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Abstract: Aluminum (Al) is an important element in soil constitution. Previous studies have shown that
high concentration of Al affects the normal growth of crops, resulting in crop yield reduction and inferior
quality. Nevertheless, Al has also been referred to as a beneficial element, especially when used at low
concentrations, but the cytological mechanism is not clear. Influences of low concentration AlCl3 on the
pollen tube growth of apple (Malus domestica) and its possible cytological mechanism were investigated
in this study. The results showed that 20 µM AlCl3 promoted pollen germination and tube elongation;
20 µM AlCl3 enhanced Ca2+ influx but did not affect [Ca2+]c of the pollen tube tip; and 20 µM AlCl3
decreased acid pectins in pollen tubes but increased esterified pectins and arabinan pectins in pollen
tubes. According to the information provided in this research, 20 µM AlCl3 stimulated growth of pollen
tubes by enhancing Ca2+ influx and changing cell wall components.

Keywords: Malus domestica; Aluminum; calcium; actin; cell wall components; pollen tube

1. Introduction

Aluminum (Al) is the most abundant and widely distributed metallic element in the
earth’s crust [1]. In acidic soil conditions (pH < 5), the conjugated Al dissociates into toxic
active Al, which is one of the important factors restricting crop growth [2]. Nevertheless, Al
has also been referred to as a beneficial element, especially when used at low concentrations.
Osaki et al. (1997) reported that low concentration of Al (3 mg/L) stimulated plant growth
and enhanced P uptake [3]. Similar responses have also been reported by Watanabe et al.
(2005) in Indian rhododendron [4]. Low concentration of Al promoted root and shoot
growth and antioxidant activity of common bean [5] and the leaf growth of maize [6].
Pilon-Smits et al. (2009) reported that the beneficial influences of Al in plants were relevant
to the ability to promote the absorption of K+ and Mg2+, increase P utilization and reduce
Fe toxicity, thus accelerating their vegetative growth in plants [7]. In root culture, adding Al
could promote the growth of primary and lateral roots, increase the activity of antioxidant
enzymes and delay aging [7]. Therefore, Al could be used as a biological stimulant to
promote crop growth and productivity, especially when used at low concentrations [7].

Pollen tube is the fast-growing male gametophyte of angiosperms in nature, its elon-
gation shows a typical polarized growth pattern similar to that of fungal hyphae, root
hairs, and neuronal axon guidance [8]. Pollen tubes grow far away and transport male
gametes to the embryo sac, where double fertilization happens [9]. The rapid growth of the
pollen tube is highly dependent on the precise and orderly material transport of the cell
membrane, cell wall, functional proteins, and other necessary materials to the tip growth
point [9]. The rapid movement of organelles and vesicles depends on the dynamics of the
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cytoskeleton, which is constantly reorganized in response to external signals [10,11]. In
angiosperms, the wall of the pollen tube consists of two layers; the outer layer is dominated
by cellulose and pectin, and the inner layer is callose [12], which is different from those of
somatic cells [13,14].

Ca2+ plays essential roles in a range of plant growth and development processes such
as polarity formation, growth, cell division, cell wall formation, and the transduction and
regulation of internal and external signals [15]. There exists a cytosolic Ca2+ concentration
([Ca2+]c) gradient at pollen tube tip, which is mainly maintained by extracellular Ca2+

influx [15]. The [Ca2+]c gradient is critical for pollen-tube-tip growth [1].
Pollen tube growth is regulated by Ca2+ and is sensitive to Al [16]. Pollen tubes are an

excellent standard system for studying the effects of drugs and pollutants [16]. Therefore,
the pollen tube provides a useful system through which to study the cytological mechanism
of low Al3+ concentration on pollen tube growth.

