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Glia and immune cell signaling in bipolar disorder: insights
from neuropharmacology and molecular imaging to clinical
application
CC Watkins1, A Sawa1 and MG Pomper1,2

Bipolar disorder (BD) is a debilitating mental illness characterized by severe fluctuations in mood, sleep, energy and executive
functioning. Pharmacological studies of selective serotonin reuptake inhibitors and the monoamine system have helped us to
clinically understand bipolar depression. Mood stabilizers such as lithium and valproic acid, the first-line treatments for bipolar
mania and depression, inhibit glycogen synthase kinase-3 beta (GSK-3β) and regulate the Wnt pathway. Recent investigations
suggest that microglia, the resident immune cells of the brain, provide a physiological link between the serotonin system and the
GSK-3β/Wnt pathway through neuroinflammation. We review the pharmacological, translational and brain imaging studies that
support a role for microglia in regulating neurotransmitter synthesis and immune cell activation. These investigations provide a
model for microglia involvement in the pathophysiology and phenotype of BD that may translate into improved therapies.
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INTRODUCTION
Bipolar disorder (BD) is a pervasive, psychiatric illness that affects
5.7 million people in the United States.1 BD is characterized by
fluctuating mood states, cognitive impairment and functional
disability. Depressive episodes are the major contributing factor to
the disability associated with bipolar illness, often first presenting
in later adolescence and early adulthood.2 Because the impulsivity
and grandiosity in mania may be misdiagnosed as a behavioral
problem or attributed to another mental disorder, there is an
estimated 10-year delay between onset of BD and accurate
diagnosis.3 Therefore, early pharmacological management of BD is
critical in order to avoid long-term disability and the increased
health service utilization often associated with the illness.3,4

Although only marginally understood, the pathophysiology of
BD has traditionally been attributed to deficits in monoamine
neurotransmitters, with a focus on serotonin, based on the
mechanism of action of antidepressants. In clinical practice,
patients that fail to respond to an optimized regimen of mood
stabilizers tend to respond to augmentation with selective
serotonin reuptake inhibitors (SSRIs).5 Bipolar depression mistaken
for major depressive disorder (MDD) and treated with SSRIs can
cause a ‘switch’ effect where patients may become manic.6–8

Although the serotonin system in particular has been implicated
in the pathophysiology of bipolar depression, a growing body of
evidence is shifting from theories of simple deficits in serotonin to
those based on effects secondary to abnormalities in neuronal
plasticity. In this context, plasticity is defined as an experience-
dependent change in synaptic strength, cell resilience and/or con-
nectivity.7,9,10 Homeostasis, support and protection of neurons are
maintained by glia cells (microglia and astrocytes) in the brain and
peripheral nervous system. Although astrocytes are large stellate

cells that provide biochemical support, microglia are specialized
macrophages capable of phagocytosis in order to protect neurons
in the central nervous system (CNS). Microglia appear to function
as sensors and regulators of serotonin production through pro-
inflammatory cytokines in the brain. One link between microglia
and serotonin production may be inflammatory signaling in the
kynurenine pathway (KYP), an alternate route of tryptophan
metabolism that decreases serotonin neurotransmission (Figure 1).
Changes in the cytokine environment and serotonin production
mediated by microglia appear to lead to long-term changes in
synaptic function and downstream effects of apoptosis, excito-
toxicity, neurogenesis and neurotrophic production.11,12 Develop-
mental, neuropathological and imaging data in basic science and
clinical models of BD demonstrate that serotonin production and
neuronal connectivity are dependent on immune cytokine path-
ways in the periphery and the brain.13–16

Mood stabilizers such as lithium (Li) and valproic acid (VPA) are
the first-line pharmaceutical agents used in both the depressed
and manic phases of BD17, 18. Although the mechanism of action
of Li and VPA are unclear, they both appear to reduce immune cell
signaling through inactivation of the enzyme glycogen synthase
kinase-3 beta (GSK-3β) in the Wnt pathway. Li and VPA also
inactivate other enzymes involved in inflammation, including
cyclooxygenase 2 and aracadonic acid.19 Recent data suggest that
the Wnt family of lipoglycoproteins signal microglia activation
through pro-inflammatory cytokines and β-catenin signaling
networks (Figure 2).20 Gene-expression profiling also reveals that
Wnt-3A stimulation specifically increases the expression of pro-
inflammatory immune response genes in microglia and exacer-
bates the release of interleukin (IL)-6, IL-12 and tumor necrosis
factor (TNF-α).20,21
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Given the strength of the evidence for involvement of
neuroinflammatory processes in integrating the serotonin system
with the Wnt pathway, the focus of this article is to critically
examine the role microglia have in BD. We will relate findings in
these signaling pathways to pharmacological treatment and
clinical systems, based on current data and translational models
for investigating the pathology and physiology of BD.

