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Abstract. Clinical imaging relies heavily on X-ray computed tomogra-
phy (CT) scans for diagnosis and prognosis. Many research applications
aim to perform population-level analyses, which require images to be
put in the same space, usually defined by a population average, also
known as a template. We present an open-source, publicly available,
high-resolution CT template. With this template, we provide voxel-wise
standard deviation and median images, a basic segmentation of the cere-
brospinal fluid spaces, including the ventricles, and a coarse whole brain
labeling. This template can be used for spatial normalization of CT scans
and research applications, including deep learning. The template was cre-
ated using an anatomically-unbiased template creation procedure, but is
still limited by the population it was derived from, an open CT data set
without demographic information. The template and derived images are
available at https://github.com/muschellij2/high res ct template.

Keywords: CT imaging · CT template · Brain template · Computed
tomography

1 Introduction

Many research applications of neuroimaging use magnetic resonance imaging
(MRI). MRI allows researchers to study a multitude of applications and diseases,
including studying healthy volunteers as it poses minimal risk. Clinical imaging,
however, relies heavily on X-ray computed tomography (CT) scans for diagnosis
and prognosis. Studies using CT scans cannot generally recruit healthy volun-
teers or large non-clinical populations due to the radiation exposure and lack of
substantial benefit. As such, much of head CT data is gathered from prospec-
tive clinical trials or retrospective studies based on health medical record data
and hospital PACS (picture archiving and communication system). Most of this
research is on patients with neuropathology, which can cause deformations of
the brain, such as mass effects, lesions, stroke, or tumors.
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Many clinical protocols perform axial scanning with a high within-plane res-
olution (e.g. 0.5 mm × 0.5 mm) but lower out-of-plane resolution (e.g. 5 mm).
High resolution scans (out of plane resolution ≈ 0.5 mm) may not be collected
or reconstructed as the lower resolution scans are typically those read by the clin-
ician or radiologist for diagnosis and prognosis. Recently, a resource of a large
number of CT scans were made available, denoted as CQ500 (Chilamkurthy et
al. 2018). These scans include people with a number of pathologies, including
hemorrhagic stroke and midline shifts. Fortunately, this data also includes people
without indicated pathology with high resolution scanning, which is what
we will use in this study.

The goal of this work is to create an anatomically unbiased, high-resolution
CT template of the brain. That is, we wish to create a template that represents
the population, regardless of any initial templates we start with. The first, and
we believe the only, publicly-available CT template was released by Rorden et
al. (2012) (https://www.nitrc.org/projects/clinicaltbx/). That template was cre-
ated with the specific purpose of creating a template with a similar age range as
those with stroke, using 30 individuals with a mean age of 65 years old (17 men).
The associated toolbox released contained a high resolution (1 × 1 × 1 mm) tem-
plate, with the skull on, in Montreal Neurological Institute (MNI) space. Subse-
quent releases have included skull-stripped brain templates, but only in a lower
(2 × 2 × 2 mm) space (https://github.com/neurolabusc/Clinical). This lower res-
olution template matches what is used in many MRI and functional MRI analyses.

Thus, the current CT templates available are a high-resolution template
(1 mm3), but not of the brain only (and skull stripping the template performs
marginally well), and a low-resolution template of the brain only, both in MNI
space. We have used these templates in previous analyses, but would like a brain
template that was 1) constructed using an unbiased anatomical procedure, 2) uses
more patients, 3) uses high-resolution scans to achieve a higher resolution, and 4)
provide an image which dimensions are easily used in deep learning frameworks.

As the CQ500 data was released under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 (CC-NC-SA) International License, we can
release the template under the same license.

2 Methods

All code, analysis, and reporting was done the R statistical programming lan-
guage (R Core Team 2015) and a number of packages from the R medical imaging
package platform Neuroconductor (Muschelli et al. 2019).

