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ABSTRACT

The primary function of the UBE2T ubiquitin con-
jugase is in the monoubiquitination of the FANCI-
FANCD2 heterodimer, a central step in the Fanconi
anemia (FA) pathway. Genetic inactivation of UBE2T
is responsible for the phenotypes of FANCT patients;
however, a FANCT patient carrying a maternal dupli-
cation and a paternal deletion in the UBE2T loci dis-
played normal peripheral blood counts and UBE2T
protein levels in B-lymphoblast cell lines. To test
whether reversion by recombination between UBE2T
AluYab elements could have occurred in the patient’s
hematopoietic stem cells despite the defects in ho-
mologous recombination (HR) in FA cells, we con-
structed HeLa cell lines containing the UBE2T AluYa5
elements and neighboring intervening sequences
flanked by fluorescent reporter genes. Introduction
of a DNA double strand break in the model UBE2T lo-
cus in vivo promoted single strand annealing (SSA)
between proximal Alu elements and deletion of the
intervening color marker gene, recapitulating the re-
version of the UBE2T duplication in the FA patient.
To test whether UBE2T null cells retain HR activity,
the UBE2T genes were knocked out in HeLa cells and
U20S cells. CRISPR/Cas9-mediated genetic knock-
out of UBE2T only partially reduced HR, demonstrat-

ing that UBE2T-independent pathways can compen-
sate for the recombination defect in UBE2T/FANCT
null cells.

INTRODUCTION

Alu elements are the most abundant short interspersed ele-
ments (SINEs) in the human genome, numbering over one
million copies. These repetitive sequences are hotspots for
genetic intrachromosomal or interchromosomal recombi-
nation (1). The proximity of abundant Alu elements in the
genome clearly favors deletions by RADS1-independent in-
trachromosomal single strand annealing (SSA) (2). Alu-
mediated recombination (AMR) events contribute to mul-
tiple forms of cancer and other genetic disorders (3-8), and
are estimated to be responsible for 0.3% of human genetic
diseases (4,9). These repeated elements also drive genomic
evolution; it has been estimated that more than five hun-
dred Alu-mediated deletion events have occurred since di-
vergence of the human and chimpanzee genomes (9). Here,
we modeled an unusual somatic reversion event in a Fan-
coni anemia (FA) patient who had inherited a partial ge-
nomic duplication in the FANCT/UBE2T gene from his
mother. In the current model system, an in vivo double
strand break leads to homology-dependent recombination
between two UBE2T Alu elements, mimicking a contrac-
tion of the maternal duplication to restore the WT allele.
FA is a rare recessive or dominant DNA repair dis-
order characterized by genome instability, developmen-
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tal abnormalities, bone marrow failure and cancer pre-
disposition (10-12). Loss-of-function mutations in one X-
chromosomal (FANCB) and at least twenty autosomal re-
cessive genes (FANCA to RFWD3/FANCW) as well as
missense mutations in one dominant negative FA gene
(RAD51A4/FANCR) result in the typical defects associated
with FA (13-15). At the cellular level in FA deficient cells,
genome instability in combination with erroneous repair
of DNA interstrand crosslinks (ICLs) and DNA double
strand breaks often results in complex genome rearrange-
ments (CGR), translocations and gene amplification (16—
18). Among the known activities of FA proteins are repli-
some stabilization during replication stress (17,19), the re-
moval of DNA ICLs caused by endogenous aldehydes (20),
the resolution of R-loops (21), stimulation of the alternative
end joining (Alt-EJ)/microhomology-mediated end joining
(MMEJ) of DNA double strand breaks (22), regulation of
the spindle assembly checkpoint (23,24), and autophagic
clearance of damaged mitochondria or viruses (25).

The diagnosis of FA is based on the combination of typ-
ical clinical symptoms and the characteristic hypersensi-
tivity of cells from affected patients to the ICL reagents
diepoxybutane (DEB), mitomycin C (MMC), melphalan or
cisplatin, which often are used to dissect the functions of in-
dividual FA proteins (18,26). A key step in activating ICL
repair is the monoubiquitination of FANCI and FANCD2
in the FANCI-FANCD?2 (ID2) protein complex by the thir-
teen subunit FA core complex containing FANCL as the E3
ubiquitin ligase (reviewed in (26,27)). The FANCT/UBE2T
gene product is not part of this protein complex but en-
codes the major E2 ubiquitin conjugating enzyme used by
the FANCL E3 ligase to modify and activate the DNA-
bound ID2 dimer (28-31). Monoubiquitination of FANCI
and FANCD?2 is necessary for their co-localization into nu-
clear foci. Additional roles for FANCI and FANCD?2 in the
stabilization of replication forks and HR have also been re-
ported (17,30,32-35).

Machida et al. (36) and Alpi et al. (37) have shown that
UBE2T is the E2 conjugating ligase in the FA pathway and
that genetic deficiency in UBE2T~/~ DT40 cells leads to the
classical cellular phenotypes of FA, including hypersensitiv-
ity to low doses of DNA ICL agents and high frequencies
of chromosomal abnormalities. Subsequently, three groups
including ours independently described three FA patients
with germ-line defects in the UBE2T gene, now also des-
ignated FANCT (18,38-40). The 16-year-old FA patient
(100166/1) of Ttalian ancestry described by us (40) was born
with bilateral malformations of both thumbs and radii, mi-
crocephaly, café-au-lait spots and left kidney abnormality.
He was confirmed as being affected by FA due to high levels
of DEB-induced chromosomal breakage in metaphases of
peripheral blood lymphocytes at birth (40). We identified
the patient’s primary fibroblast cells as being defective in
UBE2T by overexpression of the wildtype UBE2T cDNA as
a candidate FA gene (RefSeq: NM_014176.3) which entirely
corrected G2/M phase arrest and also other cellular phe-
notypes induced by MMC. Importantly, no mutation in the
UBE2T locus could be detected in the patient’s germ-line
DNA by Sanger sequencing or next-generation sequencing
of UBE2T, as he had inherited genomic rearrangements at
the two identical 311-bp AluYa5 elements present in the

same orientation in introns 1 and 6 of the human UBE2T
gene.