ANTIDEPRESSANTS, SEROTONIN AND THE KYP

Serotonin and bipolar depression
Monoamines have been implicated in altered production, trans-
port, storage, release, reuptake and degradation of neurotrans-
mitters in BD. Excitatory N-methyl-D-aspartate receptor and
inhibitory gamma-aminobutyric acid amino acids, cholinergic

Figure 1. Proposed role of activated microglia in the modulation of inflammatory mediators, neurotransmitter synthesis and synaptic plasticity
in bipolar disorder (BD). CRP, C-reactive protein; IDO, indoindoleamine 2,3-dioxygenase; 5-HT-serotonin; RNS, reactive nitrogen species; ROS,
reactive oxygen species.

Figure 2. The Wnt/GSK- 3β pathway.

Microglia in bipolar disorder
CC Watkins et al

2

Translational Psychiatry (2014), 1 – 10 © 2014 Macmillan Publishers Limited



and noradrenergic systems, corticotrophin releasing factor,
thyrotropin releasing factor and other neurotransmitters and
neuromodulators have been linked to the depressive phase of
BD.22 SSRIs, in the form of commonly prescribed antidepressant
drugs, have hel ped to expand our knowledge of both unipolar
depression (MDD) and BD and the mechanisms behind these
disorders. Serotonin is involved in mood, sleep, appetite and
energy level, all of which are altered in BD. The illicit drug 3,4,-
methylene-dioxy-methamphetamine (ecstasy) inhibits the reup-
take of serotonin through the serotonin transporter (5-HTT). In a
mood state that resembles BD, the transient elevation in serotonin
activity generates feelings of elation, followed by depressive
feelings related to depleted serotonin when the drug wears off.
Multiple animal studies suggest that serotonin signaling may be

influenced by immune cytokine pathways in the brain and peri-
phery through the KYP.11,12 Activated microglia in the KYP trigger
an alternate route of tryptophan metabolism that ultimately
reduces overall serotonin availability in the brain (Figure 1).
Cytokines such as IL-2 and IL-6, released in the periphery from
macrophages and interferon-gamma (IFN-γ) from activated micro-
glia within the CNS, may provoke overstimulation of the KYP that
effectively depletes CNS serotonin levels and alters trophic
support from brain-derived neurotrophic factor (BDNF) and
TNF-α.23–25 A systematic meta-analysis of cytokines in BD found
evidence in support of peripheral inflammatory alterations. Signifi-
cant increases were observed in several cytokines and receptors
including soluble IL-2, IL-2 receptor, IL-4, IL-6 receptor and
TNF-α.26 Signaling pathways involving pro-inflammatory cytokines
have also been shown to increase the activity of the serotonin
5-HTT in the brain, with inflammatory mediators in the KYP
specifically connected to 5-HTT in other organ systems.27,23,24

Genetic and postmortem studies demonstrate a higher propen-
sity to develop affective illness in individuals with 5-HTT regulatory
site promoter region length polymorphisms (5-HTTLPR-s allele),
and the associated cytokine-induced fatigue and depression
symptoms were observed.28–31 Within the context of stressful
events, there appear to be different allelic frequencies in BD
compared with MDD, with no interaction with stress in conferring
susceptibility in BD.32–34 Although one rare, distinct 5-HTT gene
polymorphism was associated with greater chance of developing
MDD but not BD,35 data from a different series of studies using
a genetic marker within the serotonin transporter found a
5-HTT-transporter polymorphism that occurs at a higher frequency
in both MDD and BD.29,36,37

Serotonin signaling through the KYP
The KYP, activated by peripheral cytokines and mediated by
microglia, is an increasingly attractive potential modulator of
serotonin and BDNF. Serotonin and BDNF may also be connected
through pro-inflammatory cytokines. Research focused at the
interface between inflammatory cascades, neuroplasticity and
depression have demonstrated that once peripheral cytokines
gain access to the brain, they influence production, release and
reuptake of serotonin, as well as norepinephrine and dopamine.12

