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Simple Summary: Hepatocellular carcinoma (HCC), a type of liver cancer, remains a treatment
challenge due to late detection and resistance to currently approved drugs. It takes 15–20 years for a
single new drug to become FDA approved. The purpose of this study was to expedite identification
of novel drugs against drug-resistant HCC. For this, we matched gene expression alterations in
resistant HCC with gene expression changes caused by treatment of cancer cells with drugs already
FDA approved for other diseases to find the drug that can reverse the resistance-related changes.
Among the identified drugs, we validated the growth inhibitory effect of two drugs, identified
their mechanism in HCC and, thus, provided proof of concept evidence for validity of this drug
repurposing approach with potential for use in personalized medicine.

Abstract: Objective: Hepatocellular carcinoma (HCC) is frequently diagnosed in patients with
late-stage disease who are ineligible for curative surgical therapies. The majority of patients become
resistant to sorafenib, the only approved first-line therapy for advanced cancer, underscoring the
need for newer, more effective drugs. The purpose of this study is to expedite identification of novel
drugs against sorafenib resistant (SR)-HCC. Methods: We employed a transcriptomics-based drug
repurposing method termed connectivity mapping using gene signatures from in vitro-derived SR
Huh7 HCC cells. For proof of concept validation, we focused on drugs that were FDA-approved or
under clinical investigation and prioritized two anti-neoplastic agents (dasatinib and fostamatinib)
with targets associated with HCC. We also prospectively validated predicted gene expression changes
in drug-treated SR Huh7 cells as well as identified and validated the targets of Fostamatinib in HCC.
Results: Dasatinib specifically reduced the viability of SR-HCC cells that correlated with up-regulated
activity of SRC family kinases, its targets, in our SR-HCC model. However, fostamatinib was able
to inhibit both parental and SR HCC cells in vitro and in xenograft models. Ingenuity pathway
analysis of fostamatinib gene expression signature from LINCS predicted JAK/STAT, PI3K/AKT,
ERK/MAPK pathways as potential targets of fostamatinib that were validated by Western blot analysis.
Fostamatinib treatment reversed the expression of genes that were deregulated in SR HCC. Conclusion:
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We provide proof of concept evidence for the validity of this drug repurposing approach for SR-HCC
with implications for personalized medicine.

Keywords: hepatocellular carcinoma; drug resistance; drug repurposing; sorafenib;
fostamatinib; dasatinib

1. Introduction

Liver cancer ranks seventh among the most common cancers in the world and, according to
a recent report [1], it is the fourth leading cause of cancer-related death. As per the prediction
of The American Cancer Society, ~42,810 new individuals (30,170 in men and 12,640 in women)
will be diagnosed with primary hepatocellular cancer and intrahepatic bile duct cancer and about
30,160 patients (20,020 men and 10,140 women) will die of these cancers in the United States in 2020
(https://www.cancer.org/cancer/liver-cancer.html). Since 1980, liver cancer incidence rates have more
than tripled and death rates have more than doubled.

While a small proportion of hepatocellular carcinoma (HCC) patients diagnosed at an early
stage can be treated by tumor resection, cryoablation or liver transplant, these treatments are not
effective in the majority of HCC patients diagnosed at an advanced stage of the disease. Sorafenib,
a multi-kinase inhibitor, is the most widely used drug since 2007 in treating such patients [2]. However,
the median overall survival of sorafenib treated patients is only extended by 2.8 months compared
to untreated patients [3]. This minimal therapeutic response is attributed to HCC tumors having an
intrinsic resistance to the cytostatic effects of sorafenib [4]. For HCC patients who become resistant
to sorafenib, FDA recently approved its congener regorafenib [5] and checkpoint blockade anti-PD-1
antibodies, nivolumab [6] and pembrolizumab [7], as second-line treatment. However, only a subset
of such patients respond to this combination therapy. In recent clinical trials in the first-line setting,
nivolumab [8] or pembrolizumab [9] could not significantly improve survival of HCC patients compared
to sorafenib and best supportive care, respectively. Lenvatinib, another multi-kinase inhibitor, recently
approved as first-line therapy for advanced HCCs, was not significantly superior to sorafenib in
improving overall survival in clinical trials [10]. Thus, there is an urgent need to develop therapeutic
strategies to overcome sorafenib resistance and discover new, more effective therapies.

Due to the heterogeneous molecular mechanisms underlying HCC tumor progression and
sorafenib resistance, it is unlikely that targeting one major molecular mechanism will be sufficient
to treat this disease [11]. Furthermore, collecting tissues through biopsy is not standard of care for
advanced HCC patients that relapse on sorafenib. As a result, the lack of available biomolecular data
of HCC patients treated with sorafenib severely limits the ability to study fundamental mechanisms
of resistance and potential targets for combination therapies. Therefore, we sought to investigate
sorafenib resistance in HCC in an unbiased way through global analysis of the transcriptome in
experimental models of sorafenib resistance. We generated gene expression data from an in vitro model
of HCC sorafenib resistance in the Huh7 cell line, and conducted a comprehensive analysis of other
publicly available gene expression data from experimental models of sorafenib resistance (SR-HCC) and
patient-derived HCC tumors. We evaluated these SR-HCC gene expression models for their coverage
in human HCC tissue samples and their prognostic significance. Next, in order to discover drug-disease
hypotheses, we utilized the aforementioned gene expression profiles as the basis for our computational
drug repurposing analyses via connectivity mapping. Connectivity mapping uses pattern-matching
algorithms to compare genome-wide gene expression changes observed in cultured human cells
treated with drugs to those of biological states of interest: e.g., tumor vs. normal [12]. Connectivity
scores quantify the drug-disease hypotheses through correlations between ranked gene lists of query
gene signatures and drug reference gene signatures, commonly via the Kolgomorov–Smirnov statistic
or the modified gene set enrichment analysis method [12,13]. For instance, drug-induced gene
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signatures with negative connectivity scores are hypothesized to reverse or oppose the query gene
signature characterizing a disease, and vice versa. Furthermore, the use of genome-wide expression
profiles provides mechanistic insight into tumor biology and drug efficacy, which may be missed by
other guilt-by-association approaches. In this study, we hypothesize that transcriptomics data from
experimental models of sorafenib-resistant HCC (i) will enable validation of the in vitro models in
the absence of tissue available from sorafenib resistant tumors, (ii) can be applied in connectivity
mapping studies to predict novel therapies to curb resistance to sorafenib in HCC, and (iii) will reveal
molecular mechanisms underlying sorafenib resistance in HCC tumors in the context of gene targets
and enriched pathways.

2. Results

A workflow overview for this study is presented in Figure 1.
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Figure 1. Overview of computational drug repurposing workflow and drug target network. Gene
expression signatures of experimental models of hepatocellular carcinoma (HCC) sorafenib resistance
were (i) assessed for prognostic significance, and (ii) queried against gene expression signatures
characterizing drug perturbations in the HepG2 cell line contained in the Library of Integrated
Network-based Cellular Signatures (LINCS) database. Connectivity scores were calculated by the
rank-based, non-parametric weighted Kolgomorov-Smirnov (KS) statistic. Drugs with negative
connectivity scores (i.e., anti-correlated) represent those that are hypothesized to reverse HCC sorafenib
resistance gene signature. Drug candidates were further prioritized based on FDA approval/clinical
investigation status, known anti-neoplastic activity and literature evidence for drug target genes
associated with HCC. Two drugs were subsequently selected for in vitro validation.