Notably, three Alu-mediated recombination events were
evident at the UBE2T locus In the FANCT—/~ 100166/1
proband (40). From his heterozygous father, the patient had
inherited a large genomic deletion of exons 2-6, resulting
in an allele without any protein-coding transcript. From
his healthy mother, the patient inherited a UBE2T allele in
which a duplication of exons 2-6 had occurred, resulting
in a UBE2T locus with three identical AluYa$5 repeats. Im-
portantly, this maternal allele was capable of expressing a
transcript for a truncated UBE2T protein that contained
the complete ubiquitin binding (UB) domain of UBE2T
(40). When overexpressed, this shorter protein completely
restored the defects in the FA pathway in UBE2T~/~ cells
(40). However, western blot analysis revealed that no mu-
tant UBE2T protein was expressed from the duplicated ma-
ternal allele in either the patient’s or his mother’s cells, as
the mRNA from this allele was subject to nonsense medi-
ated RNA decay (40). The third recombination event in the
UBE2T locus occurred somatically in utero in a hematopoi-
etic stem cell, as the patient’s peripheral blood lympho-
cytes were already a mixture of normal and FA-deficient
cells when analyzed by chromosomal breakage three days
after birth (40). Here, it is safe to hypothesize that the
normal UBE2T allele was generated by intrachromosomal
SSA or unequal sister chromatid homologous recombina-
tion between the maternally duplicated Alu elements (Fig-
ure 1A), as no normal allele that could serve as a recombi-
nation donor is present in the patient’s cells. Sequencing of
FANCT/~100166/1 proband genomic DNA PCR prod-
ucts corroborated that the reversion had occurred at the
AluYa5 repeats within the UBE2T locus (40). Subsequently,
this ‘corrected’ hematopoietic stem cell repopulated the en-
tire hematopoietic system with normal progeny - a phe-
nomenon known as somatic mosaicism in FA (41)—and the
patient had normal peripheral blood counts for more than
15 years and never experienced bone marrow failure.

The two main branches of homology directed recombi-
nation (HDR) are RADS51-independent single strand an-
nealing (SSA) (42) and RADS51-dependent homologous re-
combination (HR) (43). To develop a model to emulate Alu-
mediated homology directed recombination events in the
UBE2T locus and also for other loci in the genome, we
generated dual fluorescent reporter constructs using two in-
dependent expression cassettes for green (eGFP) and red
(dTomato) fluorescent proteins with three identical AluYa5
repeats in the same orientation. An exogenous I-Scel site
was included at either of two distinct locations in the re-
porter constructs to allow introduction of a single site-
specific DNA double strand break (DSB). After stable in-
tegration of one copy of the dual fluorescent reporter con-
struct into the genome of HeLa cells, we show that expres-
sion of the I-Scel protein in the cells promotes DNA break-
age and homology-directed AMR that mimics the reversion
which had happened in the patient’s hematopoietic cells.

Using the dual fluorescence system, we find that UBE2T
has a limited role in HR, and demonstrate the role of HDR
in Alu-mediated recombination in UBE2T using inhibitors
or knockdown of HDR or nonhomologous end joining
(NHEJ)-related proteins. Our results show that the dual flu-



Nucleic Acids Research, 2019, Vol. 47, No. 7 3505

A
Human WT UBE2T locus [}o TH—HHF T
2 3 456 7
maternal reversion paternal
duplication deletion
Alu Alu Alu Alu
1 6k 456 2 3 456 7 1 7
FRT v v v FRT
| Alu 1 Alu 2 Alu3
S I DF1 cels
Ll Ll
hygR  neoR VS dTOMATO IVS6 eGFP vsg thymidine
kinase
FRT I-Scel FRT
Alu 1 Alu 2 Alu3 |
:l:k//ﬂ-——ﬂ-—_m-—r__ DF2 cells
g% neoR IVS1 dTOMATO  |vss eGFP vse thymidine
kinase
FRT [-Scel FRT
Alu 1 l Alu 2 Alu 3 |
:E//ﬂ——ﬂ——{ DF3 cells

hygR  neoR VS1 dTOMATO

eGFP vse thymidine

kinase

IVS6

Figure 1. Modeling of the expanded UBE2T locus in dual fluorescence (DF) cells. (A) Wild type UBE2T gene, and maternal and paternal genotypes. Exons
are numbered 1-7; yellow boxes, AluYa5 sequences; unfilled boxes, noncoding exons; filled boxes, coding exons. (B) DF1 cells contain a single genomic
integrant at the FLP recombinase target (FRT) site in HeLa/406 cells, containing three identical AluYa5 repeats (yellow) and portions of intervening
sequences IVS 1 and IVS 6 flanking the Alu repeats (blue boxes). The first and second Alu repeats are separated by a dTomato fluorescent protein gene
(red) driven by the hPGK promoter; the second and third Alu repeats are separated by an eGFP gene (green) driven by the SFFV U3 promoter. In the
DF?2 cell line, an I-Scel cleavage site separates the dTomato and eGFP marker genes. In the DF3 cell line, an [-Scel cleavage site is located upstream of
the dTomato marker gene. Thin lines, vector sequences. hygR (hygromycin resistance), neoR (G418 resistance) and TK (HSV thymidine kinase, ganciclovir

sensitivity) are selection markers for integrant construction (Methods).

orescent HeLa cells are also a robust tool for the systematic
study of Alu-mediated recombination events and their role
in inducing human disease. Combined with knockdowns of
specific genes of interest, the dual fluorescence system can
quantitatively report on the contribution of specific proteins
to HDR and NHEJ.

MATERIALS AND METHODS
Dual Fluorescence (DF) plasmid constructs

The plasmids used in this work were constructed to avoid
regions of homology with the resident vector at the ectopic
integration site (44) or within the dual fluorescence vectors
other than the Alu/IVS elements. Standard cloning meth-
ods were used to construct the vector integrated in DF3

cells from the following components: LacZ (nt 1-120, 6917—
7374); AluYa5 (nt 135—445); UBE2T intron 1 (nt 446-626);
[-Scel recognition (nt 632-662); hPGK promoter (nt 663—
1204); dTomato (red fluorescent protein, nt 1222-1927);
bGHpA (nt 1936-2152); AluYa5 (nt 2167-2478); UBE2T'in-
tron 6 (nt 2478-2658); SFFV U3 promoter (nt 2696-3036);
eGFP (enhanced green fluorescent protein, nt 3072-3792);
AU3 (HIV 3’ LTR partial sequence, nt 3885-3939); R (HIV-
1 partial sequence, nt 3940-4034); U5 (HIV-1 partial se-
quence, nt 4035-4120; AluYa5 (nt 4156-4467); UBE2T in-
tron 6 (nt 4467-4647; FRT site (nt 4724-4772); neomycin
phosphotransferase gene (nt 4781-5576); SV40 polyadeny-
lation sequences (nt 5577-6917); chloramphenicol acetyl-
transferase gene (nt 7822-8482); pSC101 origin of replica-
tion and RepA binding site (nt 10298-9406). Plasmids used
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to construct other cell lines were derived from the same
components. Further details are available from the authors.
As shown in Supplementary Figure S1 and confirmed by
the present results, there is insufficient homology between
the red and green fluorescent protein genes to enable ho-
mologous recombination.