2.1 Data

We defined a high-resolution patient scan as having a within-axial resolution of
0.7 × 0.7 mm or less, with full coverage of the brain. For example, if the cere-
bellum was not imaged, that image was discarded. All scans were non-contrast
CT scans with a soft-tissue convolution kernel. As CT scans are generally well
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calibrated across sites and are measured in standard units of Hounsfield Units
(HU), no intensity normalization was done. Intensities less than (−1024) HU
(the value for air) and greater than 3071 HU were Winsorized (Dixon and Yuen
1974) to those values, as values outside of these are likely artifact or areas outside
the field of view.

All data was converted from DICOM files to NIfTI (Neuroimaging Informat-
ics Technology Initiative) using dcm2niix (Li et al. 2016) using the dcm2niir
package (Muschelli 2018). This conversion corrects for any gantry tilt and
enforces one fixed voxel size for the image, which is necessary if different areas of
the image are provided at different resolutions, which is sparsely seen in clinical
CT images.

From the CQ500 data set, 222 subjects had no indication of pathology, of
which 141 had a high-resolution scan (if multiple were present, the one with
the highest resolution was used). From these 141 people, 130 had “thick-slice”
scans where the out-of-plane resolution was greater than 4 mm. We used these
130 scans for construction of the template. The 11 scans were discarded as we
wish to perform the same operation using low-resolutions scans to see the effect
of initial resolution on template creation, but that is not the focus of this work.

For all images, the head was skull-stripped so that only brain tissue and
cerebrospinal fluid (CSF) spaces were kept, using a previously validated method
(Muschelli et al. 2015) using the brain extraction tool (BET) from FSL (FMRIB
Software Library) (Smith 2002; Jenkinson et al. 2012). We chose an image
(patient 100 from CQ500), for template creation. This choice was based on a
within-plane resolution close to 0.5 × 0.5 mm (0.488 × 0.488 mm), an axial slice
size of 512 × 512, and an out-of-plane resolution of 0.5 mm. The image was
resampled to 0.5 × 0.5 × 0.5 mm resolution so that the voxels are isotropic. We
would like the image to be square; we padded the image back to 512 × 512 after
resampling, and the image had 336 coronal-plane slices.

2.2 Template Creation

The process of template creation can be thought of as a gradient descent algo-
rithm to estimate the true template image as inspired by the advanced normal-
ization tools (ANTs) software and the R package ANTsR that implements the
registration and transformation was used (https://github.com/ANTsX/ANTsR)
(Avants et al. 2011). The process is as follows:

1. Let Ii represent the image where i represents subjects. We registered all
images to the template, denoted T̄k where k represents iteration, using an
affine registration followed by symmetric normalization (SyN), a non-linear
deformation/diffeomorphism, where the composed transformation is denoted
as Gi,k (Avants et al. 2008). Let the transformed image be denoted as Ti,k.

In other words, Ii
Gi,k→ Ti,k. The transformation Gi,k is represented by a 4D

warping image. Let T1 be the original template chosen above and Gi,1 be the
transformation for an image to the original template.

https://github.com/ANTsX/ANTsR
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2. Calculate the mean, median, and standard deviation images, where the mean

image is T̄k = 1
n

n∑

i=1

Ti,k, using a voxel-wise average.

3. Calculate the average warping transformation: Ḡk = 1
n

n∑

i=1

Gi,k. A gradient

descent step size of 0.2 was specified for SyN gradient descent, such that:
T̄k+1 = T̄k×(−0.2 ∗ Ḡk

)
. The median and standard deviation are transformed

accordingly.

For each iteration k, we can calculate a number of measures to determine
if the template has converged compared to the previous iteration k − 1. We
calculated the Dice Similarity Coefficient (DSC) (Dice 1945) between the mask
of iteration k and k−1, where the mask for iteration k is defined as T̄k > 0. The
DSC measures if the overall shape is consistent across iterations. We also the
root mean squared error (RMSE) of voxel intensities, e.g. 1

V

∑(
T̄k − T̄k−1

)2,
where V is the number of voxels in the volume. The RMSE can be calculated
over a series of volumes, either 1) the entire image, 2) over the non-zero voxels
in iteration k, 3) in iteration k − 1, or 4) the union (or intersection) of the 2
masks. Calculation over the entire image gives an optimistic estimate as most
of the image are zeroes, and the choice of either iteration k or k − 1 masks is
arbitrary, so we calculated the RMSE over the union of the 2 masks. The RMSE
represents if the values of the image are close across iterations.