In BD a decreased plasma ratio of tryptophan, the precursor to
serotonin, to other large, neutral amino acids was demonstrated in
acute mania.27,38 Those serotonin deficits in the manic phase of
BD form the basis of an interesting hypothesis that overstimula-
tion of the enzyme indoleamine 2,3-dioxygenase (IDO) by
peripheral and central inflammatory mediators activates the
consumption of tryptophan in the KYP (Figure 1) and leads to
serotonin depletion.27,24,39,40 That pathway represents an alter-
native metabolic route for tryptophan.23,24,27,38 Activated micro-
glia in the brain promote expression of cytokines that leads to
increased IDO activity and CNS tryptophan depletion with a
concurrent increase in brain quinolinic acid, a metabolite
produced distally within the KYP. Another enzyme, tryptophan

2,3-dioxygenase, further metabolizes tryptophan in the periphery
along the KYP.39 Because brain tryptophan levels depend on
plasma levels, brain serotonin will be compromised by the
systemic activity of these two enzymes. Overproduction of
quinolinic acid, an excitotoxin, can further decrease BDNF, activate
pro-apoptotic cascades by TNF-α and increase glutamate
and N-methyl-D-aspartate receptor-activated excitotoxicity.23,39,41

Interestingly, brain imaging studies demonstrate a selective
increase in glutamate in the occipital cortex during both acute
exacerbation and remission of depression.42,43 We propose that a
portion of the neuropsychiatric findings in both depression and
mania may rely on that mechanism. Furthermore, activation of
that pathway may lead to changes in synaptic resilience,
connectivity of serotonergic neurons and/or programmed cell
death. Some propose that the balance between production of
quinolinic acid versus kynurenic acid may be more important than
serotonin depletion in mediating symptoms in BD. Translational
methods to study activated microglia and serotonin transmission,
specifically the integrity of the presynaptic 5-HTT sites, may lend
insight into the pathogenesis of BD-related symptoms.
Given that antidepressant treatments enhance monoamine

function, to date translational research has focused on the
serotonin (5-HT) system in unipolar depression with bipolar
depression used as a comparison.32,44–46 However, results related
to the serotonin transporter in BD have conflicted at times, due in
part to the heterogeneity of the populations studied, the radio-
pharmaceuticals used, the active mood state of the patient and
other methodological differences.32,45 Recent advances in radio-
tracer development and high-resolution molecular imaging of the
brain provide an opportunity to evaluate the serotonin system, as
well as innovative pathways involved in neuronal plasticity and
neuroinflammation in BD.

MOOD STABILIZERS, LI AND VPA AND THE WNT PATHWAY
Mood stabilizers are linked to pro-inflammatory cytokine
production
Mood stabilizers, the primary pharmacological treatments for BD,
have been shown to affect neuroinflammatory pathways.18 Cell
culture, animal models and clinical studies examining haloperidol,
lamotrigine, carbamazepine, Li and VPA show changes in
arachidonic acid, cytokines and other markers of inflammation
in the presence of these medications.19,47–49 However, some of
these studies have been contradictory because of the variability in
the cell types studied, diagnosis of the subjects included (bipolar I,
bipolar II and/or euthymic) and other medications taken during
the study. Many of the studies include pretreatment scenarios
with non-physiological dosages of the mood stabilizers, which can
also skew the interpretation of the results.18 However, the trend is
that Li and VPA, in particular, dampen the pro-inflammatory
response in BD and may stimulate inflammatory markers in
euthymic patients.47

Both Li and VPA appear to affect inflammatory pathways by
downregulating markers of T-cell activation, IL-2 and IFN-γ and by
reducing lipopolysaccharide (LPS)-induced dopaminergic neuro-
toxicity by inhibiting microglial over-activation.19,50 In a recent
study of the effects of Li on LPS-induced inflammation on rat
primary glia cells, Li decreased expression of cyclooxygenase 2
and iNOS.51 Li also decreased secretion of TNF-α, IL1-β and PGE(2),
although only in the presence of supra-therapeutic dosages of Li.
In monocytes from healthy control subjects, Li increased IL-1 in a
dose dependent manner and decreased levels of LPS, with no
effect on IL-6.52 In contrast, another study in euthymic bipolar
patients compared to healthy controls showed lower levels of IL-2,
IL-6, IL-10 and IFN-γ in the bipolar group only.53 The VPA
pretreatment of glia cells is also suggested to reduce LPS-induced
pro-inflammatory responses by limiting microglial activation