2.1. Comparison of Gene Signatures of Experimental Models of Sorafenib Resistance

2.1.1. Generation and Microarray Analysis of Sorafenib-Resistant HCC Cell Line

Sorafenib-resistant HCC cell lines were generated from parental (sensitive) Huh7 cells (Huh7-S)
following long-term exposure to sorafenib [14]. Viability assays demonstrated that the IC50 doses for
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resistant cells were approximately 5-fold higher than that of parental Huh-7 cells (Figure S1). Microarray
analysis was performed on the parental cells (Huh7-S) and sorafenib-resistant cells (Huh7-R and
Huh7-R-A7) (GSE94550). Comparing Huh7-R-A7 vs. Huh-S cells to define an HCC sorafenib resistance
gene signature, we determined 368 genes to be differentially expressed (adjusted p < 0.001) (Table S1).
The top Gene Ontology (GO) molecular functions, biological processes and cellular components
enriched in the sorafenib resistance gene signature (FDR < 0.05) are reported in Table S1.

2.1.2. Evaluation of Experimental Models of HCC Sorafenib Resistance against HCC Patient Datasets

We conducted a comprehensive analysis of publicly available gene expression datasets
characterizing sorafenib resistance in HCC, including an in vitro HepG2 cell line (HepG2-R) [15],
in vitro HCC patient culture (HCC-3sp-R) [16], and an in vivo xenograft model using transplanted
Huh7 cells (Xeno-R) [17]. Sorafenib resistance (SR) dataset features are described in Table 1, and
gene signature overlap is shown in Figure S2. Interestingly, the distinct gene signatures showed very
little overlap among up- and down-regulated genes. To assess the clinical prognostic relevance of
each of the SR gene signatures, we obtained additional publicly available gene expression datasets
characterizing HCC patient tumors of diverse etiologies from The Cancer Genome Atlas (TCGA) and
Gene Expression Omnibus (GEO) databases. First, the presence of the SR gene signatures within the
HCC patient datasets was detected using the nearest template method (weighted cosine similarity
metric, FDR < 0.05). The ability for the gene signatures to distinguish between HCC tumor and normal
liver tissue was comparable across datasets. However, the average frequency of SR+ HCC tumors
defined by the SR gene signatures among the GEO datasets were highest in the Huh7-R-A7 (52.7%)
and Xeno-R (46.4%) signatures, while HepG2-R (26.3%) and HCC-3sp-R (27.7%) were lower (Table 1).
Similarly, the Huh7-R-A7 and Xeno-R gene signatures detected a higher percentage of SR+ samples
using RNAseq data from the TCGA liver hepatocellular carcinoma (LIHC) subset (Figure 2A). Second,
we assessed the relationship between the presence of a sorafenib resistance gene signature and survival
using the TCGA dataset. Of the four SR gene signatures, HCC patients with tumors harboring the
Huh7-R-A7 sorafenib resistance gene signature (SR+) exhibited significantly reduced survival as
compared to those that showed the opposite gene signature pattern (SR−) (log-rank p = 0.0086; HR =

1.59, 95% CI: 1.13–2.45) (Figure 2B). Due to the lack of survival outcome data for HCC patients with
gene expression data from the GEO database, we assessed the sensitivity and specificity by which the
four SR gene signatures could distinguish HCC tumor vs. normal liver tissue. The average sensitivity
and specificity for the SR signatures are as follows: Huh7-R-A7 (0.50, 0.82), HepG2-R (0.53, 0.89),
HCC-3sp-R (0.48, 0.89), Xeno-R (0.73, 0.80).
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Table 1. Description of HCC patient gene expression datasets and classification of HCC tumor vs. normal liver status by sorafenib resistance gene signatures.

HCC Patient Dataset GSE14323 GSE14520_GPL571 GSE14520_GPL3921 GSE45267 GSE62232 GSE6764

Number HCC tumor/normal liver
samples

n = 22 tumor/n =
19 normal

n = 38 tumor/n =
19 normal

n = 214 tumor/n =
220 normal

n = 31 tumor/n =
24 normal

n = 81 tumor/n =
10 normal

n = 35 tumor/n =
10 normal

Microarray platform
Affymetrix

Human Genome
U133A 2.0 Array

Affymetrix
Human Genome
U133A 2.0 Array

Affymetrix HT
Human Genome

U133A Array

Affymetrix
Human Genome

U133 Plus 2.0
Array

Affymetrix
Human Genome

U133 Plus 2.0
Array

Affymetrix
Human Genome

U133 Plus 2.0
Array

HCC etiology HCV HBV HBV n/a; HCC dx >40
yrs AI, HBV, HCV HCV

Huh7-R-A7
(n = 368 genes)

% SR+ samples 53.9% 55.8% 44.5% 50.6% 58.2% 53.30%
P value <0.0001 0.4225 0.019 0.5307 0.0397 0.073

Sensitivity 0.56 (95% CI:
0.37–0.72)

0.53 (95% CI:
0.30–0.75)

0.47 (95% CI:
0.38–0.56)

0.43 (95% CI:
0.27–0.61)

0.42 (95% CI:
0.29–0.57)

0.61 (95% CI:
0.39–0.80)

Specificity 1.0 (95% CI:
0.82–1.0)

0.67 (95% CI:
0.35–0.88)

0.70 (95% CI:
0.60–0.76)

0.69 (95% CI:
0.44–0.86)

1.0 (95% CI:
0.68–1.0)

0.86 (95% CI:
0.49–0.99)

HepG2-R
(n = 1147 genes)

% SR+ samples 32.2% 20.9% 22.5% 24.1% 27.5% 30.7%
P value 0.018 0.0405 <0.0001 <0.0001 0.0212 0.1139

Sensitivity 0.42 (95% CI:
0.26–0.59)

0.54 (95% CI:
0.29–0.77)

0.53 (95% CI:
0.45–0.60)

0.57 (95% CI:
0.41–0.72)

0.42 (95% CI:
0.31–0.55)

0.68 (95% CI:
0.46–0.85)

Specificity 0.93 (95% CI:
0.70–1.0)

0.88 (95% CI:
0.64–0.98)

0.90 (95% CI:
0.85–0.94)

0.97 (95% CI:
0.84–1.0)

1.0 (95% CI:
0.87–1.0)

0.67 (95% CI:
0.35–0.88)

HCC-3sp-R
(n = 847 genes)

% SR+ samples 31.0% 23.3% 25.6% 31.0% 28.6% 26.7%
P value 0.0007 0.0538 <0.0001 0.0168 0.0443 0.0443

Sensitivity 0.45 (95% CI:
0.28–0.63)

0.50 (95% CI:
0.28–0.72)

0.46 (95% CI:
0.39–0.53)

0.49 (95% CI:
0.34–0.64)

0.40 (95% CI:
0.29–0.52)

0.57 (95%CI:
0.37–0.76)

Specificity 1.0 (95% CI:
0.82–1.0)

0.87 (95% CI:
0.62–0.98)

0.83 (95% CI:
0.77–0.88)