Previous studies have shown that high concentrations of Al affected the normal
growth of pollen tubes [17]. High concentrations of Al inhibited geraldton waxflower
pollen germination through inhibition of Ca2+ influx into the pollen grains and caused
a rapid tip bursting [18]. High concentrations of Al interfered with the pectin–calcium
binding sites and caused a decrease in geraldton waxflower cell wall elasticity [18]. High
concentrations of Al caused cell wall thickening at the tip of Lily pollen tubes, and the
tube diameter increased abnormally [19]. High concentrations of Al inhibited apple pollen
germination and tube growth, decreased pollen tube apex calcium influx, disrupted the
[Ca2+]c gradient, altered actin filament orientation, and affected the accumulation and
distribution of callose, acid pectins, esterified pectins, and arabinogalactan proteins [1].

Nevertheless, relatively few researches have been conducted on the beneficial effects of Al
on pollen tubes [20]. Hiromi et al. (1997) reported that 3 µM Al3+ stimulated the growth of tea
pollen tube [21], but the cytological mechanism is not clear. The effects of a low concentration
of Al on apple pollen tube growth is not clear. Thus, the cytological mechanism of low Al3+

concentration on pollen tube growth was studied in the present study.

2. Results
2.1. 20 µM AlCl3 Affected M. domestica Pollen Germination and Pollen Tube Growth

In our research, to evaluate the effect of Al3+ on pollen germination and tube growth,
different concentrations of Al3+, including 0, 10, 20, 30, 50, and 100 µM, were added to
the medium. The results showed that 20 µM AlCl3 promoted pollen germination, and
20–100 µM AlCl3 was benefit to pollen tube elongation (Table 1). Low concentrations of Al
could promote pollen germination. The germination rate of the control pollen tubes was
35.09% (Table 1). The germination rate of the 10 µM AlCl3 treated pollen tubes was 42.07%
(Table 1). However, 20 µM AlCl3 increased the germination rate to 57.25% (Table 1). On the
other hand, 30 µM AlCl3 decreased the germination rate to 42.88% (Table 1). In addition,
50 µM AlCl3 decreased the germination rate to 33.89% (Table 1), and 20 µM AlCl3 worked
best. Our results showed that 20 µM AlCl3 stimulated pollen germination.

Table 1. Germination rate and length of pollen tubes under different concentrations of AlCl3.

Concentration of AlCl3/µM Germination Rate/% Pollen Tube Length/µm

0 35.09 ± 2.33 cd 101.83 ± 8.18 c

10 42.07 ± 1.90 bc 138.46 ± 8.92 b

20 57.25 ± 3.29 a 142.36 ± 4.80 ab

30 42.88 ± 1.72 b 141.88 ± 7.21 ab

50 33.89 ± 2.98 d 144.64 ± 10.47 ab

100 31.97 ± 1.37 d 147.43 ± 7.85 a

Note: Different letters indicated statistically significant differences between pollen tubes grown at various
conditions (p ≤ 0.05).
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Low concentrations of Al could promote pollen tube growth. After 2 h incubation,
the length of control pollen tube was 101.83 µm (Table 1). The length of pollen tubes
was 142.36 µm when treated with 20 µM AlCl3 (Table 1). The length of pollen tubes was
144.64 µm when treated with 50 µM AlCl3 (Table 1). There was no significant difference
between the 50 µM and 20 µM AlCl3 treatments. Our results show that 20 µM and 50 µM
AlCl3 promoted pollen tube elongation.

The morphology of pollen tubes was observed under a microscope, and it was found that
the control, 20-, and 50-µM-AlCl3-treated pollen tubes were regular (Figure 1A, A1 and B, B1).
Based on these results, 20 µM AlCl3 was used in the following experiments as the Al
treatment; the absence of Al (AlCl3) in the incubation medium was used as control.
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Figure 1. Effect of different concentration of AlCl3 on pollen tube morphology. Control pollen tubes.
(A) Control pollen tubes. (A1) One control pollen tube. (B) Pollen tubes treated with 20 µM AlCl3.
(B1) One pollen tube treated with 20 µM AlCl3. (C) Pollen tubes treated with 50 µM AlCl3. (C1) One
pollen tube treated with 50 µM AlCl3. Bar = 25 µm.