Microglia in bipolar disorder
CC Watkins et al

3

© 2014 Macmillan Publishers Limited Translational Psychiatry (2014), 1 – 10



through the enzyme histone deacetylase, thus decreasing
dopamine-related neurotoxicity.50

Li and VPA also upregulate the expression of the neurotrophic
factors BDNF and glial cell line-derived neurotrophic factor from
astrocytes that promote cell survival, differentiation and
growth.40,54–57 Another group demonstrated that monocytes of
a large proportion of bipolar patients and offspring of bipolar
parents showed an inflammatory gene expression signature.12,58

Those treated with Li and VPA appear to have a downregulated
expression of a series of inflammatory genes. This body of
literature supports investigating biomarkers for inflammatory
mediators as a logical next step to identify both manic and
depressed states in patients. In addition to gaining insight into the
pathophysiology of BD, information obtained from additional
investigations may eventually help with therapeutic monitoring.

The Wnt/GSK-3β pathway is a target for mood stabilizers
A growing body of literature suggests that Li and VPA also target
GSK-3β in the Wnt signaling pathway. The Wnt pathway is a highly
conserved signaling cascade that is critical for synaptic plasticity,
circadian rhythms and cell survival59 (Figure 2). GSK-3β is the
principal enzyme in the Wnt pathway and appears to share a
common link between proteins involved in immune response and
clinical characteristics of BD, as well as schizophrenia and unipolar
depression.60–62 Therefore, inflammatory cytokines, working
through this signal transduction mechanism, may be a potential
target for therapeutic intervention in BD. Medication induced and
transgenic mouse models suggest that Li and VPA directly inhibit
GSK-3β by upregulating expression of BDNF and glial cell line-
derived neurotrophic factor from astrocytes and microglia that
promote cell survival, differentiation and growth.61,63,64 In vitro
studies using neuronal cell lines also demonstrate that Li and VPA
inhibit GSK-3β that leads to an accumulation of β-catenin.
β-catenin, as a transcription factor, stimulates other neurotrophic
factors and attenuates the activation of microglia.12,47,65 Therefore,
the Wnt pathway is important for mood stabilizer activity and
inflammatory signaling.

Genetic studies of Wnt proteins in inflammation and BD
An emerging body of literature supports the hypothesis that
genetic aberrations or polymorphisms in the Wnt signaling
pathway may be involved in BD.8 In studies of monozygotic twins
discordant for BD, 292 genes were found to be differentially
expressed in BD, with eight genes in the Wnt signaling pathway.66

Family-based association studies of 554 offspring with BD and
their parents from 317 families found evidence for an association
of BD susceptibility within the peroxisome proliferator-activated
receptor (PPAR) gene family in the Wnt signaling pathway.55,67

Specifically, one group observed an association with a single-
nucleotide polymorphism repeat that was within a single-
haplotype block that spanned exons 3–7 of the gene on
chromosome 6p. BD patients with a higher degree of functional
impairment and carrying an allele in Wnt-2B or Wnt-7A were more
strongly associated with this single-nucleotide polymorphism.60

Chromosome 6p ha s not been implicated directly by linkage
studies of BD, although this region contains several interesting
candidate genes that have been associated with both schizo-
phrenia and psychotic BD.68–71

Inflammation, cell proliferation and peroxisomal functioning are
modulated by the PPAR family of nuclear hormone receptors.72

However, members of the PPAR gene family have not been widely
investigated in association with either bipolar depression, bipolar
mania or psychotic disorders. Murine brain, skin and adipose
tissue have significant gene expression of PPARD, with higher
expression in the hippocampus, hypothalamus, entorhinal cortex,
as well as within the corpus callosum and neostriatum.72,73 In rat
models of neurodegeneration and ischemia, agonists of PPARD

were neuroprotective.74 Several studies utilizing the Global
Assessment of Functioning Scale, which captures both social-
occupational and interpersonal functioning, identified unemploy-
ment and functional impairment as the most highly familial
features of BD among 40 variables tested.67,75 The association of
PPARD gene with poor functioning is consistent with a potential
role for Wnt dysfunction in moderate to severe BD. Taken
together, these findings suggest that Wnt polymorphisms may
confer vulnerability for developing BD, and may act through
inflammatory cascades to regulate trophic support to brain
structures. Future studies that examine why BD symptoms cluster
in families with Wnt gene polymorphisms and how this relates to
serotonin signaling will enhance our understanding of the Wnt
cascade in BD.