0.79 (95% CI:
0.62–0.89)

1.0 (95% CI:
0.68–1.0)

0.86 (95% CI:
0.53–0.99)

Xeno-R
(n = 175 genes)

% SR+ samples 25.2% 60.5% 50.1% 62.1% 40.7% 40.0%
P value 0.0686 <0.0001 <0.0001 <0.0001 0.008 0.0049

Sensitivity 0.33 (95% CI:
0.15–0.58)

0.82 (95% CI:
0.52–0.97)

0.86 (95% CI:
0.77–0.92)

0.86 (95% CI:
0.67–0.95)

0.6 (95% CI:
0.42–0.75)

0.93 (95% CI:
0.70–1.0)

Specificity 0 (95% CI: 0–0.56) 1.0 (95% CI:
0.80–1.0)

0.99 (95% CI:
0.96–1.0)

1.0 (95% CI:
0.89–1.0)

1.0 (95% CI:
0.65–1.0)

0.80 (95% CI:
0.38–0.99)

For each of the six gene expression datasets from the Gene Expression Omnibus (GEO) database, the number of HCC tumor samples, normal liver samples, microarray platform type and
HCC etiology for tumors are shown (AI= alcohol-induced, HBV= hepatitis B virus, HCV= hepatitis C virus). Fisher exact text P values (bold values indicating statistical significance at
p < 0.05), sensitivity and specificity measures are shown for each of the four sorafenib resistance (SR) gene signatures across the six gene expression datasets to classify tumor vs. normal
liver tissue statsus: Huh7-R-A7 (Huh7 cell line), HepG2-R (HepG2 cell line), HCC-3sp-R (short term culture of HCC patient), Xeno-R (xenograft of Huh7 cells). Bold numbers indicate
statistical significance at p < 0.05.
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HCC sorafenib resistance (SR) experimental models.   

Figure 2. Sorafenib resistance gene signatures—prognostic significance and drug repurposing
candidates. (A) Percentage of primary tumor samples in The Cancer Genome Atlas (TCGA) liver
hepatocellular carcinoma (LIHC) dataset containing the four sorafenib resistance gene signatures (SR+).
(B) Kaplan–Meier plot of overall survival of TCGA LIHC patients with primary tumors harboring the
Huh7-R-A7 SR gene signature (n = 181 SR+) and those with primary tumors containing the inverse SR
gene signature (n = 190 SR-). Heatmap visualization of hierarchical clustering analysis of connectivity
scores for LINCS drugs derived from gene expression profiles of (C) HCC cell lines (n = 18) from the
CellMiner database and (D) HCC sorafenib resistance (SR) experimental models.

2.2. Drug Repurposing Predictions to Reverse Sorafenib Resistance in HCC

2.2.1. Library of Integrated Network-Based Cellular Signatures (LINCS) Analysis for Drug
Repurposing Predictions

To identify drugs that can reverse sorafenib resistance in HCC, connectivity mapping analyses
were conducted via the Library of Integrated Network-based Cellular Signatures (LINCS) L1000 system.
This database consists of 476,251 gene expression profiles of drug and genetic perturbation conditions
across 77 cellular contexts. We chose to focus on drug-treated profiles from the HepG2 cell line, as
it represented the HCC cell line with the greatest number of unique drugs (n = 3740). To determine
whether HCC cell line context can affect the distribution of drug repurposing hypotheses, we first
used gene expression profiles for 18 HCC cell lines from the CellMinerHCC database to query HepG2
drug perturbation gene expression profiles from the LINCS database. We then performed hierarchical
clustering analysis of connectivity scores for drug predictions across the 18 HCC cell lines. The heatmap
shown in Figure 2C revealed two distinct clusters of drug connectivity scores. Interestingly, both HepG2
and Huh7 belonged to the same main cluster branch, suggesting that the LINCS HepG2 represents a
suitable system to generate drug predictions from gene expression profiles originating in Huh7 cell line
models. Next, we compared the connectivity scores across the four HCC sorafenib resistance models
via hierarchical clustering analysis (Figure 2D). We observed that drug prediction patterns derived from
the two cell lines (Huh7-R-A7 and HepG2-R) and short-term culture (HCC-3sp-R) were nearly opposite
those derived from the mouse model (Xeno-R). The highest degree of similarity of drug prediction
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patterns was between HCC-3sp-R and HepG2-R. These results are consistent with the observed gene
signature overlap shown in Figure S2. For instance, the maximum observed gene overlap between
HCC-3sp-R and HepG2-R was 88 up-regulated and 189 down-regulated genes, while Xeno-R showed
the least overlap with any other model.

2.2.2. Drug Target Analysis and Candidate Prioritization

Due to the superiority of the Huh7-R-A7 sorafenib resistance gene signature to distinguish
significant patient survival patterns using the TCGA LIHC data (Figure 2B), we focused our
prioritization and validation efforts for LINCS drug predictions from this gene signature. Amongst
the drugs predicted to reverse sorafenib resistance from our LINCS analyses, we first determined the
approval and investigational status from the DrugBank and Aggregate Analysis of ClinicalTrials.gov
(AACT) databases to prioritize those drugs that would be most feasible for future preclinical and
clinical testing (Table S2). For these drugs, we annotated drug activity, target pathway and gene
information from KEGG and DrugBank databases. We then further selected only those drugs with
known anti-neoplastic activity for initial validation. Finally, we conducted a systematic search of
genes associated with hepatocellular carcinoma using a publicly available literature mining tool [18]
to determine whether the genes targeted by drug candidates had known roles in HCC. The final
prioritized drug list is shown in Table 2. We selected two drug candidates, one representative
from each approval status, for subsequent validation: 1) dasatinib, SRC family of kinases inhibitor
(FDA-approved) and 2) fostamatinib, SYK inhibitor (under clinical investigation). Additionally, we
analyzed a protein-protein interaction (PPI) network of drug target genes, as shown in Figure S3. The
initial drug targets were connected in a network of a total of 322 protein nodes through 1029 total
interactions (edges). The average node degree (interaction partners) is 6.39, and the number of observed
edges is significantly higher than expected (n = 475; PPI enriched p value < 0.05). PPI connections
were recovered for five out of seven dasatinib gene targets, including SRC. A community detection
network algorithm was applied to the network, and both SRC and SYK were found in the largest PPI
module 5 (n = 46 total nodes). Notably, SRC was ranked with the third highest node degree (n = 33
connections), while SYK has n = 8 connections. SYK exhibited a clustering coefficient of 0.57, while
SRC has a clustering coefficient of 0.14. Taken together, these results suggest SRC inhibition may have
a broad impact on the overall network, while SYK appears to be involved with a more tightly regulated
group of proteins. Finally, we selected the top 100 central genes based on the eigencentrality measure,
which included all dasatinib and fostamatinib gene targets that were in the network. We found that
these highly central drug target genes were altered (mutations, copy number variations, mRNA and
protein expression levels) at a higher frequency in the SR+ TCGA patients (58%) as compared to the SR-
patients (31%). The type and frequency of gene alterations of the top central genes in the PPI network
in SR+ and SR- TCGA LIHC patient tumors are shown in Table S3.
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Table 2. Prioritized LINCS drug predictions for reversing HCC sorafenib resistance using the Huh7-R-A7 gene signature.