Cell culture

DF cell lines were constructed by FLP recombinase me-
diated integration into HeLa/406 cells and drug selection
as described previously (45-50). All DF cell lines were
cultured in Dulbecco’s modified Eagle medium (DMEM,
Gibco) supplemented with 10% newborn calf serum (NCS)
at 37°C, 5% CO,. The human osteosarcoma (U20S, ATCC
HTB-96) DR-GFP cell lines were grown in DMEM sup-
plemented with 10% fetal bovine serum (FBS) at 37°C, 5%
CO;.

Expression of I-Scel endonuclease

Stable DF cell lines plated at 6 x 10° cells were trypsinized
and transfected with 8 ug I-Scel plasmid and 10 pl of Lipo-
fectamine 2000 (Invitrogen) per manufacturer’s protocol in
a six-well plate (Falcon). Medium was replaced after 24 h
to remove transfection complexes. The [-Scel plasmid pro-
duces an HA-tagged form of the I-Scel endonuclease. Peak
expression of [-Scel endonuclease was at 24 h and was un-
detectable after 72 h by western blot (Supplementary Fig-
ure S2). Cells were grown for 8 days after I-Scel transfec-
tion and split accordingly until harvested for flow cytome-
try. The I-Scel plasmid was a gift from John Turchi (Indiana
University School of Medicine).

siRNA treatment

DF2 cell lines were plated at 4 x 10° cells/well in a six-
well tissue culture plate (Falcon). The cells were trypsinized
and transfected with 100 nM siCtIP siRNA (Hs_RBBPS
S11027416, Qiagen) and 10 wl of Lipofectamine 2000 (In-
vitrogen) per manufacturer’s protocol. The siRNA is a pool
of an equimolar mixture of four different siRNAs targeting
the same transcript. Control experiments were performed
in parallel using a non-targeting AllStars siRINA (Qiagen
S103650318). At 24 h, cells were trypsinized and transfected
with 8 ug I-Scel plasmid and 10 pl of Lipofectamine 2000
to allow for 48 h siRNA treatment by the time I-Sce/ had
reached peak expression at 24 h.

Small molecule inhibitor treatments

Small molecule inhibitors were used at the following final
concentrations: RADS1i (B02, Sigma SM1.0364, 10 uM;
RI-1, Sigma SML1274, 40 uM; RI-2, Sigma SML1851, 20
wM, 30 uM), DNA-PKcs (NU7026, Selleckchem S2893,
10 wM), caffeine (Sigma C0750, 2 mM), ATMi (KU60019,
Sigma SML1416, 1 wM). The inhibitors were added to the
cell culture medium at the time of I-Scel plasmid transfec-
tion. 6 x 10° cells were trypsinized and transfected with 8 ug
I-Scel plasmid, inhibitor and 10 wl of Lipofectamine 2000
(Invitrogen) per manufacturer’s protocol in a six-well plate.
Each inhibitor was used for 3 days after transfection for ef-
ficient inhibition throughout the time of I-Scel expression.

Cell sorting (FACS)

DEF2 cell lines were subjected to I-Scel transfection and al-
lowed 8 days of recovery before flow cytometry to allow
turnover of preexisting fluorescent proteins. The heteroge-
neous population (~5 x 10° cells) was then prepared for
cell sorting by centrifugation at 300 x g for 3 min, 4°C.
The pellet was resuspended in 1 ml FACS buffer (Hank’s
Balanced Salt Solution, 25 mM HEPES, 1 mM EDTA,
1% BSA and 2% FBS) and filtered through a 35 pm cell
strainer tube (Falcon). Cell sorting was performed at the
Cincinnati Children’s Hospital Medical Center (CCHMC)
Research Flow Cytometry Core (RFCC) on a BD FACS
Aria II flow cytometer with two 96 well tissue culture plates
(single cell per well) (Corning) for each of the four flow cy-
tometry quadrants. Single cell clones from each well were
transferred to 10 cm tissue culture dishes (Corning). Once
the 10 cm dishes were ~80% confluent the cells were har-
vested for DNA analysis. DNA was isolated using an EZNA
tissue isolation kit (Omega Bio-Tek) to serve as template in
PCR amplifications.

Polymerase chain reaction

PCR was performed using Lac-Forward (5-CTTCAA
ATCCGACCCGTAGA-3) and TK-Reverse (5-GTAA
GTCATCGGCTCGGGTA-3) primers. PrimeSTAR GXL
polymerase (Takara) was used per manufacturer’s instruc-
tions for 50 wl reactions using 120 ng template. Internal
control primers (Figure 3) were: forward 5-CCCAACCT
ACACTAACCTTAACC and reverse 5S-CCACACCAAC
CTCCTCATAAT. Cycling conditions were as follows: de-
naturation, 98°C, 10 s; annealing, 57°C, 15 s; extension,
68°C, 1 min for 30 cycles. PCR products were purified with
an EZNA Cycle Pure kit (Omega Bio-Tek) and 20 wl of
each purified product was electrophoresed on a 1% ultra-
pure agarose gel (Invitrogen) to verify the sizes of the re-
combination products.

Flow cytometry

Flow cytometry was performed on the BD Accuri C6 flow
cytometer. 5 x 10° adherent cells were trypsinized (Gibco)
and centrifuged at 300 x g for 3 min. Supernatant was re-
moved and the cell pellet was resuspended in 300 wl PBS.
The cells were centrifuged for another 3 min at 300 x g.
The supernatant was aspirated and the cell pellet was re-
suspended in 200 wl PBS. The number of events counted
was set to 20 000 on medium flow. Color compensation
was set at correcting FL2 by subtracting 6.3% of FLI.
The color compensation and quadrant determination was
determined empirically to minimize spectral overlap using
marker DF6 and DF7 cell lines that produce only red fluo-
rescent dTomato protein or green fluorescent eGFP protein
respectively.

