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INTRODUCTION 
 

Telomeres are repeated sequences of TTAGGG 

nucleotides at the end of eukaryotic chromosomes, 

participating in the maintenance of chromosomal 

integrity during cell replication [1]. As telomere length 

(TL) is gradually shortening with each mitotic division 

it has been considered as an indicator of accelerated 
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ABSTRACT 
 

Telomere length (TL) is a hallmark of cellular aging and is associated with chronic diseases development. The 
vascular endothelial growth factor A (VEGF-A), a potent angiogenesis factor, is implicated in the 
pathophysiology of many chronic diseases. The aim of the present study was to investigate the associations 
between VEGF-A and TL. 
TL in leukocytes (LTL) and skeletal muscle (MTL) were measured, 10 VEGF-related polymorphisms genotyped, 
and VEGF-A plasma concentrations determined in 402 individuals from the TELARTA cohort. LTL/MTL ratio was 
calculated as an estimate of lifelong TL attrition. Associations between VEGF-A variants and levels, and TL 
parameters were investigated. 
We identified one significant association between the minor allele (T) of rs6993770 variant and LTL/MTL ratio 
(P=0.001143, β=0.0148, SE=0.004516). The rs6993770 is an intronic variant of the ZFPM2 gene, which is 
involved in haematopoiesis and the identified association with increased telomere attrition could be due to 
increased haematopoiesis. No significant epistatic interaction was identified, and no association was found 
between levels of VEGF-A and any of assessed phenotypes. 
We identified a potential common genetic regulation between VEGF-A and telomere length attrition that could 
be explained by mechanisms of increased hematopoiesis and production of platelets. VEGF-A and TL could play 
an important role in personalized medicine of chronic diseases and identification of molecular links between 
them can promote the understanding of their complex implications. 
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cellular aging. Inflammation and oxidative stress are 

increasing the shortening rate of TL and further affect 

the aging process and are considered as a basic link 

between TL and many chronic diseases [2]. Short 

leukocyte TL (LTL) is associated with the pathogenesis 

of atherosclerosis [3]. This process is characterised by 

increased inflammation, mediated by a production of 

cytokines mainly from blood-borne inflammatory and 

immune cells, but also from vascular endothelial  

and smooth muscle cells [4]. TL has also been 

associated with other chronic diseases such as cancer 

[5], osteoporosis [6], chronic kidney diseases [7], 

neurodegenerative diseases [8] and others. 

 

LTL is known for its high interindividual variation, 

which is evident already at birth [9]. Afterwards, 

numerous factors may accelerate LTL attrition, e.g. 

increased cellular turnover caused by increased 

inflammation, oxidative stress [10], or may have a 

protective effect on LTL shortening, e.g. regular sport 

activity, healthy diet [11]. Although the effects of these 

factors on LTL are rather small compared to the large 

variation observed in the baseline TL among individuals 

[12], the use of LTL alone as a biomarker could be not 

as informative as it would be in combination with an 

estimate of lifelong telomere attrition [13]. As skeletal 

muscle is a minimally proliferative tissue, skeletal 

muscle TL (MTL) can be considered as a baseline TL 

proxy, and estimated lifelong TL attrition can be 

calculated by the LTL/MTL ratio [14]. 

 

The vascular endothelial growth factor A (VEGF-A) is 

a key regulator of physiological and pathological 

angiogenesis and a mediator of vascular permeability in 

inflammatory disorders [15]. It plays a critical role in 

cancer and several VEGF-A signaling inhibitors have 

already been approved by the Food and Drug 

Administration (FDA) for oncological treatment [16]. 

VEGF-A also seems to be important in cardiovascular 

diseases (CVD) [17], including atherosclerosis, where it 

promotes neoangiogenesis in the early stages of the 

disease as well as in the advanced atherosclerotic 

plaques [18]. 

 

VEGF-A and TL are both involved in chronic diseases 

pathways, such as inflammation and angiogenesis. They 

have been commonly assessed in studies of different 

conditions [19–22], however, their associations have not 

been extensively studied [10, 23]. Furthermore, these 

biomarkers are highly heritable [24, 25] and have an 

important inter-individual variability [26, 27] and could 

have a great value in personalized medicine as they 

could become a new tool for calculation of risk factors 
in personalized diagnostics of chronic diseases. The 

identification of common genetic determinants for both 

markers could play an important role towards this 

direction. Therefore, in order to expand the knowledge 

of the common pathways that regulate both biomarkers, 

the current study aimed to investigate the genetic 

associations between VEGF-A and TL. 