Drug Connectivity
Score Status Target(s) Drug Action(s)

dasatinib −0.3073 Approved ABL1,SRC,EPHA2,LCK,YES1,KIT,
PDGFRB,STAT5B,ABL2,FYN antineoplastic, kinase inhibitor

enzalutamide −0.3686 Approved AR antineoplastic, antiandrogen, receptor antagonist
paclitaxel −0.2423 Approved TUBB1,BCL2,NR1I2,MAP4,MAP2,MAPT antineoplastic, antimicrotubule

palbociclib −0.2387 Approved CDK4,CDK6 antineoplastic, kinase inhibitor
pemetrexed −0.2830 Approved TYMS,ATIC,DHFR,GART antineoplastic, antimetabolite, antifolate
toremifene −0.3114 Approved ESR1 antiestrogen, antineoplastic, receptor antagonist

aminoglutethimide −0.3121 Approved CYP19A1,CYP11A1 adrenocortical suppressant, antineoplastic,
aromatase inhibitor

anastrozole −0.3002 Approved CYP19A1 antineoplastic, aromatase inhibitor
nilotinib −0.2677 Approved ABL1,KIT antineoplastic, kinase inhibitor

procarbazine −0.2573 Approved DNA antineoplastic, alkylating
thiotepa −0.3158 Approved DNA antineoplastic, alkylating

vemurafenib −0.3455 Approved BRAF antineoplastic, kinase inhibitor
verteporfin −0.2223 Approved n/a antineoplastic, photosensitizer

brivanib −0.2896 Investigational VEGFR2,FGFR1,FGFR2 antineoplastic, kinase inhibitor
fostamatinib −0.2388 Investigational SYK antineoplastic, anti-inflammatory, kinase inhibitor
darinaparsin −0.3833 Investigational n/a antineoplastic, organic arsenical
enzastaurin −0.2693 Investigational PRKCB antineoplastic, kinase inhibitor

orteronel −0.2719 Investigational CYP17A1 antineoplastic, antiandrogen
quizartinib −0.3080 Investigational FLT3 antineoplastic, kinase inhibitor
tipifarnib −0.4090 Investigational FNTB antineoplastic, farnesyltransferase inhibitor

LINCS drug predictions were prioritized if they had negative connectivity scores in the HEPG2 cell line against the query sorafenib-resistant HCC gene signatures, a known approval or
investigational status from the DrugBank and/or ClinicalTrials.gov databases, and antineoplastic function described in the KEGG Drug and DrugBank databases. Drugs in bold font
targeted genes known to play a role in HCC from a systematic analysis of the biomedical literature.
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2.2.3. Validation of SRC-Inhibitor, Dasatinib, and SYK-Inhibitor, Fostamatinib, Alone and in
Combination with Sorafenib

Dasatinib and fostamatinib were initially tested in vitro as single agents in HCC cell
lines (parental Huh7-S, resistant pool Huh7-R and resistant clone Huh7-R-A7). Parental and
sorafenib-resistant Huh7 cells were treated with increasing concentrations of dasatinib and fostamatinib
independently, and cellular viability was assessed after 48 h. Sorafenib-resistant Huh7 cells were
significantly more sensitive to dasatinib toxicity than parental cells (Figure 3A). Parental cells displayed
an IC50 of > 60 µM, while the IC50 of resistant cells was < 10 µM. On the contrary, all three cell lines
displayed similar sensitivity to fostamatinib toxicity with IC50 values between 20 and 35 µM (Figure 3B),
indicating that fostamatinib may be useful both before and after resistance to sorafenib occurs. We next
hypothesized that combining either dasatinib or fostamatinib with sorafenib would synergistically
inhibit cell viability.
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Figure 3. Validation of predicted drug candidates for action against sorafenib resistant HCC. Increased
sensitivity of sorafenib-resistant Huh7 cells to dasatinib (A) and fostamatinib (B), as measured 48 h
post-treatment using CellTiter-Glo viability assay. Growth of sorafenib-resistant Huh7 cells is inhibited
by dasatinib (C) and fostamatinib (D), alone and in combination with sorafenib, as measured by colony
formation assay 2 weeks post-treatment.

We thus assessed the effect of dasatinib and fostamatinib treatment, alone and in combination with
sorafenib, on the reproductive ability of single cells using the clonogenic survival assay (Figure 3C,D).
At the low (2 µM) concentration tested, dasatinib completely inhibited colony formation in Huh7-R
cells, while having little effect on parental cells. This observation is consistent with the higher sensitivity
of resistant cells to dasatinib observed in viability assay (Figure 3A). Furthermore, the addition of
sorafenib did not further sensitize the Huh7-S cells to dasatinib. Similar to the viability assay, both
parental and resistant cells were significantly sensitive to fostamatinib. The combination of fostamatinib
and sorafenib appeared to have a greater ability to inhibit colony formation in Huh7-S, Huh7-R and
Huh7-R-A7 cells compared to either drug alone.

Since sorafenib-resistant HCC cells appeared to be much more sensitive to long-term dasatinib
toxicity than non-resistant HCC cells, we hypothesized that the activity of SRC kinases would be
up-regulated in the resistant cells. Kinase array analysis demonstrated that five out of seven SRC
kinases (Src, Yes, Fyn, Lck and Lyn) were significantly hyper-phosphorylated in resistant cells as
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compared to parental cells (Figure 4A and Figure S4). On the contrary, SYK protein, the target of
fostamatinb was not detected in the Huh7 cells. Therefore, in order to delineate possible mechanisms
for the action of fostamatinib, we obtained the gene expression characterizing fostamatinib-treated
HepG2 cells (10 µM, 6 h post-treatment) from the LINCS database, and performed Ingenuity pathway
analysis. Several pathways were identified as significantly deregulated post-treatment: inhibition of
oncogenic signaling through JAK/STAT (p < 1.0 × 10−8), protein kinase A (p < 1.0 × 10−7), PI3K/AKT
(p < 1.0 × 10−4), STAT3 (p < 1.0 × 10−4) and ERK/MAPK (p < 1.0 × 10−3); and activation of the tumor
suppressor PTEN (Figure 4B).Cancers 2020, 12, x 10 of 22 
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Figure 4. Mechanism of action of predicted drug candidates. (A) Enhanced phosphorylation of the Src
family of kinases in sorafenib-resistant cells relative to sensitive cells, as measured by the Proteome
Profiler Human Phospho-Kinase Array (* p < 0.05, ** p < 0.010, two-tailed t test) at 48 h. (B) Ingenuity
pathway analysis of gene expression profile from fostamatinib-treated HepG2 cells reveals significantly
altered pathways.