MICROGLIA: THE KEY CELLS WHERE ACTIONS OF
ANTIDEPRESSANTS AND MOOD STABILIZERS CONVERGE
Microglia and immune signaling
Based on pharmacological evidence, microglia appear to have a
functional role in serotonin neurotransmitter signaling through
inflammatory mechanisms that ultimately affect the Wnt/GSK-3β
pathway and mood in BD.76 Glial cells have become increasingly
important in understanding neuroplasticity and cellular resilience
mechanisms. Astrocytes and microglia are subtypes of glial cells in
the CNS. Microglia, as the resident macrophages of the brain, adapt
rapidly and respond to changes in the CNS environment by
regulating cytokine production and neuronal plasticity and neuro-
transmitter synthesis. Microglia are considered ‘activated’ after
interacting with macrophages and undergo a morphological
change. Activated microglia proliferate, express the 18-kDa trans-
locator protein (TSPO) and release cytokines and other signal
systems.76 Postmortem studies in BD suggest a decreased number
and size of microglia.47,82,84,108 The deficit in density and overall
number of glia were most notable in the prefrontal cortex and
anterior cingulate cortex of participants with mood disorders.82,84,108

Collectively, this reduction in microglial growth argues for a mood
disorder-specific glial pathology where decreased proliferation
occurs before BD or as a result of a protracted course of
degeneration where extensive gliosis has not yet been processed.
Bipolar patients are proposed to have a higher inflammatory load of
circulating monocytes at the transcriptome level involving various
inflammatory transcripts, regulated by microglia and related to the
Wnt signaling pathway.13 However, little is known about the role of
activated microglia in BD in manic versus depressed mood episodes.
Given that microglia help regulate cytokine production combined
with the clinical evidence in the literature and our preliminary
studies, there is increased support for investigating activated
microglia and inflammatory cytokines as potential biomarkers for
predicting disease exacerbation in both the manic and depressed
states of the illness.12,26,47,77 Therefore, activated microglia may be a
potential biomarker for mood states and a measure of pharmaco-
logical response in BD therapy.

Serotonin signaling promotes inflammation through glial
signaling
Multiple SSRIs have been proposed to have an effect on microglia
with both pro-and anti-inflammatory properties reported.78 The
disparate findings of decreased TNF-α production,79 increased80

and no effect81 on serotonin production may be because of the
differences in experimental approach. One group recently
demonstrated that at dosages consistent with pharmacological
treatment, fluoxetine, sertraline, paroxetine and fluvoxamine
significantly increased LPS-induced production of TNF-α.78 They
also found that exposure over 24-h and concentrations o5 M of
antidepressants actually created a pro-inflammatory environment.
At the molecular level, serotonin production is also modulated by
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microglia. As mentioned above, activated microglia promote
expression of inflammatory cytokines that stimulate IDO activity
and deplete CNS tryptophan. Activated microglia signaling
cascades, because of enzyme activation in the KYP, ultimately
lead to lower levels of serotonin and alterations in 5-HTT
availability (Figure 1).41,82–84 Further tryptophan metabolism leads
to overproduction of excitotoxins and additional cytokine activa-
tion, ultimately resulting in glutamate and N-methyl-D-aspartate
receptor excitotoxicity. Interestingly, brain imaging studies
demonstrate a selective increase in glutamate in the occipital
cortex during both acute exacerbation and remission of
depression.41,85 We hypothesize, as have others, that a portion
of the neuropsychiatric findings in both depression and mania
may rely on microglia acting through KYP mechanisms.

Wnt proteins interact with microglia to promote inflammation
The Wnt pathway is of interest in BD and molecular imaging
investigations (Figure 2). We reviewed the role of Wnt–glial
interactions in the section 'The Wnt/ GSK-3β pathway as a target
for mood stabilizers', in our discussion, and their possible
involvement in mood disorder. Although some argue that lack
of sufficient clinical and postmortem data to support Wnt
alterations in any mood disorder,86 pharmacological, neurode-
velopmental and behavioral data point to the possibility of
involvement of the Wnt pathway through glial-neuronal
signaling. A recent series of studies provide strong evidence
that Wnt-3A and Wnt-5A proteins act directly on β-catenin and
drive a pro-inflammatory transformation of microglial
cells.20,21,87 The Wnt family of lipoglycoproteins appear to direct
response genes in microglia and generate de novo IL-6, IL-12
and TNF-α. Future clinical studies of microglia are needed that
also incorporate β-catenin and GSK-3β genotypes and or
signaling networks in order to understand pathogenic signifi-
cance of microglia in BD.