To define convergence, we would like a high DSC between the masks and a
low RMSE. Ideally, the convergence criteria would set a DSC of 1 and a RMSE
less than 1 Hounsfield Unit (HU), which would indicate the voxel intensity is
changing less than 1 HU on average. As CT scans are measured in integers, this
RMSE would likely be as good as possible. We set a DSC cutoff of 0.95 and
chose the template with the lowest RMSE. As this procedure is computationally
expensive, we ran 40 iterations, which was adequate for achieving stable results
(Fig. 1).

Values of the final template that were lower than 5 HU were boundary
regions, outside the region of the brain and likely due to average of one or a small
few of images, incongruent with the remainder of the template (Supplemental
Figure 1). We did not constrain the DSC and RMSE calculation excluding these
regions, but excluded values less than 5 HU from the final template.

After the template was created, we padded the coronal plane so that the
template was 512 × 512 × 512. The intention is that these dimensions allow it
easier to create sub-sampled arrays that are cubes and multiples of 8, such as
256 × 256 × 256, 128 × 128 × 128, or 64 × 64 × 64 with isotropic resolution.

2.3 Segmentation

Though the template itself is the main goal of the work, many times researchers
use or are interested in annotations/segmentations of the template space. The
contrast between gray matter and white matter in CT imaging is not as high
as T1-weighted MRI. Some areas, such as the cerebellum, corpus callosum, and
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basal ganglia can be delineated well. Thus, segmentation methods based on
intensity may not differentiate gray and white matter adequately. We instead
used a multi-atlas registration approach using previously-published set of 35
MRI atlases from Landman et al. (2012), which had whole brain segmentations,
including tissue-class segmentations.

We registered each brain MRI to the CT template using SyN and applied
the transformation to the associated tissue segmentation and whole brain seg-
mentation from that MRI template. Thus, we had 35 tissue segmentations of
the CT template in template space, and the segmentations were combined using
STAPLE (Warfield et al. 2004) via the stapler package (Muschelli 2019). The
whole brain structures were combined using majority vote.

Separating the brain from the cerebrospinal fluid areas (mainly ventricles)
are of interest in many applications, such as Alzheimer’s disease (Leon et al.
1989; Braak et al. 1999). In addition, we segmented the template using Atropos
(Avants et al. 2011), which used a k-means clustering approach with 2 clus-
ters (CSF/tissue) to obtain a CSF mask. Additionally, we registered the MNI
T1-weighted template to the CT Template using SyN, and applied the trans-
formation used the ALVIN (Automatic Lateral Ventricle delIneatioN) mask of
the ventricles (Kempton et al. 2011). We masked the CSF mask with this trans-
formed ALVIN mask to get a mask of lateral ventricles as well.

3 Results

As we see in Fig. 1A, the DSC quickly increases and reaches a high score, where
the horizontal line indicates a DSC of 0.99. The red dot and vertical line indicate
the iteration that had the maximum DSC (0.9896). As the DSC is high for all
iterations past iteration 15, we chose the template based on the minimum RSE.
In Fig. 1B, we see a similar pattern of improving performance, but by lowering
the RMSE. The lowest RMSE is noted by the red point with a value of 1.47.
Thus, this iteration (iteration 37) is the template we will choose.

The template for this image can be seen in Fig. 2, along with the standard
deviation image, and a histogram of the intensities of the template. Areas outside
the brain mask were removed for visualization. We see the template is relatively
smooth, with values from 5 HU to around 65 HU. The standard deviation image
shows high variability around the lateral horns, which may be due to calcifi-
cations in a set of patients, which have abnormally high HU values. The high
standard deviation areas near the midline are likely due to dense areas of the
falx cerebri, including potential falx calcifications.