2.2.4. Characterization of Fostamatinib as Anti-HCC Drug

Fostamatinib, recently FDA approved for immune thrombocytopenia, has been clinically tested for
autoimmune diseases and lymphoma. However, its anti-HCC efficacy has not been explored previously.
Since fostamatinib could inhibit the growth of both sorafenib-sensitive and -resistant cells, we tested
its inhibitory potential in several HCC cell lines with differing sensitivities to sorafenib. The IC50 of
fostamatinib for most of these cell lines was 2–4 uM (Figure S5). To confirm the in vivo efficacy of
fostamatinib, we used a subcutaneous xenograft model of MHCCLM3 cells that inherently have reduced
sensitivity to sorafenib. The growth of tumors was significantly inhibited in fostamatinib-treated mice
compared to vehicle-treated mice (Figure 5A). Comparable body weights of the tumor-bearing mice
treated with vehicle or fostamatinib (Figure 5A) indicate no systemic toxicity of the drug. Tumors
harvested at the end of 28 days of treatment weighed an average of 3.2 g in vehicle-treated mice and
1.8 g in fostamatinib-treated mice (Figure 5A). However, due to the small sample size, this difference
was not statistically significant (p = 0.1031).

Based on the IPA analyses of the gene expression profile of fostamatinib-treated HepG2 cells from
LINCS (Figure 4B), we performed immunoblot analysis to validate the kinases that are inhibited by
fostamatinib. Our data demonstrate that fostamatinib inhibits phosphorylation of ERK, AKT and
STAT3 but has no effect on PTEN. Additionally, we observed inhibitory effect on EGFR and JNK
(Figure 5B).

Finally, we sought to validate predicted gene expression changes associated with fostamatinib
treatment from LINCS in our Huh7 cell line model. We performed RNA-seq analysis of fostamatinib-
vs. DMSO vehicle-treated sorafenib-resistant Huh7-R cells and determined the concordance of fold
changes for differentially expressed genes (adjusted p < 0.05) with both the LINCS fostamatinib
gene expression signature and Huh7-R sorafenib resistance gene expression signature (Figure S6).
Prioritized differentially expressed genes that were concordant with the LINCS fostamatinib signature
and discordant with the Huh7-R sorafenib resistance signature are shown in Table S4. We observed 18
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up-regulated and 9 down-regulated genes significantly differentially expressed genes in the Huh7-R
signature that were reversed in the fostamatinib treated Huh7 cells and LINCS fostamatinib HepG2
signature. Several examples of genes implicated in HCC tumorigenesis and/or sorafenib resistance that
were up-regulated in the Huh7-R cells and down-regulated following fostamatinib treatment in both
Huh7-R and HepG2 HCC cells include transforming growth factor beta 2 (TGFB2) [19,20], hypoxia
inducible factor 1 alpha subunit (HIF1A) [21], intercellular adhesion molecule 1 (ICAM1) [22,23] and
ETS proto-oncogene 1 transcription factor (ETS1) [24].Cancers 2020, 12, x 11 of 22 
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Figure 5. In vivo efficacy of fostamatinib and signaling pathway. (A) NSG mice bearing subcutaneous
tumors of MHCCLM3 cells were treated with vehicle or fostamatinib (Fos) for 4 weeks. Body weights of
tumor-bearing mice (BW) and size of the tumor (TS) during treatment, as well as pictures of tumors and
tumor weights at the end of the treatment, are provided. (B) Western blot analysis of indicated proteins
and quantification of phosphorylated protein normalized to total protein in Huh7 and Huh7-SR cells
treated with vehicle (DMSO) or fostamatinib (Fos). Uncropped Western blots are shown in Figure S7.
* Indicates a statistically significant difference between the two groups at p = 0.05.

2.3. Analysis of Clinical and Demographic Factors

2.3.1. Effect of Etiology with Drug Repurposing Hypothesis

We assessed whether HCC etiology could influence drug repurposing predictions. The GEO
HCC patient gene expression datasets, described in Table 1, were filtered to include patient tumors
specific to a given HCC etiology: hepatitis B virus (HBV), hepatitis C virus (HCV) and alcohol-induced
(AI). Etiology-specific gene expression signatures were used in connectivity mapping analysis. Using
hierarchical clustering analysis of drug connectivity scores, we found that all three HBV patient datasets
clustered together, and that two of the three HCV patient datasets clustered together with the one AI
patient dataset (Figure 6A).
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square test p value reported) and (F) patient gender (Fisher exact test p value reported). Note the mean age 
at diagnosis for SR+ and SR− patients is 59.5 years and 59.4 years, respectively. Abbreviations: AI = alcohol-
induced, HBV = hepatitis B virus, HCV = hepatitis C virus, NAFLD = non-alcoholic fatty liver disease, Hem 
= hemochromatosis. 
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differences in proportion of SR+/SR− HCC tumors included HBV (Fisher exact test, p = 0.0444) and non-
alcoholic fatty liver disease (NAFLD) (Fisher exact text, p = 0.0180). We also examined the proportion of 
SR+ and SR− HCC tumors among different stages, Child-Pugh class, race and gender (Figure 6C–F). HCC 
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Figure 6. Impact of clinical and demographic factors on drug repurposing candidates and sorafenib
resistance gene signature. (A) Heatmap visualization of hierarchical clustering analysis of connectivity
scores for LINCS drugs derived from gene expression profiles of HCC patient tumor datasets from
the GEO database representing distinct etiologies. (B) Proportions of SR+ and SR- patient primary
HCC tumors in the TCGA LIHC dataset across five HCC etiologies (chi-square test). Proportions of
HCC patients with primary SR+ and SR- tumors in the TCGA LIHC dataset across (C) stage based on
TNM classification (chi-square test p value reported), (D) Child–Pugh class (chi-square test p value
reported), (E) patient race (chi-square test p value reported) and (F) patient gender (Fisher exact test
p value reported). Note the mean age at diagnosis for SR+ and SR− patients is 59.5 years and 59.4 years,
respectively. Abbreviations: AI = alcohol-induced, HBV = hepatitis B virus, HCV = hepatitis C virus,
NAFLD = non-alcoholic fatty liver disease, Hem = hemochromatosis.

2.3.2. Association of Clinical and Demographic Factors with Sorafenib Resistance Signature

We assessed whether clinical factors (etiology, clinical stage, Child–Pugh class) and patient
demography (race, gender) influenced sorafenib resistance gene signature status. We observed that
HCC etiology could affect the proportion of tumors harboring SR+ and SR− gene signatures in
the TCGA LIHC dataset (chi-square test, p = 0.0279), as shown in Figure 6B. Two etiologies that
exhibited significant differences in proportion of SR+/SR−HCC tumors included HBV (Fisher exact
test, p = 0.0444) and non-alcoholic fatty liver disease (NAFLD) (Fisher exact text, p = 0.0180). We also
examined the proportion of SR+ and SR− HCC tumors among different stages, Child-Pugh class,
race and gender (Figure 6C–F). HCC patient race exhibited a significant trend (chi-square test, p = 0.004),
as shown in Figure 6E, where a higher proportion of SR+ and SR- HCC tumors were found in white and
Asian patients, respectively. However, no significant trend was observed for clinical stage, Child–Pugh
class or gender among SR+ vs. SR− HCC tumor status.

3. Discussion

In this paper, we address how different publicly available gene expression datasets derived from
in vitro and in vivo models of sorafenib resistance in HCC may be reliably assessed in HCC patient tissue
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in terms of their prognostic significance and ability to derive drug repurposing predictions. We also
provide proof of concept evidence for the successful use of the computational drug repurposing
approach in the context of sorafenib-resistant HCC. Similarly, we report on differences in drug
repurposing hypotheses with respect to HCC etiology and cell line source. Although connectivity
mapping has been applied across diverse domains, this is the first study that has sought to explicitly
identify drugs for sorafenib-resistant HCC using drug-induced gene expression signatures from the
Library of Integrated Network-based Cellular Signatures (LINCS) database.