CRISPR-Cas9 knockdown

CRISPR guides that target UBE2T were selected us-
ing the design website http:/crispr.mit.edu (51). Guide 2
(TTTGATACCTACGAGCTCGCAGG) was chosen after
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single cell cloning of transduced cells and western anal-
ysis. This guide RNA is complementary to intron 1, ap-
proximately 1.3 kb downstream of the UBE2T 5’ Alu ele-
ment. Briefly, LentiCRISPR v2 containing the puromycin
resistance-mediating pac gene was a kind gift from Feng
Zhang (Addgene plasmid #52961). Cloning of the guide
RNA into the LENTICRISPR v2 vector was performed
as specified by the Zhang laboratory protocol (52). Infec-
tious replication-deficient lentiviral particles in the VSV-
G pseudotype were generated as previously described (40).
DF3 and U20S DR-GFP cell lines were transduced with
a lentivirus construct expressing Cas9 and the UBE2T
CRISPR sgRNA at an MOI of <1 and single-cell clones
were selected by puromycin treatment. Single cell clones
were tested by western blot for loss of UBE2T expression
(40). Control cell lines underwent the same procedures but
were transduced with the empty LentiCRISPR v2 vector
that does not produce the UBE2T CRISPR guide.

Retroviral UBE2T expression vectors

In order to demonstrate that UBE2T deficiency of
UBE2T~/~ HeLa cells generated through CRISPR /Cas9
was indeed responsible for the DNA repair defects, a retro-
viral vector was constructed that overexpressed the wild-
type UBE2T ¢cDNA. As the UBE2T~/~ HeLa cells were
already resistant to neomycin, puromycin and hygromycin,
the cDNA of the blasticidin resistence gene was cloned from
the pHAGE.CMV.EG_SLX4 vector (a kind gift of Agata
Smogorzewska, Rockfeller University, NY, USA) and in-
serted into the retroviral pS91 UBE2T-IRES-puroR vector
using Ncol-Clal. The final retroviral vector expressed the
blasticidin resistence gene after the IRES site. Infectious re-
combinant retroviral particles with the VSV-V phenotype
were produced in 293T cells and used to transduce the HeLa
cells at a multiplicity of infection of <0.2, as described pre-
viously (40).

RESULTS

Construction of dual fluorescence (DF) reporter constructs
for the maternal UBE2T locus

The wild-type UBE2T allele in humans comprises seven ex-
ons with the translation start in exon 2, and two identical
AluYa$5 elements in the same orientation (www.ensembl.
org). The first Alu element is located ~180 bp 3’ of the
exonl/intron 1 border, and a second Alu element is ~180
bp 3’ of the exon 6/intron 6 border (Figure 1A). The mu-
tant maternal allele contains a duplication of exons 2-6 and
the mutant paternal allele exhibits a deletion of exons 2-6.
Both mutant alleles seem to have occurred by Alu-mediated
recombination. We have shown previously that the paternal
allele is present as a founder mutation at low frequencies in
the Italian and the German populations. However, we did
not detect the maternal duplication in almost 2000 individu-
als (40) suggesting that it is much more restricted to the ma-
ternal lineage. In the proband, spontaneous deletion of the
maternally duplicated exons 2—6 by recombination between
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neighboring Alu elements has been postulated to account
for the outgrowth of normal blood cells and the reversion
of the hematopoietic phenotypes (40).

To simulate Alu-mediated recombination in the UBE2T
locus, we generated clonal cell lines in which one copy of a
model UBE2T locus was integrated into the single FLP re-
combinase target (FRT) site in HeLa/406 cells (45-49,53)
(Figure 1B). Previous work has shown that Alu-mediated
recombination is responsible for homozygous deletions in
the STK11/LKBI locus of HeLa cells to generate aberrant
LKBI fusion transcripts (54), for MLL/KMT2A duplica-
tions in normal and AML hematopoietic cells (55), and
for nonallelic homologous recombination deletions in the
FANCA, B, C and D2 genes (5,56) in FA patient cells.

To model the maternal UBE2T allele containing the du-
plication, three AluYa5 repeats and ~180 bp of UBE2T
flanking intron 1 (IVS1) or intron 6 (IVS6) sequences were
separated by complete reporter gene cassettes encoding the
red fluorescent protein (RFP) dTomato driven by the hu-
man phosphoglycerate kinase (PGK) promoter with a 3’
bGH polyA site, and the eGFP protein driven by a mod-
ified viral SFFV U3 promoter region followed by the polyA
sequences of a SIN lentiviral LTR (57).

There is no sequence overlap between the promotors and
polyA sites of the expression cassettes. In addition, the
dTomato and eGFP ORFs have minimal sequence overlap
and only two identical nucleotide stretches at the 5’ and 3’
ends of 21 and 25 bp (Supplementary Figure S1), respec-
tively. For clarity, we have numbered the AluYa5 elements
Alu 1, 2 and 3 in our reporter constructs (Figure 1B), al-
though these elements comprise the identical 311 bp se-
quence. Dual Fluorescence 1 (DF1) cells do not contain a
cleavage site for I-Scel, while in Dual Fluorescence 2 (DF2)
cells a cut site for I-Scel preceded the eGFP gene (Figure
1B). In DF3 cells the I-Scel cut site was placed upstream of
the dTomato gene (Figure 1B).

Dual fluorescence cells to monitor the repair of DSBs in the
presence of Alu repeats