 

Accordingly, ten variants that were associated in a 

GWAS study with VEGF-A levels and together explain 

up to 52% of the VEGF-A phenotypic variance [28] 

were investigated for association with LTL and MTL, 

as well as estimated lifelong telomere attrition 

(LTL/MTL ratio) in a cohort of adult subjects. 

 

RESULTS 
 

The descriptive characteristics of the population are 

presented in Table 1. 

 

Association between VEGF-A related genetic variants 

and TL 

 

Values of MAF and results of HWE analysis are 

presented in Table 2. 

 

The SNP rs10761741 did not follow the HWE and was 

excluded from further analyses. 

 

None of the 9 assessed SNPs was significantly 

associated with LTL (Table 3) or MTL (Table 4). 

 

A significant association was identified between  

the minor allele (T) of rs6993770 and LTL/MTL 

(P=0.001143, β=0.0148, SE=0.004516) (Table 5). There 

was no significant epistatic interaction identified for 

three tested phenotypes (LTL, MTL and LTL/MTL) 

according to the selected threshold (p<0.00046). 

 

A bioinformatics analysis showed that rs6993770 is 

located on the intron region (Figure 1) of the ZFPM2 

(zinc finger protein, FOG family member 2) gene. 

 

Association between VEGF-A plasma concentrations 

and TL 

 

VEGF-A plasma concentrations were tested for 

association with LTL, MTL and LTL/MTL using 

multiple regression analysis (Table 6) with VEGF-A 

levels used as the dependent variable. There was no 

significant relation of VEGF-A plasma concentrations 

with the investigated TL phenotypes. 

 

DISCUSSION 
 

The present study investigated associations between 

VEGF-A genetic determinants and telomere length 

dynamics. It identified a direct association between 

minor allele (T) of rs6993770 and LTL/MTL ratio 
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Table 1. Characteristics of the population. 

Variable n mean SD 

Age (years) 402 60 15 

Sex (F/M %) 402 32/68  

LTL (kb) 402 6.71 0.84 

MTL (kb) 402 8.57 0.72 

LTL/MTL 402 0.78 0.07 

VEGF-A (pg/ml) 324 25.55 16.97 

Statin use (%) 324 38.88  

SD, standard deviation. 
LTL and VEGF are not normally distributed so median 
values and interquartile ranges are also given. 
LTL: 6.62 (6.11 – 7.26) kb. 
VEGF-A: 15.79 (10.07 - 29.38) pg/ml. 

 

Table 2. Results of MAF and HWE analysis for ten VEGF-A related 
genetic variants in the study population. 

SNP Chromosome MAF HWE (P-value) 

rs114694170 5 0.04602 0.5802 

rs34528081 6 0.3505 0.3788 

rs6921438 6 0.4325 1 

rs4416670 6 0.4527 0.4209 

rs6993770 8 0.2873 1 

rs7043199 9 0.206 0.7591 

rs10738760 9 0.4739 0.617 

rs10761741 10 0.4439 0.01131* 

rs4782371 16 0.3282 0.1659 

rs2639990 18 0.1136 0.6178 

MAF, Minor allele frequency; HWE, Hardy-Weinberg equilibrium; *significant P-
value. 

 

Table 3. Association between VEGF-A related genetic variants and LTL (log transformed)*. 

SNP Chromosome β SE P-value 

rs114694170 5 0.002083 0.007452 0.7799 

rs34528081 6 -0.001541 0.003261 0.6369 

rs6921438 6 -0.0004508 0.003173 0.8871 

rs4416670 6 -0.002907 0.00323 0.3687 

rs6993770 8 0.007 0.003496 0.04594 

rs7043199 9 -0.00173 0.003846 0.6531 

rs10738760 9 0.002185 0.003119 0.4841 

rs4782371 16 0.002397 0.003291 0.4669 

rs2639990 18 -0.001899 0.004965 0.7023 

Β, Effect size; SE, Standard error; P-value threshold is P<0.0012. 
*models are adjusted for age and sex. 
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Table 4. Association between VEGF-A related genetic variants and MTL*. 