In Figure 3, we see the template again, with the tissue-class segmentation
(Panel B), whole brain structural segmentation (Panel C), and Atropos lateral
ventricle segmentation. Overall, we see some differences between the segmenta-
tion of the CSF based on Atropos and the multi-atlas labeling approach. We
have provided a lookup table for each structure label with its corresponding
value in the image.
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Fig. 1. Convergence of Shape and Intensity of the Template over Iterations. Here we see
the Dice Similarity Coefficient (DSC) increase between an iteration and the previous
iteration, achieving high degrees of overlap, indicating the shape of the surface of the
image is similar and converging (panel A). We also see the root mean-squared error
(panel B) drops as the iterations increase and then levels off around 4 Hounsfield units
(HU), the horizontal line. The red dot indicates the iteration chosen for the template.

Fig. 2. Template Image, Standard Deviation Image, and Histogram of Intensities. Here
we show the template in the left panel, the voxel-wise standard deviation, denoting
areas of variability (which include biological and technical variability), and the his-
togram of the template intensities/Hounsfield Units (HU). Overall the template is
smooth and values fall in the range of 5 to 65 HU.
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(A) Template (B) Tissues (C) Structures (D) Lat. Ventricles

Fig. 3. Template Image, Tissue Segmentation, Whole Brain Segmentation, and Lateral
Ventricle Segmentation. We see the areas of white matter, gray matter, cebebrospinal
fluid (CSF) in Panel B. We see the whole brain structural segmentation in Panel C,
and the lateral ventricle segmentation from Atropos in Panel D.

4 Discussion

We present a high-resolution, publicly-available CT template with associated
segmentations and other annotations of the template. The data used was from a
publicly-available dataset, the CQ500. The main downside with the CQ500 data
set is that no demographic or clinical information was released for each patient,
save for indication for pathology. Therefore, we cannot attest the general popu-
lation of interest for this template. Furthermore, we cannot fully assume these
patients were disease-free as a lack of pathology only applies to the categories
of interest in the CQ500 dataset (intracranial/subdural/subarachnoid/epidural
hematoma, calvarial or other fractures, mass effect and midline shifts). In future
work, we hope to prepare age- and sex-specific templates for each population
based on hospital scans and records, where we have demographic information
and confirmation of lack of neuropathology.

In addition to the template, we have provided a set of segmentations. This
includes a whole brain segmentation of over 150 structures. Though this may
prove useful, we caution users to how well this template can provide an accurate
segmentation of these structures. At least, the accuracy of the segmentation may
have variable accuracy at different areas of the brain.

The resulting image dimensions was 512 × 512 × 512, with a resolution of
0.5 × 0.5 × 0.5 mm. The fact that the image dimension is a multiple of 8 allows
it to be resampled to 1 × 1 × 1 mm and 2 × 2 × 2 mm and remain as a cube.
These dimensions are particularly important in certain deep learning architec-
tures and frameworks. Though most templates are given using the mean image,
we believe the standard deviation image represents variability in the area. This
variability represents true systematic and biologic variability. One important
area of systemic variability is registration errors. Therefore this template allows
for the creation of z-score images, where a new image is registered to the mean
image, the mean image is subtracted, and then divided by the standard-deviation
image, so that voxels represent standard deviations away from the mean voxel.
This image may be a useful tool in feature extraction. Thus, we believe this
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template provides a standard, isotropic space that is conducive to machine
learning and can reduce the burden of standardization for medical imaging
applications.

CQ500 is Creative Commons Attribution-NonCommercial-ShareAlike 4.0
International License. Therefore, the template is released under the same
license. The images are located on https://github.com/muschellij2/high res
ct template and can be accessed at https://johnmuschelli.com/high res ct
template/template/.
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