2.2. Effect of 20 µM AlCl3 on Ca2+ Flux and [Ca2+]c in Pollen Tubes of M. domestica

Ca2+ influx and efflux were generally equal at the control tube tip after a 2 h culture
(Figure 2 blue line). In Figure 2, negative values represent Ca2+ influx, and positive values
represent Ca2+ efflux. After statistical analysis, there were more amplitudes below the
x-axis than above the x-axis, so the result could be drawn that the influx of Ca2+ increased at
the tip of the pollen tube treated with 20 µM AlCl3 (Figure 2 red line). The results indicated
that 20 µM AlCl3 could promote the absorption of Ca2+ at the tip of the pollen tube. A
representative [Ca2+]c gradient was present within 20–30 µm of control and 20 µM AlCl3
treated pollen tube tip (Figure 2B,C). The results showed that 20 µM AlCl3 did not affect
[Ca2+]c gradient.
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Figure 2. Effects of 20 µM AlCl3 on Ca2+ flux and [Ca2+]c in pollen tubes of M. domestica. (A) Ca2+

flux of M. domestica pollen tube apex under different condition. The blue line stands for Ca2+ flux of
control pollen tube, while red line represents Ca2+ flux of pollen tubes treated with 20 µM. (B) The
[Ca2+]c at the tip of the control pollen tube labeled with Fluo-3/AM ester under CLSM. (C) The
[Ca2+]c at the tip of the pollen tube treated with 20 µM AlCl3. Bar = 10 µm. Note: The negative value
of Ca2+ flux represents absorption (influx), and the positive value represents efflux.

2.3. Effect of 20 µM AlCl3 on Actin Filaments in Pollen Tubes of M. domestica

In both the control and the 20-µM-AlCl3-treated pollen tubes, the actin filaments were
arranged parallel to the growth direction of the pollen tubes and connected with the actin
filaments in the pollen grain (Figure 3A,A1). The 20 µM AlCl3 had no obvious effect on the
actin filaments (Figure 3B,B1).
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Figure 3. Effect of 20 µM AlCl3 on actin filaments of pollen tubes of M. domestica. (A) Bright-field
image of a control pollen tube. (A1) Actin filaments of the pollen tube in A, labeled with 0.2 µM
phalloidin-FITC under CLSM. (A2) Larger magnification of A1. (B) Bright-field image of a pollen
tube treated with 20 µM AlCl3. (B1) Actin filaments of the pollen tube in B. (B2) Larger magnification
of B1. Bar = 10 µm.

2.4. Effect of 20 µM AlCl3 on Distribution of Cellulose and Callose in Pollen Tube Cell Wall of
M. domestica

Cellulose was evenly distributed on the wall of the control pollen tube, and the flu-
orescent intensity of the tip was slightly weaker (Figure 4A). The distribution pattern
of cellulose in the pollen tube treated with 20 µM AlCl3 changed little (Figure 4A1), in-
dicating that 20 µM AlCl3 had little influence on the distribution of cellulose in pollen
tubes. The result was further supported by quantitative analysis (Figure 4B). In the control
and 20-µM-AlCl3-treated pollen tubes, callose decreased gradually from the distal region
toward the tip with no fluorescent signal at the tube tip (Figure 4C,C1). The result was
further supported by quantitative analysis (Figure 4D).