FUNCTIONAL BRAIN IMAGING: NEUROTRANSMITTERS AND
MICROGLIA
Advantages of in vivo imaging models
Investigation of therapeutic pathways and microglia related
mechanisms for BD has been challenging because there are few
animal models that fully recapitulate the disease. Most of the
current information comes from postmortem studies.44,88,89 One
limitation of postmortem tissue investigation is that the tissue is
usually obtained after a person died or at the end stage of the
disease. Despite the potential to understand BD noninvasively and
therefore in a highly relevant milieu in human subjects, BD has
received only limited attention in molecular imaging studies.
Functional neuroimaging modalities such as positron emission
tomography (PET), single-photon emission computed tomography
and functional magnetic resonance imaging offer powerful,
noninvasive methods to examine brain structure and neurochem-
ical correlates involved in mood. Animal systems that combine
cellular and molecular observations with imaging are being
applied to the study of psychiatric illnesses. One potential caveat
of in vivo brain imaging is its sensitivity in identifying biological
mechanism at the protein and receptor level in human subjects in
either the depressed or manic phase of the illness.

Imaging the serotonin transporter in BD
In human subjects research, structural and functional studies are
emerging in mood disorders, with the most consistent neuroima-
ging data related to alterations in serotonergic signaling in
unipolar depression (MDD).32,36,44,45 However, translating observa-
tions in unipolar depression with findings in bipolar depression90

have not always been consistent. Studies with the 5-HTT ligand

[123I]ADAM in MDD demonstrate decreased 5-HTT availability,
whereas those with [11C](+)McN5652 demonstrate increased
5-HTT binding in mood disorders.44,91,92 The discrepancies in the
5-HTT findings have been attributed to differences in the
radiopharmaceuticals used, the mood state, age of the patients
and imaging duration.44,93,94 Although bipolar patients comprised
only a small portion of the study, bipolar patients and depressed
patients with bipolar relatives showed increased, although not
significant, 5-HT1a binding in the raphe and mesiotemporal
cortex. An increase in 5-HTT was observed in the thalamus of
bipolar patients and unipolar depressed patients with bipolar
relatives.44,92

The 5-HTT radiopharmaceutical [11C]-3-amino-4-(2-dimethyl
amionomethyl-phenylsulfanyl)-benzonitrile, [11C]DASB has ena-
bled sensitive detection of alterations in serotonergic transmi-
ssion.95,96 [11C]DASB was found to be a more effective radioligand
for the serotonin transporter owing to its fast kinetics, reversibility,
higher selectivity, greater specific binding and higher
reproducibility.96–98 In vivo evaluation of 5-HTT with [11C]DASB
has been used by several groups in the setting of alcoholism,
tryptophan depletion, occupancy studies of different SSRI
medications and most recently in our lab in HIV-associated
depression.98–101 Interesting studies in unipolar depression
showed increased binding to 5-HTT and a return to normal
5-HTT availability in recovered depressed patients in a euthymic
mode.32,43,102–104 However, in bipolar-depressed patients, the data
from several studies to date have not been so consistent.32,45,105

One study genotyped for bi- and triallelic 5-HTTLPR polymorph-
isms in bipolar-depressed patients demonstrated lower 5-HTT
binding in BD and no difference in 5-HTTLP in BD compared with
controls.45 However, imaging was done with a radiopharmaceu-
tical that some believe has less specific binding than [11C]
DASB.96,106 The other study used PET imaging with [11C]DASB in
BD, unipolar depression and controls. Unipolar depression and BD
were both associated with elevated 5-HTT binding in the insula,
thalamus and striatum, but showed distinct abnormalities in the
brainstem.32 The BD finding could be explained by potential
medication effects, the varied genetic background of the patients
studied or conceivably because of underlying differences in the
pattern of symptoms between MDD and BD.32 To address some of
the confounding factors that have appeared in the neuroimaging
literature, future studies are needed that focus on imaging families
with BD or individuals with common genetic polymorphisms.