Several previous studies have applied HCC gene signatures to the Connectivity Map (CMap)
database, which consists of a collection of gene expression profiles of five human cancer (non-HCC)
cell lines treated with 1309 compounds [12]. Two studies used HCC gene expression signatures to
query against the CMap database, and validated several drug candidates in vitro and in vivo [25,26].
Another group used a combination of CMap and LINCS to discover novel HCC drugs, and validated
three anthelminitics in primary hepatocytes and two mouse models [27]. Lv et al. queried CMap using
the HCC-3sp-R gene expression data evaluated in this study, and generated six drug predictions to
reverse resistance to sorafenib in HCC; however, these predictions were not validated in any context
in this publication and no information regarding drug mechanisms was presented [11]. While these
previous studies have demonstrated the feasibility of validating connectivity mapping predictions in
HCC, all studies to date have been mostly limited to the use of the CMap drug reference database.
Two distinct advantages of this LINCS-based study include the ability to gauge the effect of drug
perturbations on liver cancer cells (HepG2), as well as the increased number of perturbagens tested in
the LINCS systems (n = 3740 total in HepG2 cell line).

In this study, fostmatinib was discovered to be a potentially useful first-line therapy or
following resistance to sorafenib, either alone or in combination with sorafenib. Fostamatinib is
an inhibitor of spleen tyrosine kinase (SYK), and is currently under investigation for the treatment
of several autoimmune diseases [28]. Fostamatinib has been shown to have anti-cancer properties
for hematological malignancies [29,30], and this is the first study investigating its use in HCC and
sorafenib resistance. SYK is a non-receptor cytoplasmic tyrosine kinase involved in signal transduction
in cells of hematopoietic origin, and more recently, implicated both as a tumor suppressor and promoter
of cell survival in various hematopoietic and epithelial cancers [31,32]. Reduction in SYK expression
has been described as a potential prognostic biomarker in several cancers, including HCC [33–36].
Although SYK mRNA has prognostic significance in HCC, the lack of its expression at protein level in
some HCC cell lines that are sensitive to fostamatinib suggested that the drug functions through other
targets that remain to be discovered. We have demonstrated that several kinases (ARK, AKT, STAT3,
EGFR, and JNK) are inhibited by fostamatinib but future follow-up studies will be needed to identify
direct target(s) of fostamatinib in HCC.

Dasatinib was confirmed to have a unique role in inhibiting cell growth of sorafenib-resistant HCC
cells. The Src family kinase inhibitor dasatinib is approved for the treatment of Ph+ chronic myeloid
leukemia (CML) in chronic phase and imatinib-resistant disease, Ph+ acute lymphoblastic leukemia
with resistance to prior therapy, and is under clinical investigation for solid cancers. Src family kinase
activity has been implicated in several oncogenic processes, including cellular proliferation, survival,
migration and angiogenesis, and increased activity has been demonstrated in HCC in vitro [37–39].
Our experiments demonstrated that dasatinib, a Src family kinase inhibitor, was effective in reducing
HCC cell viability and colony formation alone and in combination with sorafenib in sorafenib-resistant
HCC cells. Additionally, we showed that Src family kinases were significantly activated in the
sorafenib-resistant HCC cells as compared to sorafenib-sensitive HCC cells, consistent with the known
mechanism of action of dasatinib.

Recently, dasatinib was shown to be successful in reducing HCC cell proliferation, adhesion,
migration and invasion in vitro via inhibiting Src and several downstream signaling pathways,
including PI3K/PTEN/Akt and SFK/FAK [40]. Another study found that phosphorylation of Src
was inhibited in a panel of HCC cells that were sensitive and resistant to dasatinib, and that cell



Cancers 2020, 12, 2730 14 of 22

proliferation was not affected by knocking down Src and p-Src in dasatinib-sensitive cells. The authors
concluded that dasatinib-mediated inhibition of Src alone is not sufficient to induce its anti-proliferative
or pro-apoptotic effects, and that dasatinib may mediate its effects via other targets in addition to
Src [41]. Finally, dasatinib was tested in patients with advanced HCC in a recent phase II clinical trial
(NCT00459108), but was terminated early due to futility. The primary objectives were to determine
the progression-free survival (PFS) rate and response rate at 4 months in patients with unresectable
advanced HCC treated with dasatinib. Several factors that may have influenced the results of this
clinical trial include compromised liver status in advanced HCC patients and the use of RECIST criteria
to determine response rate, which is known to be ineffective in evaluating cytostatic agents, including
sorafenib [42]. Furthermore, our results suggest that dasatinib may be most useful for an enriched
HCC patient population with transcriptomic biomarkers characteristic of sorafenib resistance.

We also found that HCC etiology may influence sorafenib resistance and drug repurposing
hypothesis generation using the transcriptomics-based LINCS system. Interestingly, sorafenib was
previously observed to be more effective for HCC patients with an underlying HCV infection compared
to HBV infection or alcoholic cirrhosis [43]. In another study, dasatinib was shown to be most effective
in a group of HCC patients with a “progenitor molecular subtype”, as assessed by gene expression
profiling [41]. Taken together, these findings highlight the importance of considering HCC patient
etiology and other molecular features in drug prediction studies.

4. Materials and Methods

4.1. Reagents (Drugs and Antibodies)

Dasatinib (S1021) and fostamatinib (S2206) were obtained from Selleckchem (Houston, TX,
USA). Sorafenib (S-8502) was purchased from LC Laboratories (Woburn, MA, USA). Antibodies were
purchased from either Santa Cruz Biotechnology (Dallas, TX, USA) (EGFR #sc-03; STAT3 #sc-482;
β-actin #s-47778) or Cell Signaling Technology (Danvers, MA, USA) (pAkt #4060; Akt #9272; pERK
#4370; ERK #9102; pEGFR #3777; pSTAT3 #9131; pPTEN #9551; PTEN #9559; pJNK #9251; JNK #9252)

4.2. Cell Culture and Acquired Sorafenib Resistance

All cells were maintained in minimum essential media supplemented with L-glutamine (2 mM),
10% FBS, sodium pyruvate (0.11 g/L) and penicillin/streptomycin (100 U/mL). Cell media for sorafenib
resistant cell lines were also supplemented with sorafenib (6 µM and 0.1% DMSO). Sorafenib was
withdrawn from the cell media of resistant Huh7 cells for 5–7 days prior to performing all experiments.
The HCC cell line Huh7 cells were generously provided by Dr. James Taylor (Fox Chase Center, PA,
USA). Sorafenib resistant cells (Huh7-R) and several resistant clones (Figure S1) were generated as
described previously [14]. Huh-R-A7 was randomly selected to represent sorafenib resistant clones for
all subsequent experiments.

4.3. Cell Viability Assay

Cells were seeded into 96-well plates (~2000 cells/well) and allowed to incubate overnight.
The next day, cell media were replaced with MEM media containing specified concentration of
sorafenib, fostamatinib or dasatinib (with 0.1% final DMSO concentration). After 48 h of treatment,
the CellTiter-Glo® luminescent viability assay was utilized following the manufacturer’s instructions.
Prior to measuring viability with a luminometer, the luminescent supernatant was transferred to an
opaque luminometer 96-well plate.