2.5. Effects of 20 µM AlCl3 on Distribution of Pectins in Pollen Tube Cell Wall of M. domestica

Acid pectins (JIM 5) was evenly distributed on the control pollen tube wall (Figure 5A1).
At the tip of pollen tube wall, the fluorescent intensity of the 20-µM-AlCl3-treated pollen
tubes became weaker, indicating that 20 µM AlCl3 decreased acid pectins (Figure 5B1,C).
Esterified pectins (JIM 7) was distributed on both the control and 20-µM-AlCl3-treated
pollen tube wall with strong fluorescence at the tip (Figure 5E1). Compared with the control
pollen tube, stronger fluorescence was observed at the tip of the 20 µM AlCl3 pollen tube
(Figure 5F). Thus, 20 µM AlCl3 increased esterified pectins in the pollen tubes.
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Figure 4. Effect of 20 µM AlCl3 on cellulose and callose of M. domestica pollen tubes. (A) Cellulose
distribution in control pollen tube labeled with Calcofluor White Stain under fluorescence microscope.
(A1) Cellulose of pollen tube treated with 20 µM AlCl3. (B) Quantitative analysis of the fluorescent
intensity of cellulose in the wall of control pollen tubes (blue line) and 20 µM AlCl3 treated pollen
tubes (red line). (C) Callose distribution in control pollen tube labeled with aniline blue under
fluorescence microscope. (C1) Callose of pollen tube treated with 20 µM AlCl3. (D) Quantitative
analysis of the florescent intensity of callose in the wall of control (blue line) and 20 µM AlCl3 treated
pollen tubes (red line). Arrows indicate the tips of pollen tubes. Bar = 10 µm.
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Figure 5. Effect of 20 µM AlCl3 on pectin distribution of pollen tube wall of M. domestica. (A) Bright-
field image of a control pollen tube. (A1) Acid pectins of the control pollen tube in A labeled with JIM
5 under CLSM. (B) Bright-field image of a pollen tube treated with 20 µM AlCl3. (B1) Acid pectins of
the pollen tube in B. (C) Quantitative analysis of the fluorescent intensity of acid pectins (JIM 5) in
the wall of control (blue line) and 20 µM AlCl3 (red line) pollen tubes. (D) Bright-field image of a
control pollen tube. (D1) Esterified pectins of the pollen tube in D labeled with JIM 7 under CLSM.
(E) Bright-field image of a pollen tube treated with 20 µM AlCl3. (E1) Esterified pectins of the pollen
tube in E. (F) Quantitative analysis of the fluorescent intensity of esterified pectins of control (blue
line) and 20 µM AlCl3 treated (red line) pollen tubes. Bar = 10 µm.

LM6 could label (1→5)-α-L-arabinan, a structural feature of the side chains of pectins [22].
To specify how much pectin epitopes are involved in pollen tube growth, the antibody (LM
6) was used to label arabinan pectins. Arabinan pectins was distributed on both the control
and the 20-µM-AlCl3-treated pollen tube walls. At the tip of the pollen tube, stronger
fluorescence was observed on the 20-µM-AlCl3-treated pollen tube (Figure 6B1). Thus,
20 µM AlCl3 increased arabinan pectins in pollen tubes.
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Figure 6. Effect of 20 µM AlCl3 on the distribution of arabinan pectin in pollen tube wall of M. do-
mestica. (A) Bright-field image of a control pollen tube. (A1) Arabinan pectin of the pollen tube in A
labeled with LM 6 under CLSM. (B) Bright-field image of a pollen tube treated with 20 µM AlCl3.

(B1) Arabinan pectin of the pollen tube in B. (C) Quantitative analysis of the fluorescent intensity of
control (blue line) and 20 µM AlCl3 treated (red line) pollen tubes. Bar = 10 µm.
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2.6. Effects of 20 µM AlCl3 on Chemical Composition of Pollen Tube Cell Wall of M. domestica

The infrared spectrograms of the pollen tube tips were analyzed. The difference spectrum
was made, and the results showed that the spectrum of pollen tube tip changed after 20 µM
AlCl3 treatment (Figure 7). In the spectrum of the cell wall at the tip of the control pollen tubes,
the absorption peak of the saturated ester was 1736 cm−1, while 1623 cm−1 and 1522 cm−1

were the absorption peaks of amide I and amide II, respectively; 1455 cm−1 was the absorption
peak of carboxylic acid. The range of 1200–900 cm−1 was the absorption peak of carbohydrate.
It could be seen from the Figure 7 that the absorption peak of saturated ester rose slightly,
which indicated that the esterified pectins in the cell wall at the tip of 20 µM AlCl3 treated
pollen tubes increased. The absorption peak of carboxylic acid decreased, indicating that acid
pectins in the tip cell wall of 20 µM AlCl3 treated pollen tube decreased. The absorption peak
intensity of amide I band and amide II band decreased, and the absorption peak position
changed, indicating the protein composition and content in the cell wall changed. The intensity
of the carbohydrate absorption peak increased. These results were similar to those of the
above-mentioned immunofluorescence labeling.