DF1, 2 and 3 cells initially expressed both red dTomato and
green eGFP markers, and appeared yellow under UV il-
lumination (Figure 2A). These cells were then transfected
with a plasmid that expressed the I-Scel endonuclease max-
imally at 24 h post transfection (Supplementary Figure S2)
to introduce a unique DSB within the DF2 and DF3 re-
porter constructs. As shown in Figure 2A, DF1 cells did
not change color (yellow) following transfection with the
[-Scel expression plasmid as the DF1 construct does not
harbor an I-Scel site. In contrast, a substantial fraction
of DF2 cells showed red fluorescence associated with the
loss of eGFP (RFP+, eGFP-) and only a smaller pro-
portion of cells turned green (RFP- eGFP+) after I-Scel
transfection, while DF3 cells preferentially turned green
(RFP-, eGFP+). These data suggest that a single DNA
double strand break between identical Alu repeats can ef-
ficiently induce recombination events leading to loss of
the intervening color reporter gene, consistent with Alu-
mediated intrachromosomal SSA or unequal homology-
dependent recombination between sister chromatids.
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Figure 2. DSB-induced recombination in DF cells. (A) I-Scel expression does not cause loss of either color marker gene in DF1 cells, but leads to prefer-
ential loss of eGFP expression in DF2 cells, and preferential loss of dTomato expression in DF3 cells. (B) Key to flow cytometry profiles. In the absence of
1-Scel digestion cells contain dTomato (RFP+) and eGFP (GFP+) marker genes and appear in the upper right quadrant (DP, double positive). Loss of
the eGFP gene renders cells red (R, upper left, RFP+, GFP-). Loss of the dTomato gene renders cells green (G, lower right, GFP+, RFP-). Loss of both
marker genes renders cells double negative (DN, lower left, RFP—, GFP). (C-E) flow cytometry profiles of untreated (no I-Sce/) or I-Scel transfected (+
1-Scel) (Methods) DF1, DF2, or DF3 cells, respectively. The data shown are representative of four or more experiments on each cell type. F, PCR analysis

of control and I-Sce! treated DF cell lines. o, I-Scel/-dependent aberrant recombination product.



Quantitation of homology directed recombination events by
flow cytometry

DF1, 2 and 3 cells were initially >95% double positive (DP)
(RFP+, eGFP+) (Figure 2B-E). It is predicted that ho-
mologous recombination between proximal Alu elements
would produce red DF2 cells by Alu 2/3 recombination and
green DF3 cells by Alu 1/2 recombination, while recom-
bination between distal Alu 1/3 elements would produce
double negative cells. We observed that in vivo 1-Scel ex-
pression did not significantly change the flow profile of DF1
cells which lack an I-Scel site (Figure 2C). However, repre-
sentative results show that after I-Scel transfection, >30%
of DF2 cells lost the eGFP marker (red, RFP+, eGFP—;
upper left quadrant) (Figure 2D), and >30% of DF3 cells
lost the dTomato marker (green, RFP—, eGFP+; lower right
quadrant) (Figure 2E). Approximately 10% of DF2 or DF3
cells lost both color markers (double negative (DN) RFP—,
eGFP—; lower left quadrant), most probably due to recom-
bination between the outermost Alu elements (Alu 1/3).

To confirm the extent of I-Scel induced deletions, we per-
formed PCR across the ectopic integration site in each of
the reporter cell lines. Lanes 1 and 2 (DF1 and DF1+1-Scel)
showed no deletions in the reporter construct in the DF1
cells upon I-Scel expression (Figure 2F), as anticipated.
In contrast, I-Scel digested DF2 and DF3 cell DNAs dis-
played distinct lower molecular weight major bands (Figure
2F, lanes 4, 6) corresponding to deletion products expected
of recombination between the proximal (Alu 1/2) and distal
(Alu 2/3) Alu sites, consistent with the changed flow cytom-
etry patterns of these cells after I-Scel expression. Specif-
ically, recombination between the homologous Alu 1 and
Alu 2 sites was found to generate a major PCR band of ap-
proximately 3.5 kb after deletion of the dTomato gene in
RFP-, eGFP+ (green) DF2 cells (3.4% of total cells) and
DEF3 cells (30.2% of total cells).

Recombination between Alu 2 and Alu 3 generated a
major PCR band of approximately 3.5 kb and deleted the
eGFP gene in RFP+, eGFP- (red) DF2 cells (33.8% of total
cells) and DF3 cells (1.1% of total cells). Recombination be-
tween Alu 1 and Alu 3 generated a major 1.4 kb PCR band
and deleted both the dTomato and eGFP genes in RFP-,
eGFP- (double negative) DF2 (9.7% of total cells) or DF3
cells (14.6% of total cells). Thus, in I-Scel treated DF2 or
DF3 cells, more than ~45% of the cells underwent recom-
bination (red, green, double negative cells).

As described in detail below, we estimated the percentage
of DF2 double positive cells that had undergone recombi-
nation in vivo after I-Scel transfection, by in vitro 1-Scel
digestion of a full-length PCR product spanning the DF2
ectopic site. Since the DF2 full-length PCR product could
only have come from double positive cells, and more than
~60% of this PCR product was resistant to in vitro 1-Scel
cleavage (Figure 41), these results indicate that >75% of
the ectopic sites (45% recombinant cells plus 60% of dou-
ble positive cells (53.1% of total) had been cut by I-Scel in
vivo and then further processed by DNA repair. Thus, Alu-
mediated homology-directed recombination events had oc-
curred in >30% of DF2 cells (red) and DF3 cells (green)
following introduction of the I-Sce/ DSB within the re-
porter constructs. However, based on the resistance of the
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ectopic site PCR product to in vitro I-Scel digestion, addi-
tional repair mechanisms (e.g. NHEJ/MMEJ) were also ac-
tive in >60% of cells where both fluorescent reporters were
retained.

Single colony PCR characterization of recombinants

Because standard PCR on DNA from unsorted cultures
may not disclose recombination products that arise from
minor percentages of the total cell population, we took a
single colony PCR approach to assess the fluctuation be-
tween cells following I-Scel digestion. Eight days after I-
Scel plasmid transfection, DF2 cells were FACS sorted into
individual double positive, red, green, and double negative
cells and clonally expanded. Genomic DNA was harvested
from randomly selected clones and amplified by PCR with
primers across the ectopic site. In DNA from double posi-
tive (RFP+, eGFP+) DF2 cells, PCR across the single ec-
topic site (Figure 3A) generated a major band of ca. 5.7 kb
in addition to bands of lesser intensity that presumably re-
sulted from recombination during clonal expansion (Figure
3B). The majority of red (RFP+, eGFP-) cells displayed a
major band of ca. 3.3 kb, consistent with recombination by
sister chromatid HR or intrachromosomal SSA between the
Alu 2 and Alu 3 elements flanking the I-Scel site (Figure
30).

None of the colonies that turned green (RFP—, eGFP+)
showed the ca. 3.3 kb band predicted by homology-directed
repair between Alu 1 and Alu 2, but apparently had under-
gone a more complex series of recombinations generating
smaller and larger PCR products that retained the eGFP
gene and PCR primer binding sites (Figure 3D). Surpris-
ingly, only a minority of the double negative (RFP—, eGFP-
) cell clones showed the expected recombination between
Alu 1 and Alu 3 (Figure 3E, lane 9).