4.4. Colony Formation Assay

Cells were seeded into 6-well plates (~2000–5000 cells/well) and allowed to incubate for 24–48 h.
Cells were then treated with a continuous dose of therapeutics (with 0.1% final DMSO concentration)
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for 14–18 days. Media were replaced every 2–3 days. After colonies grew to a sufficient size, cells were
fixed with 3.7% paraformaldehyde (in PBS) and stained with a 0.05% crystal violet solution.

4.5. Mouse Strains, Animal Husbandry and Treatment

Male NSG (NOD scid gamma) mice were purchased from Target Validation Shared Resource
(TVSR) core facility at the Ohio State University. All animals were housed in a temperature-controlled
room under a 12 h light/12 h dark cycle and under helicobacter-free conditions and fed normal chow diet.
All animal studies were reviewed and approved by the Ohio State University Institutional Laboratory
Animal Care and Use Committee (Protocol # 2008A0236). For drug treatment, fostamatinib disodium
(Cat# DC1013, DC-Chemicals, Shanghai, China) was dissolved with 30% polyethylene glycol 400
(PEG 400) (Cat# 91893, Sigma-Aldrich, St. Louis, MO, USA), 5% propylene glycol (PPG) (Cat# P4347,
Sigma-Aldrich), and 0.5% Tween 80 (Cat# P4780, Sigma-Aldrich) to the final concentration of 20 mg/mL
immediately before delivery through oral gavage. For subcutaneous xenografts, 10–12 weeks old NSG
mice were injected subcutaneously with HCCLM3 (2.5 × 106) cells into the right flank. When tumor
volume reached 100 mm3, mice were randomized into 2 groups for treatment with either vehicle
(30% PEG 400, 5% PPG and 0.5% Tween 80) or fostamatinib disodium (80 mg/kg) administrated daily
through oral gavage. Tumor volumes based on digital caliper measurements were calculated by the
ellipsoidal formula (1/2(length × width2)). After 28 days of treatment, mice were euthanized and
tumor tissues were collected, weighed and photographed.

4.6. Western Blot Analysis

In total, 5 × 105 HCC cells of Huh7 and Huh7-SR (sorafenib resistant) were plated in 60 mm
dishes overnight and treated with DMSO and Fostamatinib (10 µM) for 30 min. Whole cell extracts
were prepared in cell lysis buffer (Cat# 9803, Cell signaling technology, Beverly, MA) containing
protease inhibitor cocktail (#P8340, Sigma-Aldrich, St. Louis, MO, USA) and phosphatase inhibitor
cocktails (#P5726 and P0044, Sigma-Aldrich, St. Louis, MO). The cell lysates were incubated at 4 ◦C for
10 min and centrifuged at 4 ◦C for 10 min to collect clear supernatants. Protein concentrations in the
extracts were measured by the bicinchoninic acid (BCA) method using BSA as the standard. Equivalent
amounts of proteins from whole cells were separated by SDS-polyacrylamide (10%) gel electrophoresis
(Bio-Rad, Hercules, CA, USA), transferred to nitrocellulose membranes (GE Healthcare, Chicago, IL,
USA), and incubated using blocking buffer (LI-COR, Lincoln, NE, USA) followed by immunoblotting
with phospho-Akt (S473), total Akt, phospho-ERK (Thr202/Tyr204), total ERK, phospho-EGFR (Y1086),
total EGFR, phospho-STAT3 (Y705), total STAT3, phospho-PTEN (Ser380), total PTEN, phospho-JNK
(Thr183/Tyr185), total JNK, and β-actin. Catalogue numbers and sources of the antibodies are provided
in the Reagents section. Following incubation with appropriate secondary antibody (IRD-680 or
IRD-800), the specific immune-reactive bands were visualized using Odyssey CLx Imaging System
(LI-COR, Lincoln) and quantified using Image Studio 5.2.5 software (LI-COR, Lincoln, NE, USA).

4.7. Human Phospho-Protein Array

Cell lysates of Huh7 parental and Huh7 sorafenib-resistant pool cells were subjected to
phosphoprotein analysis using the Proteome Profiler Human Phospho-Kinase Array Kit (#ARY003B, R &
D Systems, Minneapolis, MN, USA) following the manufacturer’s protocol to quantify phosphorylation
levels of 43 proteins phosphorylated at tyrosine, serine, or threonine residues.

4.8. Differential Gene Expression Analysis

4.8.1. Sorafenib Resistance Gene Expression Signatures

Microarray analysis was performed on the parental cells (Huh7-S), a pool of sorafenib-resistant
cells (Huh7-R) and sorafenib-resistant clone A7 (Huh7-R-A7) using the Affymetrix GeneChip Human
Transcriptome Array 2.0 platform. Three biological replicates of each cell type were used for the



Cancers 2020, 12, 2730 16 of 22

microarray analysis. A differential gene expression signature was defined by comparing microarray
data from Huh7-R-A7 vs. Huh7-S cells. Signal intensities were analyzed by Affymetrix Expression
Console software. Gene expression levels were RMA-normalized and log-transformed [44]. A filtering
method based on the percentage of arrays (85%) below a noise cutoff of 6 (log2 scale) was applied to filter
out low expression genes, and a linear model was employed to detect differentially expressed genes.
In order to improve the estimates of variability and statistical tests for differential expression, a variance
smoothing method with fully moderated t-statistic was employed for this study [45]. The significance
level was adjusted for multiple hypothesis testing by controlling the mean number of false positives,
and a threshold p-value < 0.0001 was maintained to determine statistical significance [46]. We averaged
gene expression values for multiple probeset ID’s mapping to the same gene. A fold-change cutoff of
>3 for up-regulated genes and <0.25 for down-regulated genes was imposed. Raw and normalized
data were deposited in the Gene Expression Omnibus (GEO) database (accession: GSE94550).

4.8.2. HCC Tumor Gene Expression Data

A systematic search of the Gene Expression Omnibus (GEO) database was conducted for datasets
containing human HCC and normal liver tissue. We obtained raw (CEL files) gene expression data
from six GEO microarray datasets: GSE14323 (GPL571), GSE14520 (GPL571), GSE14520 (GPL3921),
GSE45267 (GPL570), GSE62232 (GPL570) and GSE6764 (GPL570). Signal intensity values were
RMA-normalized and gene expression values were log-transformed. Differential gene expression
analysis (tumor vs. normal) was conducted via the limma (Linear Models for Microarray Analysis) R
package [47], which employs an empirical Bayes method to moderate the standard errors of estimated
log-fold changes. We averaged gene expression values for multiple probeset ID’s mapping to the same
gene. Benjamini–Hochberg False Discovery Rate (FDR) correction was applied to adjust for multiple
hypotheses testing, and significance cutoff was set at adjusted p < 0.0001 [48]. Gene overlap Venn
diagrams were generated using Venny 2.1.0 (available at https://bioinfogp.cnb.csic.es/tools/venny/

index.html).