Figure 7. FTIR spectra from the tip of pollen tubes of M. domestica. FTIR spectra from the tip regions of
control pollen tubes (blue line), 20 µM AlCl3 treated pollen tubes (red line), and the FTIR differential
spectrum generated by digital subtraction of the red spectra from blue spectra (green line).

3. Discussion

Al is the most abundant metal element in the earth’s crust, accounting for about seven
percent of the total mineral content of the soil, and the toxicity of Al is a serious problem for
agricultural plants [23]. Nevertheless, Al has also been considered to be a beneficial element
for some plant species, especially when used at low concentrations [24]. A previous study
reported that low concentrations of Al could promote tea pollen germination and pollen
tube growth [21].
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In angiosperms, pollen tubes transport two sperm cells to the egg cell and central cell in
embryo sac for double fertilization, which is of great significance to sexual reproduction [17].
In this study, low concentration Al3+ stimulated pollen germination and tube growth.

3.1. Relationship among Al, Ca2+ Flux and [Ca2+]c

Ca2+ is necessary for pollen tube growth, and its function has been proved by many
studies. Ca2+ is involved in the early stages of pollen germination and pollen tube growth [25].
Firstly, [Ca2+]c accumulates in pollen germination apertures rapidly after hydration [25]. If
[Ca2+]c is not established in the pollen grains, there is no protuberance, and germination
is inhibited [25]. Secondly, Ca2+ accumulates at the tip of pollen tube when pollen tube
elongated [25]. Destruction or modification of the [Ca2+]c gradient at the tip will interrupt
the growth of the pollen tube [26]. It has been reported that pollen tubes require external
Ca2+ concentrations between 10 µM and 10 mM [27]. In rice, maize, and wheat roots, 20 µM
Al3+ treatment reduces Ca2+ absorption [28,29]. In the arabidopsis root, Very and Davies (2000)
suggested that Al’s inhibition (100 µM) of Ca2+ absorption might be related to Al’s inhibition
of Ca2+ channels [30]. Rengel (1992) demonstrated that Al (≥100 µM) could specifically bind
to calcium channels, thereby competitively inhibiting Ca2+ absorption in wheat roots [31].
Ca2+ uptake was inhibited only under high concentration of Al treatment (≥100 µM) [31].
Fang et al. (2020) suggested that 600 µM AlCl3 inhibited Ca2+ influx and disturbed the [Ca2+]c
gradient, leading to the inhibition of pollen tube growth [1]. Ca2+ plays a key role in the
mechanism of resistance against Al [17]. Hepler (2005) reported that there were internal
stores (endoplasmic reticulum, vacuole, and mitochondria) where stored and released Ca2+ to
maintain local gradients [32]. In our study, the results showed that 20 µM AlCl3 enhanced
Ca2+ influx but did not affect the [Ca2+]c of the pollen tube tip. We speculated that excess
Ca2+ might store in the endoplasmic reticulum, vacuole, and mitochondria.

3.2. Al Altered the Deposition of Pollen Tube Wall Components

Cell walls are highly complex structures, and the main components of plant cell walls
are polysaccharide [33]. The components of cell wall are not constant but will adjust with
the changes of external environmental conditions and become a barrier to resist adverse
external environment [34]. It has been shown that the change of cell wall components plays
an important role in resisting Al toxicity [35]. The cell wall of the root tip is the first place
to contact and feel Al3+ and is the first barrier of cells to resist Al toxicity [33]. In this study,
Calcofluor white was used to detect cellulose on apple pollen tube wall. In addition, the
distribution of cellulose in the pollen tube was not affected by 20 µM AlCl3.

