and

Molinas (2018)

Classification of “up,” “down,”

“right,” “left,” “select”

- RF - All areas - RF: 64% Average

accuracy

- SVM - 1–50 Hz bandpass - SVM: 84% Average

accuracy

- Naive Bayes - Naive Bayes: 68%

Average accuracy

- KNN - KNN: 78% Average

accuracy

- EMD/IMF

Saha and Fels

(2019)

Classification of vowels, short

and long words

- CCV - All areas - Vowels: 72% Average

accuracy

- CNN + LSTM + DAE - Short words: 77%

Average accuracy

- Long words: 79%

Average accuracy

Saha et al. (2019a) Binary classification for presence

of C/V, ± Nasal, ± Bilab,± /uw/,

± /iy/

- CCV - All areas - C/V: 85% Accuracy

- CNN + TCNN + DAE ± Nasal: 73% Accuracy

± Bilab: 75% Accuracy

± /uw/: 82% Accuracy

± /iy/: 73% Accuracy

± Multiclass: 28%

Accuracy

Panachakel et al.

(2019)

Classification of seven phonemic

prompts and four words

- DNN - C4, FC3, FC1, F5, C3, F7, FT7, CZ, P3, T7,

C5

- 57% Average accuracy

- DWT - 1–50 Hz bandpass

Moctezuma et al.

(2019)

Classification of “up,” “down,”

“right,” “left,” “select”

- RF - All areas - 93% Average accuracy

- CAR - 0–64 Hz bandpass

- DWT / Statistics

such as “right,” “left,” “up,” and “down.” This shows how
far away we are from truly decode enough vocabulary for a
real-life application of covert speech decoding.

• Limited accuracy: Despite some works reaching +80%
accuracy, this was achieved mostly for binary classification.
Multi-class classification, which would be more viable for
real-life application, demonstrated to have much lower
classification rates than binary tasks. It is important to notice
that even binary accuracy decreases or increases depending on
the nature of the task to be done (for example: long vs. short
words compared to words of the same length).

• Mental repetition of the prompt: The experimental design
of most studies included the repeated imagination of the
vowel, phoneme or word. This helps increasing the accuracy
of the algorithm; however, mental repetition is not included
on daily conversation tasks. Therefore, the design of some
proposed experiments have low reliability when considering
their practical application.

• Acquisition system: Most of the reviewed works used a
high-density EEG system, which may be difficult to apply
in real-life situations Also, almost no work reviewed in
here deals with an online and asynchronous BCI system,
which, as mentioned earlier, is the feasible BCI option for
practical applications.

9. CONCLUSIONS AND FUTURE WORK

The rapid development of the Future Internet framework has
led to several new applications such as smart environments,
autonomous monitoring of medical health, cloud computing,
etc. (Zhang et al., 2019). Moreover, there are important
future plans, such as Internet Plus and Industry 4.0,
that require further integration of internet with other
areas, such as medicine and economics. Therefore,
technologies such as Brain Computer Interfaces seem to be
promising areas to be explored and implemented to solve
real-life problems.

Through this review, we analyzed works that involved
EEG-based BCI systems directed toward imagined speech
recognition. These works followed the decoding of imagined
syllables, phonemes, vowels, and words. However, the study
of each of those groups was individual, meaning that there
was no work aiming to study vowels vs. words, phonemes vs.
words, phonemes vs. vowels, etc. at the same time. Also, it
is important to notice that each BCI was used for a single
person, which would make difficult the implementation of a
general and globalized system. It seems that each individual
would need to train their own BCI system in order to use
it successfully.
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TABLE 5 | Imagined speech classification methods summary (continuation).

References Task Methods Brain area and waves Performance

Cooney et al. (2019) Classification of /a/, /e/, /i/, /o/,

and /u/

- CNN - All areas - 34% Average accuracy

- Transfer learning - 2–40 Hz bandpass

Sharon and Murthy

(2020)

Binary classification for presence

of C/V, ± Nasal, ± Bilab,± /uw/,

± /iy/

- CorrNet - All areas C/V: 89% Accuracy

- 1-50 Hz bandpass ± Nasal: 76% Accuracy

± Bilab: 75% Accuracy

± /uw/: 82% Accuracy

± /iy/: 80% Accuracy

Bakhshali et al.

(2020)

Binary classification for presence

of C/V, ± Nasal, ± Bilab,± /uw/,

± /iy/

- Riemannian distance - Broca’s area and Wernicke’s area C/V: 86% Accuracy

Binary Classification of /pat/,

/pot/, /gnaw/, and /knew/

- Correntropy Spectral

Density

- 1–50 Hz bandpass ± Nasal: 72% Accuracy

± Bilab: 69% Accuracy

± /uw/: 84% Accuracy

± /iy/: 75% Accuracy

± Word binary

classification: 69%

Average accuracy

Pawar and Dhage

(2020)

Muti-class and binary

classification of “left,” “right,”

“up,” and “down”

- Kernel ELM - All areas Multi-class: 49% best

accuracy

- Statistical features - Prefrontal cortex, Wernicke’s area, right

inferior frontal gyrus, Broca’s area

Binary: 85% best

accuracy

- DWT - Prefrontal cortex, Wernicke’s area, right

inferior frontal gyrus, Broca’s area, primary

motor cortex

- ICA - 0.5–128 Hz bandpass

TABLE 6 | Imagined speech classification methods summary (continuation).