SNP Chromosome β SE P-value 

rs114694170 5 0.1713 0.1132 0.1312 

rs34528081 6 -0.07143 0.04946 0.1495 

rs6921438 6 -0.06758 0.04827 0.1623 

rs4416670 6 0.007034 0.04927 0.8866 

rs6993770 8 -0.02124 0.05354 0.6917 

rs7043199 9 -0.08772 0.05874 0.1361 

rs10738760 9 0.03656 0.04753 0.4422 

rs4782371 16 0.02819 0.05035 0.5758 

rs2639990 18 0.06804 0.07592 0.3707 

Β, Effect size; SE, Standard error; P-value threshold is P<0.0012. 
*models are adjusted for age and sex. 

 

Table 5. Association between VEGF-A related genetic variants and LTL/MTL*. 

SNP Chromosome β SE P-value 

rs114694170 5 -0.01288 0.009716 0.1856 

rs34528081 6 0.004154 0.004246 0.3285 

rs6921438 6 0.004166 0.004146 0.3156 

rs4416670 6 -0.005934 0.004207 0.1592 

rs6993770 8 0.0148 0.004516 0.001143* 

rs7043199 9 0.004878 0.005062 0.3358 

rs10738760 9 0.0003862 0.004077 0.9246 

rs4782371 16 0.002534 0.004284 0.5546 

rs2639990 18 -0.008642 0.006481 0.1832 

SE, Standard error; β, Effect size; P-value threshold is P<0.0012, *significant P-value 
*models are adjusted for age and sex. 

 

(P=0.001143). This result suggests a common genetic 

regulation between VEGF-A and telomere attrition, 

possibly through a molecular process that affects both 

biomarkers. 

 

Rs6993770 is one of the most significant variants 

associated with circulating VEGF-A levels. The minor 

allele (T) of SNP has been previously related to 

decreased VEGF-A levels. Together with three other 

SNPs (rs6921438, rs4416670 and rs10738760), 

rs6993770 explained 48% of the heritability of serum 

VEGF-A levels [29]. Besides VEGF-A, it has been 

related to variation in HDL cholesterol [30], erythrocyte 

count, IL-12 levels, and platelets count [31]. 

 

In the blood, VEGF-A can be found in plasma, platelets 

and leukocytes [32]. Several studies reported the 

correlation between the concentration of VEGF-A and 

platelets, which are particularly important in wound 

healing and may have a stimulating role in angiogenesis-

dependent tumor growth through their function as 

transporters of VEGF-A [33, 34]. 

 

 
 

Figure 1. Rs6993770 (red stripe) is located on the intron 4 of the ZFPM2 gene (8q23.1). 
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Table 6. Univariate and multiple regression analysis of VEGF-A plasma 
concentration with LTL, MTL and LTL/MTL. 

Independent variable* Regression coefficient (SE) R2 P-value 

Non adjusted    

LTL 0.019 (0.160) 0.19% 0.42 

MTL -0.009 (0.028) 0.03% 0.74 

LTL/MTL 0.471 (0.300) 0.73% 0.12 

Adjusted*    

LTL -0.075 (0.107) 0.15% 0.49 

MTL -0.170 (0.105) 0.81% 0.36 

LTL/MTL 0.756 (0.919) 0.21% 0.41 

SE, Standard error. 
*each TL variable was tested as independent variable in separate models. Thus, the  
table presents the results of 3 different models. * Models were adjusted for age, sex and 
statin use. 
Dependent variable: logVEGF-A. 

 

In the present study, the minor allele (T) of rs6993770 

was associated with increased LTL/MTL ratio, indicating 

the protective role of allele (T) in telomere attrition. 

Rs6993770 is located in the intron of the ZFPM2 gene, 

coding for a FOG (Friend of GATA) family member 

protein. The FOG proteins can both activate and down-

regulate expression of GATA-target genes, resulting in 

modulation of GATA family proteins activity. The 

ZFPM2 gene codes for the FOG family member 2 that 

has been linked with repression of GATA mediated 

transcriptional activation [35, 36]. GATA proteins are 

crucial regulators of haematopoiesis and cardiogenesis 

via the control of haemoglobin synthesis [37]. 

 

The genetic variant rs6993770 could likely impact on 

the activity of the ZFPM2 gene, which would, in turn, 

affect GATA protein regulation of haematopoiesis. The 

risk allele (A) of the identified SNP could lead to 

increased haematopoiesis, which may result in high 

cellular turnover and thus, faster telomere attrition [38]. 