Callose plays an important role in a series of processes of plant development and
in the resistance to biological and abiotic stresses. One symptom of root cells exposed to
Al stress is callose formation [17]. Callose formation can be regarded as a parameter of
Al sensitivity and is positively correlated with pectin content [17]. It has been reported
that, on one hand, the rapid synthesis or degradation of callose in plants participates in
the growth and metabolism of plants [36]; on the other hand, callose deposition can also
serve as a physical barrier to restrict or prevent pathogens and thus resist the invasion of
pathogens [37]. In flowering plants, callose is the main component of functional substances
in multiple stages of pollen tube development [38]. Callose is also the main component
of pollen tubes and is formed with pollen tube lengthening and usually found mainly at
the distal region, without callose at the pollen tip [39]. Fang et al. (2020) suggested that
callose accumulated at the tips of pollen tubes treated with 600 µM AlCl3, indicating Al
toxicity influenced the tube growth by disturbing callose distribution at the apple pollen
tube tip [1]. In this study, callose was mainly distributed on both sides of the control pollen
tube wall, and almost no callose was observed at the tip. The 20 µM AlCl3 did not affect
callose distribution.

Pectin is a galacturonic acid rich branch heteropoly, which is the most complex polymer
in a cell wall. Pectin mainly controls cell-wall porosity and intercellular adhesion and
plays an important role in pollen tube growth, pathogen resistance, and cell swelling [40].
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Nagayama et al. (2019) found that there was a significant correlation between the pectin
content in rice cell wall and rice’s ability to tolerate Al3+ [41]. When the pectin content
increased, rice’s ability to tolerate Al3+ increased [41]. A large number of studies have
shown that Al tolerance in plants is related to the pectin content in the root cell wall and
the degree of pectin methylation [42]. Esterified pectin residues are produced in the Golgi
apparatus and released at the tip of the pollen tube, which cause the tube to expand [43,44].
At the pollen tube wall behind the apex, esterified pectins are de-esterified by pectin methyl-
esterase (PME) to be acid pectins [45]. It was found that the negatively charged carboxyl
groups in pectin combined with Al3+ in large quantities, which reduced the toxicity of
Al3+ to plant cells [41]. The amount of negatively-charged carboxyl groups in pectin is
determined by its de-methyl esterification degree, which is controlled by the activity of
PME [46]. It was found that Al-tolerant varieties showed higher esterified pectin ratios and
lower PME activity in rice, corn, and buckwheat [47]. The activity of PME in root tips was
negatively correlated with the degree of pectin methylation and positively correlated with
the accumulation of Al [48]. Decreased acid pectins at the tip could result in a more intense
action of the turgor pressure and therefore a faster growth of pollen tubes.

In our previous research, Fang et al. (2020) reported that 600 µM AlCl3 increased acid
pectins and had no obvious effects on esterified pectins at apple the pollen tube tip [1].
After 600 µM AlCl3 treatment, very weak fluorescence of (1→5)-α-L-arabinan was detected
at the pollen tube wall [1].

In this study, 20 µM AlCl3 treatment decreased acid pectin but increased esterified pectin
in the walls of apple pollen tubes. In conclusion, 20 µM AlCl3 could stimulate apple pollen
germination and pollen tube growth by enhancing Ca2+ influx and altering cell wall components.

4. Materials and Methods
4.1. Plant Materials and Pollen Culture

The material used in this experiment was apple pollen grain, which was collected at
maturity in Shandong Province, China, on 12 April 2019. The collected mature pollen grain
was evenly spread on sulfate paper. After drying, the pollen grain was collected in 50 mL
centrifuge tubes, sealed in darkness, and stored at −20 ◦C for later use.

Totals of 0, 20 µM, and 50 µM AlCl3 (Sigma, 563919, Oakville, CA, USA) were added
to the basic liquid medium, which consisted of 20% (w/v) sucrose (Sigma, V900116),
0.015% CaCl2 (Sigma, C1016) and 0.01% H3BO3 (Sigma, B0394). Pollen grain was cul-
tured in the above media in darkness at 30 ◦C.