Imaging studies that target microglia
Molecular imaging methods to study activated microglia as a
marker of neuroinflammation may lend insight into the pathogen-
esis of BD-related symptoms. Structural imaging studies report
lower glial and neuronal cell volume and density in the
dorsolateral prefrontal cortex and amygdala of patients with
MDD85,107 and the subgenual cortex in familial BD.108,109

TSPO is an 18-kDa, mitochondrial membrane protein that is
involved in a wide variety of functions including induction of
apoptosis, cholesterol transport and modulation of inflammatory
responses.110 Known until recently as the peripheral benzodiaze-
pine receptor (PBR), but expressed in the brain and the periphery,
TSPO has been linked to in vivo monitoring of glial cell
activation.9,110,111 Specifically, glial cells that are inactive have
low expression of TSPO, whereas active cells have increased
expression.112-114 As glia cells can be activated by a variety of
brain insults, the measurement of TSPO binding is arguably a
useful measurement of inflammation in injured or diseased brain
regions. The TSPO ligand that has been used the most as a
potential inflammatory marker in PET imaging is [11C]-R-
PK11195.115–118 However, [11C]-R-PK11195 is characterized by
high nonspecific binding, high plasma protein binding and low
brain uptake.115 To address those limitations, our group and
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others used the PET ligand [11C]N,N-diethyl-2-[2-(4-methoxyphe-
nyl)-5,7-dimethyl-pyrazolo[1,5-a]pyrimidin-3-yl]-acetamide, [11C]
DPA-713, which appears to bind to the TSPO, as a plausible way
to study microglial activation and implied neuroinflammation in
vivo,119 with [11C]DPA-713-PET as a developing method by which
to evaluate inflammation.120 We examined the cerebral uptake of
[11C]DPA-713 in healthy human control subjects and found that
[11C]DPA-713 had substantially greater delivery and increased
specific binding compared with [11C]-R-PK11195.120 Those results
indicate that [11C]DPA-713 is a promising TSPO ligand for
investigating what is likely neuroinflammation with PET. Whole-
body PET/computed tomography of [11C]DPA-713 shows an
uptake pattern that is consistent with the biodistribution of TSPO
and yields a dose burden that is comparable to that of other [11C]-
labeled PET tracers.121 Our preliminary studies with [11C]DPA-713
show increased volume of distribution in the anterior and
posterior cingulated gyrus and the ventral lateral thalamus.77

Other TSPO ligands are emerging as promising imaging agents
for the practical quantification of microglia. [11C]PBR28 binds to
TSPO and has been used in PET imaging to assess potential
microglial activation.122,123–125 Other second-generation TSPO
ligands evaluated in major psychiatric illnesses include [11C]
vinpocetine,126 [18F]-FEPPA, [¹¹C]DAA1106,127 [18F]-PBR06128 and
several other pharmacological probes.117 To date, many of the
second-generation TSPO ligands have been used to study TSPO
binding in Alzheimer’s disorder, with no studies reported to date
in mood or psychotic disorders.126,127,129

FROM NEUROPHARMACOLOGY AND BRAIN IMAGING TO
CLINICAL APPLICATION
Factoring genetics into molecular imaging studies of BD
Despite the potential to understand microglia, noninvasively in
human subjects, finding a homogenous group of patients with BD
has been challenging because BD is a multi-factorial mental
disorder with proposed heritability. There are susceptibility genes
that may impact the severity and duration of illness episodes
through interactions with the environment. Several studies

estimate a lifetime incidence of BD of 60% in monozygotic twins,
7% in first-degree relatives and an overall heritability of
80%.6,61,130 Although the results from linkage and association
studies have not been easily comparable, there are regions in the
genome consistently associated with BD that correlate with
biological functions of mood and neuroplasticity and are
expressed in the brain.131,132 In addition, stress from significant
life events, impact of substance abuse, hormonal dysregulation
and sleep deprivation are confounding factors known to
contribute to the chronicity of the illness and factor into mood
state.6,131 Newer imaging studies have attempted to factor aspects
of heritability into clinical studies.133 Functional magnetic
resonance imaging and PET studies have shown that depression-
like symptoms of fatigue and psychomotor slowing correlate with
altered neuronal activity in the putamen, nucleus accumbens,
amygdala and the substantia nigra.44,90,134 Interestingly, the
5-HTTLPR genotype was associated with a higher incidence of
MDD during IFN-γ treatment.135,136 Recent PET studies have also
incorporated genetic polymorphisms with imaging techniques.133

Owen et al.123 describe genetic differences in TSPO genotypes
underlying brain uptake patterns of TSPO-targeting radiotracers.
Specifically, a TSPO Ala147Thr polymorphism predicts PBR28-
binding affinity in human platelets. There appears to be high,
medium and low affinity-binding polymorphisms for all of the
second-generation TSPO ligands that will have to be factored into
any future imaging studies.123,124