Moreover, increased haematopoiesis could lead to 

bigger production of platelets, which would explain the 

higher levels of VEGF-A in subjects with this risk 

variant and the previously identified association of 

rs6993770 with platelets [39]. Such a hypothesis seems 

plausible since telomere attrition was the only TL 

phenotype that was significantly related to the genetic 

variant, whereas LTL and MTL did not show significant 

association with rs6993770. Estimated lifelong attrition 

as expressed by the LTL/MTL ratio has been suggested 

to be impacted mainly by TL attrition during early life 

[40]. The finding of our study could be in agreement 
with this statement. The risk allele (A) of SNP 

rs6993770 may cause increased haematopoiesis and 

thus increased leukocyte telomere attrition, especially in 

childhood, when cellular turnover is the highest. 

Besides the genetic association between TL and 

VEGF-A, this study did not identify any direct 

association between VEGF-A plasma levels and LTL, 

MTL or estimated telomere attrition. The previous 

studies which investigated the association between 

LTL and VEGF-A levels reported inconsistent 

findings. No statistically significant association was 

reported between LTL and plasma concentrations of 

VEGF-A in the longitudinal study population 

consisting of 87 subjects [41]. On the other hand, a 

study of patients with knee osteoarthritis identified a 

negative correlation between VEGF-A plasma levels 

and LTL [42]. Further studies are warranted to fully 

explore the association of these biomarkers. Thus, the 

genetic association of rs6993770 with telomere 

attrition seems to not be directly linked with VEGF-A 

levels and is probably mediated by other mechanisms, 

such as the increased haematopoiesis that we propose 

here. 

 

We would like to acknowledge the limitations of  

the study. The power is limited due to small sample 

size, so false negative results cannot be excluded. 

Therefore, we propose the replication of the results in 

bigger populations. 

 

To conclude, this study is the first to investigate  

the association of VEGF-A related genetic variants 

with LTL, MTL and telomere attrition. The study 

identified a significant association between rs6993770 

and telomere attrition. We propose that this association 

could be explained possibly through the modification 
of the expression of GATA proteins, which could 

result in a direct impact on hematopoiesis and 

production of platelets. This hypothesis remains to be 

replicated and verified in future studies. 
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MATERIALS AND METHODS 
 

Population 

 

This analysis included 402 individuals with 

measurements of LTL and MTL from the TELARTA 

(TELomere in ARTerial Aging) cohort. The aim of  

the TELARTA study was to examine the role of 

telomere length dynamics in arterial aging using the 

“Blood-and-Muscle model” [43, 44]. Briefly, 259 

French individuals, who were admitted for various 

surgical procedures, were recruited in two centers 

(Nancy and Marseille) and constituted the discovery 

cohort of the TELARTA study. The replication cohort 

of the study included 91 French individuals, recruited 

under the same conditions as in the discovery cohort 

and 52 individuals from an independent Greek 

population enrolled in Athens. All French participants 

provided written informed consent approved by the 

Ethics Committee (Comité de Protection des 

Personnes) of Nancy, France. All Greek participants 

provided written informed consent approved by  

the Ethics Committee of the University of Athens  

and Ethics Committee of each one of the three 

participating hospitals. The study was conducted in 

accordance with the Declaration of Helsinki and  

is registered on http://www.clinicaltrials.gov under 

unique identifier: NCT02176941. 

 

Telomere length measurement 

 

TL in skeletal muscle (MTL) and in leukocytes (LTL) 

were measured in DNA extracted from muscle biopsies 

and peripheral blood leukocytes respectively [14, 43]. 

Skeletal muscle biopsies (~100 to 200 mg in the 

surgical field) were collected from individual during 

surgery, flash frozen in liquid nitrogen and stored on -

80° C until DNA extraction. Whole blood samples were 

collected in EDTA tubes prior to surgery and stored on -

80° C until DNA extraction. 

 

DNA was extracted from the muscle tissue and 

leukocyte by the phenol/chloroform/isoamyl alcohol 

method. DNA samples passed an integrity testing using 

a 1% (wt/vol) agarose gel before TL measurement was 

performed by the Southern blot analysis of terminal 

restriction fragments, as described previously [45]. 