The differences in the PCR profiles of the DNA from
unsorted vs. sorted cells was striking. Following PCR of
DNA from unsorted cells (Figure 2F), the most abundant
cell population gave the expected ca. 3.5 kb PCR product,
although these may still have comprised a minor percent-
age of the total cells. In contrast, in the PCR of DNA from
sorted and cloned cells (Figure 3), even the lesser abundance
green cells could give products that were different from the
expected Alu 1/2 recombinant.

The data of Figures 2 and 3 argue that the most plau-
sible mechanism of in vivo reversion of the maternally du-
plicated UBE2T gene resulted from a spontaneous double
strand break that led to homology-directed recombination
between Alu 2 and Alu 3 elements. Additionally, it is likely
that a substantial percentage of breaks did not recombine
by classical RADS1-dependent homologous recombination
to restore the WT allele, but instead resulted in cells carry-
ing alternative recombinations that were selected against in
the patient’s hematopoietic compartment.

Role of DNA repair proteins in Alu-mediated recombination
at the model UBE2T locus

To test the mechanism of recombination in the model
UBE2T locus further, DF2 cells were exposed to I-Scel
while proteins involved in nonhomologous end joining
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(NHEJ) or HR were chemically inhibited or knocked down
by siRNA. First, we treated I-Scel transfected DF2 cells
with caffeine (Figure 4A), which preferentially inhibits the
major DNA repair kinases ATM (ataxia telangiectasia mu-
tated) and ATR (ataxia telangiectasia and RAD?3-related)
(58-60). Compared to control cells digested with I-Scel
(Figure 4B), caffeine significantly decreased the percentage
of red, green, and double negative cells, and consequently
increased the fraction of double positive cells (Figure 4C,
H). This effect on recombination efficiency was more dra-
matic when using the ATM specific inhibitor KU60019
(Figure 4D, H), consistent with the stimulation of DSB end
resection and downstream steps in HR and NHEJ by ATM
(58-62).

The CtIP (C-terminal binding protein 1 interacting pro-
tein) nuclease catalyzes an early step in end resection
of DNA DSBs in conjunction with the MRN complex,
thereby terminating NHEJ and initiating HR (63-66).

siRNA-mediated inhibition of CtIP (Figure 4E, H) or
chemical inhibition of the RADS51 recombinase (RADS51i
B02, Figure 4F, H; RADS51i RI-1, RADSIi RI-2, Sup-
plementary Figure S3) also significantly decreased the
homology-directed recombination that produced red cells
upon I-Scel digestion. In contrast, specific inhibition of the
NHEJ protein DNA-PKs by NU7026 (67) did not signifi-
cantly change the percentage of red cells (Figure 4G, H), as
expected if RFP+, eGFP- cells resulted from HR or SSA.
Inhibition of NHEJ by NU7026 decreased the percentage
of double negative and green cells, but increased the per-
centage of double positive (yellow) cells, most likely by pro-
moting precise religation of the I-Scel cut (68).

To distinguish between in vivo precise religation vs. muta-
genic NHEJ of the cleaved I-Sce! site, we carried out PCR
across the ectopic site in DNA from DF2 cells transfected
with I-Scel. We then digested the PCR product with I-Scel
in vitro (Figure 4I). DF2 cells transfected with I-Scel and
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treated with caffeine or ATMi showed increased in vitro cut-
ting of the ectopic site PCR product relative to cells treated
with siControl (Figure 41, lanes 1-3). Inasmuch as these
cells displayed reduced homology-directed repair (i.e. red
cells, Figure 4C, D, H), we conclude that the increased in
vitro cutting of the PCR product reflected an increase in pre-
cise ligation in vivo. In contrast, the ratio of in vitro cut to
uncut PCR product was reduced in DNA from cells treated
with siCtIP or RADS1i (Figure 4E, F, H). Finally, inhibi-
tion of NHEJ by DNA-PKi resulted in an increase in the
ratio of cut vs. uncut PCR product (Figure 41, lane 6). Since
DNA-PKi did not significantly change HDR (Figure 4H),
we presume this increased cutting in vitro is due to enhanced
precise ligation when DNA-PK, and NHEJ end processing
are inhibited in vivo.

Based on the results of PCR in the FACS sorted cell
clones (Figure 3D, E), we hypothesize that NHEJ was in-
volved in the aberrant recombination occurring in the dou-
ble negative (RFP—, eGFP-) and green (RFP—, eGFP+) I-
Scel transfected DF2 cells. While the results of CtIP knock-
down and RADSIi treatment are consistent with a reduc-
tion in HR, CtIP is also required for SSA (69), and knock-
down of CtIP end resection can also be compensated by in-
creased NHEJ (70,71), which would reduce in vitro 1-Scel
cutting. Although small-molecule RADS51 inhibitors have
been shown to reduce HR (72-75), the possibility of off-
target effects of these compounds remains.

Therefore, we sought an additional test of whether
RADS51-dependent HR was responsible for contraction of
the model UBE2T locus that produced red (RFP+, eGFP-
) DF2 cells. As shown in Figure 5, we assayed the effects
of knocking down BRCA2 (Figure 5A), which interacts
with RADSI1 and controls its translocation into the nu-
cleus, nucleofilament formation and assembly of RADS51
foci in response to DNA damage (76-79). I-Scel was ex-
pressed in DF2 control cells or cells treated with BRCA2
siRNA (Figure 5B-F). The percentage of double positive
(RFP+, eGFP+) cells increased significantly with BRCA2
knockdown (Figure 5F). By contrast, BRCA2 knockdown
had no effect on the fraction of red cells produced by I-
Scel expression. Instead, the percentage of green (RFP—,
eGFP+) and double negative (RFP—, eGFP-) cells both de-
creased when BRCA2 was depleted. Conversely, the frac-
tion of double positive cells was increased by compensating
NHEJ/MMEJ, and mutagenic recombinations which pro-
duce green and double negative cells (Figure 3) were also
enhanced. Thus, the change in the percentages of double
positive, double negative and green cells indicates the bio-
logical effectiveness of the BRCA2 knockdown, while the
absence of an effect on the percentage of red cells argues that
BRCAZ2-independent SSA is responsible for the DF2 Alu-
mediated contraction, and that downregulation of HR by
BRCAZ2 depletion promotes alternative, mutagenic forms of
recombination (80-83).