4.8.3. RNA-Seq Analysis of Fostamatinib-Treated Huh7-R cells

RNA-Seq reads of DMSO- or fostamatinib-treated Huh7-R cells (n = 3 each) were first mapped to
the human genome hg19 using Hierarchical Indexing for Spliced Alignment of Transcripts (HISAT) [49].
Raw read counts for each gene were quantified by using the featureCounts program [50]. Then RNA-seq
counts were obtained by using GENCODE v.22 Gene Transfer Format (GTF) file as a transcript reference
(GENCODE annotation). Genes with read counts below 5 for at least 2 samples out of 3 within each
group were filtered out. Then the read counts were normalized with the TMM method [51]. To identify
genes differentially expressed between samples, the limma R package was used to calculate p-values for
group comparisons under a linear model [47]. The p-value cut-offs were determined by controlling the
mean number of false positives [52]. Raw and normalized data were deposited in the Gene Expression
Omnibus (GEO) database (accession: GSE113005).

4.9. Library of Integrated Network-Based Cellular Signatures (LINCS) Analyses

Connectivity mapping analyses were conducted via the Library of Integrated Network-based
Cellular Signatures (LINCS) system (database version A2) using the web-based platform
(http://www.lincscloud.org/). Connectivity scores were calculated using the weighted
Kolgomorov-Smirnov (KS) statistic to rank predictions from the LINCS database, as previously
described [12]. We selected LINCS compound perturbations tested exclusively in the HepG2 liver
cancer cell line. Connectivity scores were averaged for individual LINCS compound perturbations
tested at different concentrations and time points in the HepG2 cell line. Individual LINCS gene
signatures were obtained from the Broad LINCS Cmap C3 Cloud Compute platform using the
slice_slice_tool command.

https://bioinfogp.cnb.csic.es/tools/venny/index.html
https://bioinfogp.cnb.csic.es/tools/venny/index.html
http://www.lincscloud.org/
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4.10. Database Access: DrugBank, AACT, KEGG, Cell Miner, Beegle

We downloaded the “Approved” and “Investigational” external drug link files from the DrugBank
database (v 4.5.0, released date 20 April 2016, available at https://go.drugbank.com/releases/4-5-0)
and conducted searches in the DrugBank web interface to categorize drug approval status [53].
We downloaded the Aggregate Analysis of ClinicalTrials.gov (AACT) database, a publicly available
resource produced by the Clinical Trials Transformation Initiative (CTTI), for drugs under clinical
investigation (AACT accessed: 17 June 2016). We used KEGG DRUG database ID’s mapped to drugs
in DrugBank to extract drug activity and target pathway information in KEGG Drug (KEGG DRUG
accessed: 20 June 2016) [54]. Drug target genes were obtained from DrugBank and KEGG Drug
databases, and assessed for association with HCC using the Beegle literature-mining tool [18]. Gene
expression signatures for 18 HCC cell lines vs. a pool of 19 normal liver samples were obtained via the
CellMinerHCC database [55].

4.11. Bioinformatics Analyses

Hierarchical clustering using the Euclidean distance of gene expression and drug connectivity
scores was performed using the heatmap.2 function from the “gplots” R package. The nearest-template
prediction (NTP) method was applied to normalized, log-transformed gene expression data to classify
tumor samples as SR+ or SR− (FDR < 0.05) [56]. Gene mutation, copy-number and mRNA expression
data for SR+/SR− liver HCC (LIHC) patients in the TCGA analysis were obtained via the cBioPortal
(v 1.2.4) tool [57]. The drug target protein-protein interaction (PPI) network was generated using
the STRING (v 10.0) database [58]. Only high confidence interaction scores (0.700 and above) from
experiments, databases, neighborhood and gene fusion sources were included in the final network.
Network analysis of the drug target PPI network was performed using Gephi 0.9.1 software [59],
including algorithms to detect the following network features: degree, modularity class, eigencentrality
and clustering coefficient. Enriched gene ontology functions in the sorafenib resistance gene signature
were obtained via functional enrichment analysis using the ToppGene Suite [60]. Fostamatinib-treated
HepG2 gene expression data from LINCS was analyzed via QIAGEN’s Ingenuity Pathway Analysis
(IPA, QIAGEN Redwood City, CA, USA, www.qiagen.com/ingenuity).

4.12. Survival Analysis

Clinical data and RNAseq data (Level 3, v2, RSEM-normalized) from 377 liver HCC patients
contained in the TCGA database were obtained via the Broad Institute Firebrowse tool (http://
firebrowse.org/; TCGA data version 2016_01_28). Survival analysis comparing SR+ and SR− patients
was conducted using Prism 7 software. Survival analysis of HCC patients for SYK based on gene
expression data was conducted using the cBioPortal (v 1.2.4) tool for TCGA data [57]. Death was
selected as the survival measure, and the median was chosen as the bifurcation point to define “high”
vs. “low” gene expression. Survival curves were generated using the Kaplan–Meier method, and the
log-rank test was used for statistical comparison.

4.13. Ethics Information for Publicly Available Datasets

Patient gene expression data were obtained from publicly available databases, including Gene
Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA). We confirm that the publicly
available data were collected with institutional approval and informed consent, and this information
can be found in the original study publications: GSE14323 [61], GSE14520 [62], GSE45267 [63],
GSE62232 [64], GSE6764 [65] and GSE26391 [16]. Data collection policies for the TCGA can be found at
the following website: https://cancergenome.nih.gov/abouttcga/policies.

https://go.drugbank.com/releases/4-5-0
www.qiagen.com/ingenuity
http://firebrowse.org/
http://firebrowse.org/
https://cancergenome.nih.gov/abouttcga/policies
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5. Conclusions

We show the feasibility of the drug repurposing workflow by validating novel drugs to use alone
and in combination with sorafenib in HCC. Our analysis of publicly available gene expression datasets
of sorafenib resistance models and HCC patient datasets to determine prioritized drug candidates may
inform future additional validation studies. Future studies utilizing data from HCC patient samples
with resistant disease will be needed as it becomes available. Importantly, future studies of novel HCC
drugs must carefully consider safety and toxicity profiles, as one of the greatest barriers to clinical trial
success for approval in this patient population is liver function [4].

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/10/2730/s1,
Figure S1: Sorafenib dose response curve for sorafenib sensitive and resistant Huh7 cells; Figure S2: Comparison of
HCC sorafenib resistance gene signatures; Figure S3: Drug target network. Resultant drug target protein-protein
interaction (PPI) network from prioritized drug candidates using PPI interaction data from the STRING database
(v 10.0); Figure S4: Dot blots of Proteome Profiler Human Phospho-Kinase Array; Figure S5: Fostamatinib dose
response curve for HCC cell lines; Figure S6: Correlation plot of gene expression log2 fold change between Huh7
sorafenib resistance (Huh7-R) signature and fostamatinib-treated Huh7 cells; Figure S7: Uncropped Western blot
images; Table S1: Gene expression signature of sorafenib resistance in HCC tumors cells; Table S2: LINCS drug
predictions to reverse A7 clone sorafenib resistance gene signature (Huh7-R-A7 vs. Huh7-S); Table S3: Drug
target gene PPI network alterations in SR+ and SR- HCC primary tumors for patients in the TCGA LIHC dataset;
Table S4: Concordance of fostamatinib-induced gene expression signatures with HCC sorafenib resistance gene
expression signature.
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