Briefly, DNA samples were treated overnight with 

restriction enzymes HinfI and RsaI (Roche Diagnostics 

GmbH, Germany). Digested DNA samples and DNA 

ladder were resolved on 0.5% (wt/vol) agarose gels  

for 23 hours. After depurination, denaturation and 

neutralization, DNA was transferred on a positively 

charged nylon membrane (Roche) using a vacuum 

blotter (Biorad, Hercules, CA, USA). Membranes were 

hybridized at 42° C with a digoxigenin-labelled 

telomeric probe. The probe was later detected by the 

DIG luminescent detection procedure (Roche) and 

exposed on a charge-coupled device camera (Las 4000, 

Fuji). Measurements were performed in duplicate on 

separate gels. The measurement repeatability, as 

determined by the intraclass correlation coefficient, was 

0.99 (95% confidence interval, 0.817–1.0) and 0.98 

(95% confidence interval, 0.81–1.0) for LTL and MTL, 

respectively. The repeatability of the means of two 

duplicates, known as the extrapolated repeatability, was 

0.995 and 0.991 for LTL and MTL, respectively. The 

LTL/MTL ratio was calculated for each individual by 

dividing the LTL by the MTL value. As MTL can be 

considered as a proxy of TL at birth and LTL represents 

the current status of TL, a ratio of 1 indicates no 

telomere attrition throughout life, while a smaller ratio 

indicates lower LTL values compared to MTL and thus 

greater telomere attrition. 

 

VEGF-A protein measurement 

 

VEGF-A protein was measured in plasma samples, 

using Cytokine Array I on Randox semi-automated 

benchtop immunoanalyser (Evidence Investigator 

Analyzer, Randox Laboratories Ltd., Crumlin, UK). 

Cytokine Array I is a high sensitivity multiplex 

cytokine and growth factor array, which enables 

simultaneous detection of 12 cytokines and growth 

factors in a single sample. VEGF-A plasma levels were 

measured in 324 French individuals from the 

TELARTA study. 

 

Genotyping 

 

Ten VEGF-A related genetic variants (rs10761741, 

rs10738760, rs6921438, rs7043199, rs6993770, 

rs4416670, rs114694170, rs34528081, rs4782371 and 

rs2639990), previously identified by a GWAS, were 

genotyped in leukocyte DNA samples using a PCR-

based KASP assay [46]. Genotyping was performed by 

the Laboratory of the Government Chemist (LGC Ltd., 

Teddington, UK) using the competitive allele-specific 

PCR (KASP) chemistry coupled with a Förster 

resonance energy transfer-based genotyping system 

(http://www.kbioscience.co.uk/reagents/KASP/KASP.ht

ml) and by Randox genotyping VEGF-A assay. 

 

Statistical analysis 

 

Minor allele frequencies (MAF) and Hardy-Weinberg 

equilibrium (HWE) were calculated for ten VEGF-A 

related genetic variants (rs10761741, rs10738760, 

rs6921438, rs7043199, rs6993770, rs4416670, 
rs114694170, rs34528081, rs4782371 and rs2639990). 

The SNP rs10761741 did not follow the HW 

equilibrium (χ2 test) and was excluded from further 

http://www.clinicaltrials.gov/
http://www.kbioscience.co.uk/reagents/KASP/KASP.html
http://www.kbioscience.co.uk/reagents/KASP/KASP.html
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analyses due to suspected technical error in the 

genotyping. 

 

LTL was log-transformed to follow a normal 

distribution. The direct effects of VEGF-A related 

genetic variants on three phenotypes of interest (LTL, 

MTL and LTL/MTL) were tested using linear 

regression models adjusted for age and sex using the 

PLINK toolset under the assumption of an additive 

genetic model. Reference allele for all variants was the 

minor allele. Epistatic interactions were tested using R 

package CAPE. 

 

The significance level for the direct effects of the 9 

SNPs and the three tested phenotypes (LTL, MTL and 

LTL/MTL) was calculated as 0.05/9/3= 0.0012. For 

epistatic interactions, the significance level for the nine 

SNPs and three phenotypes was calculated as 

0.05/36/3= 0.00046. 
 

Multiple regression analyses were performed to study 

the association of VEGF-A plasma concentration with 

LTL, MTL and LTL/MTL. As VEGF-A levels were  

not normally distributed, a log-transformation was 

performed. In the models, VEGF-A levels were used as 

the dependent variable and they were adjusted for age, 

sex and statin use, because statins were significantly 

associated with VEGF-A levels in our population (data 

not presented). 

 

In silico analysis 
 

The genomic environment of the significant SNPs was 

explored using Ensembl browser of the human genome 

(GRCh38.p12) and NCBI dbSNP. 
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