Cis-acting effects of the Alu 1/IVS1 sequence on recombina-
tion at the model UBE2T locus

Digestion of DF2 cells with I-Sce! resulted in the expected
1.4 kb Alu 1/3 recombination product when DNA from un-
sorted cells was analyzed (Figure 2F), however, only about

9% of the cells fell in the double negative population (Figure
2D) and only 1 of 9 randomly selected double negative cell
clones produced the 1.4 kb PCR product predicted to arise
from Alul/3 recombination (Figure 3D). To determine if
Alu 1/1VS1 was exerting an effect in c¢is on homology di-
rected recombination between Alu2/3, two additional cell
lines, DF4 and DFS5, were constructed that deleted Alu
1/1VS1 (Figure 6A). The DF4 cell line differs from DF5
in that DF4 does not contain an I-Sce! site; consequently,
I-Scel transfection did not change the flow cytometry pro-
file of DF4 cells (Figure 6B). 1-Scel digestion of DF2 or
DFS cells resulted in similar percentages of double positive
cells (Figure 6C, D). Surprisingly, I-Scel expression in DF5
cells (Figure 6C) produced approximately half as many red
(RFP+, eGFP-) cells and twice as many double negative
(RFP-, eGFP-) recombinants as in I-Scel digested DF2
cells (Figure 6D). This result indicates that Alu 1/IVS1 acts
in cis to promote Alu 2/3 homology-directed recombina-
tion to yield red cells, and to suppress recombination lead-
ing to double negative cells.

The decrease in the percentage of DF5 red cells after I-
Scel transfection is not due to reduced efficiency of I-Scel
digestion, as the total percentage of red, green and double
negative cells was closely similar between [-Scel digested
DF2 and DFS5 cells, but the ratio of green:red:double nega-
tive recombined cells changed from approximately 1:10:2.5
in DF2 cells to approximately 1:2:3 in DF5 cells. To ana-
lyze the I-Scel induced deletions, we performed PCR across
the ectopic site in DF4 and DFS5 cells. The gel of Figure 6F
confirmed that I-Sce! digested DFS5 cells displayed a lower
molecular weight band of ~3.1 kb corresponding to the
deletion product expected for recombination at the Alu 2
and Alu 3 sites, consistent with the flow cytometry patterns
of these cells (Figure 6C, D; RFP+, eGFP-).

We also observed that ~22% of the I-Scel digested DF5
cells were double negative (RFP—, eGFP-). Taken with the
PCR results on double negative cell DNA in Figure 3C, we
judged that amplified PCR products smaller than 3.1 kb re-
tained the PCR primer binding sites and were the result of
excessive nuclease digestion at the I-Scel break or sponta-
neous breakage and recombination at sites other than the
Alu 2 and Alu 3 repeats.

Effect of UBE2T knockout on homology directed recombina-
tion

The conclusion that a recombination event with genera-
tion of a wild-type UBE2T allele in the FANCT patient
is the direct consequence of homology directed recombina-
tion (HDR) and the reason for the phenotypic reversion in
a hematopoietic cell containing the inherited partial dupli-
cation of the UBE2T gene, is based on the supposition that
FANCT/UBE2T deficient cells can still perform HDR. Be-
cause several FA proteins, including UBE2T, have been im-
plicated in multiple forms of DNA repair including homol-
ogy directed recombination (26,84,85), we wished to test di-
rectly the effect of UBE2T loss on HDR efficiency. Thus,
lentivirus-mediated CRISPR-Cas9 was used to knockout
the UBE2T genes in DF3 cells (UBE2TA cells) (Figure 7A)
and then single cell clones were expanded. Homology di-
rected repair of the I-Scel cut in DF3 cells (Figure 7B) is
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predicted to yield green cells (RFP—, GFP +; Figure 7C). To
assess the efficiency of homologous recombination we com-
pared the levels of green cells produced when naive DF3
cells or UBE2T? DF3 cells were transiently transfected
with the I-Scel vector. Compared to naive cells, UBE2T*
cells showed an approximate 50% decrease in the percent-
age of RFP-, eGFP+ (green) cells (Figure 7C, D). We
conclude that significant homology-directed recombination
could still occur at the Alu repeats in the model UBE2T al-
lele of UBE2T? cells when a DSB breaks occurred between
flanking Alu repeats.

For comparison, the UBE2T genes were also knocked out
in U20S cells using CRISPR-Cas9 lentivirus (Figure 7A).
The UBE2T~/~ knock-out U20S cells contain the direct re-
peat (DR-GFP) construct (Figure 7E), which has been used
widely as a reporter for HR (86-91). In these cells, the up-
stream SceGFP gene is inactive due to the presence of a
stop codon within the I-Scel cleavage site, while a second
partial GFP fragment of 812 bp (iGFP) is present 3.7 kb
downstream on the same chromosome. [-Scel cleavage of
this construct can lead to a homology-dependent gene con-
version event between the iGFP and the broken SceGFP se-
quence, and thereby restore a functional GFP protein which
can be measured by flow cytometry.

Biallelic CRISPR-Cas9 knockout of the U20S cell
UBE2T genes (UBE2T~/7) resulted in a significant de-
crease in GFP + cells after I-Scel cleavage compared to
naive control U20S cells or the same U20S UBE2T/~
cells corrected with a viral UBE2T cDNA expression vector
(KO + UBE2T; Figure 7F). These results showed that the
UBE2T protein contributes to the efficiency of homology
dependent repair, however, it is not absolutely required for
HR repair to occur. The observation that UBE2T/~ cells
retained more than half of the HR activity of UBE2T*/*
cells implies that redundant pathways to homology directed
repair are active in these engineered FA-T cells.

DISCUSSION

The E2 ubiquitin conjugases UBE2T and UBE2W can
act in the ubiquitination of FANCI/D2. However, UBE2T
is only the conjugase required for activation of the FA
pathway in response to MMC/ICL, and biallelic loss-of-
function mutations of UBE2T lead to the FA phenotype of
chromosome instability (36-39,92-94). Our experiments to
model recombination at the UBE2T locus were prompted
by an FA patient with inactivating duplication and deletion
mutations in UBE2T and whose fibroblasts were hypersen-
sitive to the genotoxins DEB and cisplatin, and defective
in monoubiquitination of FANCD?2 in response to MMC
(40). Surprisingly, the UBE2T duplication was almost com-
pletely absent in genomic DNA from the patient’s periph-
eral blood, consistent with normal thrombocyte, leukocyte
and platelet counts as well as normal bone marrow cellular-
ity.