References Task Methods Brain area and waves Performance

Cooney et al. (2020) - Classification of /a/, /e/, /i/, /o/,

and /u/

- CNN - All areas - Vowels: 35% best

accuracy

- Classification of “left,” “right,”

“up,” “down,” “forward,”

“backward” (in Spanish)

- ICA/LDA - 2–40 Hz bandpass - Words: 30% best

accuracy

Tamm et al. (2020) Classification of five vowels and

six words

- CNN - F3, F4, C3, C4, P3, P4 - 24% Average accuracy

- Transfer learning

Chengaiyan et al.

(2020)

Vowel classification - RNN - All areas - RNN: 72% Average

accuracy

- DBN - 2–40 Hz bandpass - DBN: 80% Average

accuracy

Jiménez-Guarneros

and Gómez-Gil

(2021)

Short and long words

classification

- SRDA - All areas - Short: 61% Average

accuracy

- Long: 63% Average

accuracy

Another thing to take into account is that several languages
have been analyzed, such as English, Spanish, Chinese, andHindi.
However, there is not a comprehensive study that evaluates the
impact of how a method performs toward an specific language.

Regarding feature extraction methods, there have been a
large amount of proposed techniques such as DWT, MFCC,
STFT, CSP, Riemannian space, etc. On the other hand, the most
studied classification algorithm has been SVM, which is a classical

machine learning technique. Deep learning techniques such as
CNN and RNN have also been explored by some authors. Despite
deep learning showing promising accuracy improvements in
comparison to classical ML, it is difficult to fully exploit it because
of the limited amount of data available to train DL algorithms.

Additionally, currently there is not definitive information
regarding the most important EEG recording locations of
imagined speech recognition. Broca’s and Wernicke’s areas are
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TABLE 7 | Comparison of feature extraction methods.

Method Advantages Disadvantages

AR - Good frequency resolution - Low performance when applied to non-stationary signals

- Limited spectral loss - The order of the model is difficult to select

FFT - Good performance when applied to stationary signals - High noise sensitivity

- Appropriate for narrowband signals - Poor performance on non-stationary signals

- Good speed for real-time applications - Weak spectral estimation

WT - Varying window size to analyze several frequencies - Proper mother wavelet selection is not trivial

- Good to analyze transient signal changes

TABLE 8 | Comparison of classification methods.

Method Advantages Disadvantages

KNN - Easy to understand and implement - Large storage capacity is needed

- Error susceptibility and sensitivity to irrelevant features

SVM - Effective in high dimensional spaces - Poor performance on noisy and large datasets

- Relatively low storage capacity is needed

LDA - Simple to understand and use - Requires a linear model

ANN - Relatively high accuracy - Requires large datasets for it to be trained

- Flexible and adaptable structure - High computational cost

- Handles multidimensional data - Performance depends on several parameters, such as number of

neurons and hidden layers

DL algorithms - Robustness for adaptation - Requires large datasets for it to perform well

- In can be adapted to different problems through transfer learning - Need high computational resources

- Features can be automatically deduced and tuned - Difficult to implement for novices

well-known to be involved in speech production; however, some
studies reviewed here showed that they are not the only zones
that contain valuable information for covert speech decoding.
Therefore, it seems a good idea to propose a method that
helps selecting the EEG channels that better characterize a
given task.

All things considered, we identified the following tasks as
promising for the future development of EEG-based BCI systems
for imagined speech decoding:

• Broaden the existing datasets in such a way that deep learning
techniques could be applied to their full extent. Moreover,
explore and propose prompts that could bemore easily applied
to solve real-life problems.

• Find and proposemore varied prompts in order to enhance the
difference between their EEG signatures and detect the most
discriminative characteristic to enhance classification. This
can be done by employing different rhythms, tones, overall
structure, and language.

• Explore how a same proposed method performs over
different languages.

• Recognize the best feature extraction and machine
learning techniques to improve classification accuracy.

At the same time, there is still room for improvement in the
identification of EEG frequency range that offers the most
valuable information.

• Most of the current studies are offline-synchronous BCI
systems applied in healthy subjects. Also, most experiments
are highly controlled in order to avoid artifacts. Therefore,
there is room for further work in these areas.

• Explore different imagery processes, such as Visual
Imagery (Ullah and Halim, 2021).
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