Clinical correlates of glial and immune signaling
Pro-inflammatory cytokines in both the peripheral and signaled by
microglia in the CNS appear to operate in parallel and are involved
in clinically relevant aspects of BD, including neuronal plasticity,
neurotransmitter synthesis and neuroendocrine processes.12,15,137

There are several lines of clinical and pharmacological evidence
that are consistent with microglia involvement in the inflamma-
tory hypothesis of BD. They include:
(1) Patients with systemic inflammatory disorders such as

coronary artery disease, multiple sclerosis, Crohn’s disease, cancer,

Figure 3. Microglia express TSPO and Beta-catenin that connect monoamine synthesis and the Wnt pathway. (5-HTT, serotonin transporter;
CRP, C-reactive protein; 5-HT, serotonin; TSPO, translocator protein).
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HIV and rheumatoid arthritis have a higher incidence of mood
disorders compared with medically healthy individuals;137–139

(2) BD is associated with a greater prevalence of diabetes
mellitus, thyroid disease, obesity and other neuroendocrine
diseases associated with inflammation;140,141

(3) Increased production of pro-inflammatory cytokines IL-2, IL-2
receptor IL-6 (Po0.01), TNF- (Po0.05) and markers of inflamma-
tion, chemokines, C-reactive protein and adhesion molecules
have been demonstrated in the blood and CSF in both
the manic and depressive phases of BD compared with healthy
subjects;25,45,12,26,142

(4) Acutely ill BD patients with systemic inflammation and non-
hepatic tissue damage have a higher risk for early natural death,
which is reduced with Li treatment;138

(5) Targeted therapies with anti-inflammatory agents such as
eicosanoids, cyclooxygenase 2 inhibitors and antagonists to
TNF- have been shown to ameliorate symptoms in MDD and BD
patients.143

Studies in patients on chronic IFN-α therapy have been some of
the most compelling in identifying neuroanatomical targets for
cytokine effects.12,144 Previously euthymic hepatitis C and cancer
patients undergoing chronic IFN-γ treatment have been observed
to exhibit hypomanic-type symptoms of hypervigilence, irritability
and anxiety, as well as full-blown mania.12,145 Those studies
suggest a particular vulnerability in the dorsal anterior cingulate
cortex compared with non-IFN-γ treated control subjects.146

Neuroimaging data demonstrate that BD as well as high anxiety,
obsessive-compulsive traits and difficulty with conflict resolution
have been associated with the dorsal anterior cingulate
cortex.93,147,148 Prospective studies further identified an occurrence
of depression of 30–50% in cancer patients treated with IFN-γ and
chemotherapeutic agents.135,145,149 These clinical correlations
combined with a translational research approach from lessons in
pharmacology and neuroimaging will hopefully lead to more
studies designed to understand the pathophysiology of BD.

SUMMARY
BD is a prevalent illness with significant disability and early
mortality through suicide. The mechanisms through which both
depression and BD develop are poorly understood. The mono-
amine hypothesis of mood disorders suggests that one of the
biological bases of bipolar depression is a deficiency in serotonin.
As glial cell activation (Figure 3) represents a potential common
pathway for serotonin synthesis and neuronal plasticity, the
available data strongly support translational, in vivo imaging of
inflammation as an encouraging area of investigation for the
proposed examination of the pathophysiology of BD.117,133 The
relevance of these studies is emphasized by the prevalence of BD
and the need to implement early diagnostic and improved
treatment interventions in order to decrease the morbidity and
mortality associated with the illness. Molecular imaging research
on the pathophysiology of BD and mechanisms pertaining to
inflammation, alterations in serotonergic transmission and neuro-
plasticity are sparse. So far, PET studies to evaluate transporter
availability in BD have focused on monoamine systems, including
serotonin (5-HT) and the serotonin transporter (5-HTT), with both
null and positive results depending on the demographics of the
population studied. Important information will be acquired
regarding the interactions of genetic factors and inflammatory
mediators in bipolar patients, as well as the specific role of 5-HTT
in the regulation of cellular plasticity cascades in BD. With
experimental limitations from animal models and postmortem
tissue for BD, we believe that future brain imaging studies in
combination with translational methods will addresses the unmet
needs for a coherent and comprehensive clinical model of BD.
There is also a need to identify relevant inflammatory targets for
improved therapeutic interventions. A growing body of literature

also supports an increased appreciation for the integrated role of
microglia in mood disorders research. An understanding of glia
and immune signaling will potentially enhance discovery in the
brain and behavioral sciences and fuel research on the causes of
mental disorders.
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