To test whether homology dependent recombination at
the UBE2T AluYa$5 elements could account for the genetic
reversion in this patient, we integrated single copy model
UBE2T alleles into HeLa/406 cells using FLP recombinase

(45-50). The model UBE2T alleles contained red (dTomato)
and green (eGFP) reporter genes separated by an I-Scel
cleavage site so that the recombination events after DNA
double strand breakage could be monitored on protein lev-
els by flow cytometry.

[-Scel expression in the reporter cell lines DF2 and DF3
resulted in the cleavage of greater than 75% of the model
UBE2T alleles and changes in color that were monitored
by fluorescence microscopy and flow cytometry. The loss of
the dTomato or eGFP ORFs and the sizes of the major PCR
products from the I-Scel treated cells were consistent with
homology-dependent Alu-mediated recombination. From
these results, we conclude that an endogenous DSB likely
initiated recombinational reversion of the duplicated mater-
nal UBE2T allele in the proband and possibly partial dele-
tion of one UBE2T allele in the father.

The structures of the recombined reporter loci indicated
that HDR had occurred primarily between pairs of Alu el-
ements. However, analysis of flow sorted clonal cell pop-
ulations indicated that more complex mechanisms leading
to unexpected patterns of loss of both color reporter genes
were also active in a minority (<15%) of cells. Knockdown
or inhibition of proteins involved in DNA damage signal-
ing and HR (RADS51, ATM, CtIP), but not NHEJ (DNA-
PKcs), inhibited recombination between Alu elements, sup-
porting the view that classical single strand annealing was
responsible for Alu-mediated recombination. In DF2 cells,
inhibition shifted approximately half of the recombina-
tions from HDR (RFP+, eGFP-) to NHEJ to yield RFP+
eGFP+ cells that generated I-Scel resistant PCR products.

Single strand annealing is a RADS51-independent mech-
anism of recombination (42,80,81,95). To test for the role
of RADSI in I-Scel repair in the model UBE2T locus,
we used the RADS1 inhibitors B02, RI-1 and RI-2, which
have been used extensively to analyze RADS51-mediated
recombination (72-75,96-115). Each of these drugs re-
duced Alu-mediated HDR by ~50%; however, these drugs
may have off-target effects in addition to inhibition of
RADSI. Therefore, we also tested the DNA repair in con-
junction with BRCA2 knockdown, which has been shown
to block RADS1-dependent HR, and increase error-prone
forms of recombination (81). Our results are consistent with
these previous observations, in that BRCA?2 knockdown in-
creased the percentage of RFP—, GFP+ and RFP—, eGFP-
cells, which result from aberrant recombination (Figure 3).
However, BRCA2 knockdown did not affect the percentage
of RFP+ eGFP- cells, the majority of which appear to have
resulted from SSA (Figure 5). Although not all functions of
RADS1 (e.g. S-phase focus formation (116) and replication
fork reversal (117)) are dependent on BRCA2 (118), we con-
clude that RADS1-independent homology directed SSA is
responsible for at least a large proportion of Alu-mediated
recombination in our system.

We also observed that Alu 1/IVS1 acts in cis to promote
Alu 2/3 homology directed recombination to yield red cells.
In DF2 cells, Alu 1 is 2 kb upstream of Alu 2, which is
well within the length of DNA that is resected in advance
of homology directed repair (119,120). In flow cytometry-



sorted cells (Figure 3), only one of nine double negative
clones showed the expected Alu 1/3 recombination prod-
uct. This result suggests that there are sequences in the con-
struct that allow homeologous recombinations that retain
(lanes 3, 6) or delete (lanes 1, 2, 4, 5, 7, 8) the PCR primer
sites. One possible explanation for the positive influence of
Alu 1/IVS1 on HR is that the Alu 1 sequence or its binding
proteins (121-123) on the sister chromatid aid in position-
ing the Alu 2/IVS6 to anneal to the Alu3/IVS6 sequence
during intrachromosomal SSA, akin to the phenomenon of
transvection (124-127).

Since HR had been implicated in the reversion of the du-
plication in the UBE2T~/~ patient’s hematopoietic cells, we
tested for this activity following UBE2T knockout in DF3
and U20S cells. An approximate 50% decrease in RFP—
eGFP+ cells in UBE2T knockout DF3 cells implied that
redundant homology-dependent repair pathways are oper-
able for Alu-mediated recombination. In UBE2T~/~ U20S
cells, the DR-GFP assay showed a reproducible decrease
of ~40% in HR, suggesting that UBE2T plays a role in
HR in addition to activation of FANCI/D2 for ICL re-
moval, but that one or more UBE2T-independent parallel
pathways also exist for residual HR in UBE2T~/~ cells. An
overview of the decrease in homologous recombination de-
tected by the DR-GFP assay due to insufficiency of several
FA or HR-related proteins (Supplementary Table S1) shows
a wide range of effects, with knockdown of several known
FA proteins showing incomplete inhibition of HR, as in the
case of UBE2T knockout.

We propose that UBE2T-dependent homology directed
recombination is one mechanism of Alu-mediated rever-
sion of the model UBE2T locus and that in UBE2T null
patient cells, a UBE2T-independent residual mechanism of
HR such as SSA was responsible for contraction of the par-
tially duplicated UBE2T locus. We conclude that a sponta-
neous DSB in the duplicated UBE2T locus of the FANCT
patient that had occurred in an hematopoietic stem cell
was sufficient for UBE2T independent, Alu-mediated re-
combination that restored a wild-type UBE2T gene and
thereby provided survival advantage for that stem cell and
its progeny.

Finally, we note that the dual fluorescence flow cytomet-
ric assay for recombination in DF cells is quantitatively re-
sponsive to DNA double strand breaks and the manipula-
tion of DNA repair pathways, indicating that this is a ro-
bust gateway system that could be adapted to the analysis
of Alu-mediated homologous recombination in the human
BRCALI locus in breast tumors (6) and other disecases in-
cluding FA (9,128), or more generally to probe the causes
and consequences of DSBs in human cells (129). Combined
with knockdowns of specific genes of interest or testing of
chemical/medicinal compounds, the dual fluorescence sys-
tem can quantitatively report on the contribution of specific
proteins to HR and NHEJ and is therefore well suited for
high throughput systematic studies of Alu-mediated recom-
bination events.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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