After being incubated for 2 h, pollen germination rate was calculated under a BX51
microscope (Olympus, Tokyo, Japan) [49]. MetaMorph (Universal Imaging) was employed
to measure the length of the pollen tubes [49]. A total of 150 pollen grains were counted in
each experiment (repeated three times) of pollen germination rate and pollen tube length.
Statistical tests were employed by SPSS.

4.2. Measurement of Extracellular Ca2+ Flux

The Net Ca2+ flux at the tip of pollen tubes was measured using a Non-invasive
Micro-test Technique (BIO-001B, Younger USA Sci. and Tech. Corp., Amherst, MA, USA)
according to [49]. We calculated the Ca2+ fluxes using Mageflux software (V 3.0). The
experiments were repeated three times in each group, and the samples were measured for
10 min each time.

4.3. Fluorescence Labeling of Pollen Tube Cytoplasmic [Ca2+]c

According to [49], the [Ca2+]c of pollen tubes was labeled with Fluo-3/AM ester (final
concentration 100 µM, Sigma-Aldrich) for 1 h at 4 ◦C in darkness. Then, the pollen tubes
were washed with the culture medium three times. After that, the pollen tubes were placed
at room temperature for 1 h. The pollen tubes were then observed, and images were
captured using a confocal laser scanning microscope (CLSM, Leica TCS SP5, Mannheim,
Germany) with excitation wavelength 488 nm and emission wavelength 510–530 nm.
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4.4. Fluorescence Labeling of Actin Filaments

Actin filaments were labeled using the methods described in [49]. In short, pollen
tubes were fixed with 4% paraformaldehyde for 1.5 h, followed by three washes with
PBS. Then, the pollen tubes were treated with 1% pectinase and 1% cellulase for 15 min.
After that, the pollen tubes were treated with 1% Triton for 1 h. Finally, the pollen tubes
were labeled with 0.2 µM phalloidin-FITC for 2 h in darkness. The actin filaments of the
pollen tubes were observed under CLSM with excitation wavelength 488 nm and emission
wavelength 510–530 nm.

4.5. Fluorescence Localization and Analysis of Pollen Tube Wall Components

According to [49], Calcofluor White Stain and aniline blue were employed to label
cellulose and callose, respectively. Then, an ultraviolet channel (excitation filter BP395-440;
chromatic beam splitter FT460; barrier filter LP470) was used to observe the fluorescence of
cellulose and callose under a fluorescence microscope (Olympus BX51, Tokyo, Japan).

Monoclonal antibodies JIM5, JIM7, LM6 (University of Leeds, UK; diluted at 1:10) and
the secondary antibody FITC-labeled sheep anti-rat IgG (Sigma-Aldrich; diluted at 1:100 in
PBS) were selected to label acid pectins, esterified pectins, and arabinan pectins, respectively.
CLSM was used to observe the fluorescence of pectins with excitation wavelength 488 nm
and emission wavelength 510–530 nm. Controls were set by omitting the primary antibody.

Quantification of fluorescent intensity was performed according to [50] using ImageJ
software (Rasband, W.S., ImageJ, U. S. National Institutes of Health, Bethesda, ML, USA,
http://rsb.info.nih.gov/ij/, 1997–2012 (accessed on 1 January 2006)). Pixel intensity was
measured along the periphery of the pollen tubes, beginning from the tip (the outermost
tip of the tube). Values on the x-axes in the graphs indicate the meridional distance from
the tip of the pollen tube. Ten pollen tubes were selected and analyzed for each treatment
at random. Three independent experiments were conducted for each measurement.

In our research, all the conditions were the same when images were taken. Even the
experimental conditions (including the time, frequency of pollen tube cleaning, labeling,
and so on) were the same. So, all the images have a common background.

The chemical composition of pollen tube tip wall was analyzed using Fourier Trans-
form Infrared (FTIR) spectroscopy according to [50]. For each treatment, ten pollen tubes
were analyzed randomly, and three repetitions were conducted.
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