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Abstract: We evaluated the impact of the genotype on hepatic, pancreatic and myocardial iron con-
tent, and on hepatic, cardiac and endocrine complications in children with transfusion-dependent
β-thalassemia (β-TDT). We considered 68 β-TDT patients (11.98 ± 3.67 years, 51.5% females) consec-
utively enrolled in the Extension-Myocardial Iron Overload in Thalassemia network. Iron overload
was quantified by T2* technique and biventricular function by cine images. Replacement myocardial
fibrosis was evaluated by late gadolinium enhancement technique. Three groups of patients were
identified: homozygous β+ (N = 19), compound heterozygous β0β+ (N = 24), and homozygous
β0 (N = 25). The homozygous β0 group showed significantly lower global heart and pancreas T2*
values than the homozygous β+ group. Compared to patients with homozygous β+ genotype, β0β+
as well as β0β0 patients were more likely to have pancreatic iron overload (odds ratio = 6.53 and
10.08, respectively). No difference was detected in biventricular function parameters and frequency
of replacement fibrosis. No patient had cirrhosis/fibrosis, diabetes or heart failure, and the frequency
of endocrinopathies was comparable among the groups. In pediatric β-TDT patients, there is an
association between genotype and cardiac and pancreatic iron overload. The knowledge of patients’
genotype can be valuable in predicting some patients’ phenotypic features and in helping the clinical
management of β-TDT patients.
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1. Introduction

Beta-thalassemia is a genetic blood disease with a high incidence in the Mediterranean
basin, Middle East, Indian subcontinent, Central Asia, and Far East [1]. However, due to
migration, international job opportunities and intermarriages, thalassemia has become a
global health problem. Beta-thalassemia is characterized by a wide spectrum of clinical
manifestations and laboratory findings, and the disease phenotype largely depends on
the underlying mutations of the β-globin gene [2]. More than 200 different mutations that
affect the β-globin gene have been identified and their frequency varies significantly among
countries or even in different regions of a single country [3]. Globally, in the Mediterranean
Region the commonest mutations are CD39, IVS-1,110, IVS-1,1, IVS-1,6, IVS-2,745, IVS-2,1,
and CD8, while CD41/42, IVS, 1-5, CD17, -28, COD8/9, IVS,2-654, and IVS-1,1 are the
most prevalent mutations in the Asian Region [1]. These mutations cause a reduced (β+)
or absent (β0) production of the β-globin chain, with relative excess of α-chains. The
imbalance in the production of α- and β-globin chains results in ineffective erythropoiesis
and peripheral red cell hemolysis, with consequent anemia [4]. However, the correlation
between genotype and phenotype is complex, because other secondary/tertiary modifiers
and environmental factors interact with the different allelic variants [2] and modulate the
complex pathophysiology of β-thalassemia.

Based on the clinical severity and transfusion requirement, thalassemia can be classi-
fied into two main groups: transfusion-dependent thalassemia (TDT) and non-transfusion-
dependent thalassemia (NTDT). TDT is the most severe clinical form of β-thalassemia,
and its current treatment consists of regular transfusions (every 2–5 weeks) to maintain
pre-transfusion hemoglobin levels above 9–10.5 g/dL [5]. Chronic transfusions are not
risk-free and iron overload represents the main drawback. As the human body lacks an
active mechanism to excrete excess iron, a progressive accumulation of body iron easily
occurs as a result of long-term transfusions [6,7]. Iron overload is cytotoxic and induces
organ damage and failure in the liver, heart, pancreas, thyroid, and the central nervous
system [8]. The introduction of the chelation therapy has led to a decrease of the iron
burden, significantly prolonging the survival of the patients [9]. Moreover, the deployment
of the T2* magnetic resonance imaging (MRI) technique for the noninvasive quantification
of organ-specific iron overload has offered the possibility to design tailor-made chelation
therapies meeting the individual patient’s needs [10,11], further improving the progno-
sis [12,13]. However, hepatic, cardiovascular and endocrine complications still occur [13,14].
The underlying genetic defect in thalassemia is an important factor in the development of
these complications because the homozygous β0 genotype state demands more red cells
consumption and a greater rate of iron overloading [15,16].

A superior understanding of organ damage can be achieved by a comprehensive
assessment of the children with TDT, representing the ideal population to study the initial
stage of iron loading and the onset of its complications.

The aim of the present study was to evaluate the impact of the genotype on hepatic,
pancreatic and myocardial iron content, and on hepatic, cardiac and endocrine complica-
tions in children with transfusion-dependent β-thalassemia.

2. Materials and Methods
2.1. Study Population

From the 1727 patients with hemoglobinopathies enrolled in the E-MIOT (Extension-
Myocardial Iron Overload in Thalassemia) Network, we retrospectively selected 68 pedi-
atric (age < 18 years) TDT patients who had undergone at least one MRI scan. We excluded
the patients with Hb Lepore either in heterozygosis or in homozygosis and those with alfa
abnormalities.

The E-MIOT Network is constituted by 66 thalassemia centres and 11 MRI sites where
MR exams are performed using standardized and validated procedures [17,18]. All centers
are linked by a web-based database configured to collect and share patients’ history, clinical
and diagnostic data [19].
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All patients were regularly transfused to maintain a pre-transfusion hemoglobin
concentration above 9–10 g/dL. MRI scanning was performed within one week before
regular scheduled blood transfusion.

This study complied with the Declaration of Helsinki and was approved by the
institutional ethic committees. Parents gave their informed consent for all patients.

2.2. MRI

MRI exams were performed on conventional clinical 1.5 T scanners of three main
vendors (GE Healthcare, Philips Healthcare, Siemens Healthineers), equipped with a
phased-array receiver surface coil.

For iron overload assessment, a mid-transverse hepatic slice [20], five or more axial
slices including the whole pancreas [21], and basal, medium and apical short-axis views
of the left ventricle (LV) [22,23] were acquired by T2* gradient-echo multi-echo sequences.
T2* image analysis was performed using a custom-written, previously validated software
(HIPPO MIOT®, V2.0, Consiglio Nazionale delle Ricerche and Fondazione Toscana Gabriele
Monasterio, Pisa, Italy) [24]. Hepatic T2* values were calculated in a circular region of
interest (ROI) of standard dimension [25] and were converted into liver iron concentration
(LIC) using the Wood’s calibration curve [26,27]. Three small ROIs were manually defined
over pancreatic head, body and tail, taking care to avoid large blood vessels or ducts and
areas involved in susceptibility artefacts from gastric or colic intraluminal gas [28]. Global
pancreatic T2* value was calculated as the mean of T2* values from the three regions. The
software provided the T2* value on each of the 16 segments of the LV, according to the
standard AHA/ACC model [29]. The global heart T2* value was obtained by averaging all
segmental T2* values.

Steady-state free precession (SSFP) cine images were acquired in sequential 8-mm
short-axis slices (gap 0 mm) from the atrio-ventricular ring to the apex to quantify biven-
tricular function parameters in a standard way [30]. The inter-center variability had been
previously reported [31]. Left and right atrial areas were measured from the 4-chamber
view projection in the ventricular end-systolic phase.

To detect the presence of replacement myocardial fibrosis, late gadolinium enhance-
ment (LGE) short-axis and vertical, horizontal, and oblique long-axis images were acquired
10–18 min after Gadobutrol (Gadovist®; Bayer; Berlin, Germany) intravenous administra-
tion at the standard dose of 0.2 mmol/kg using a fast gradient-echo inversion recovery
sequence. The use of Gadobutrol has been demonstrated to be safe in patients with
hemoglobinopathies [32]. LGE was considered present when visualized in two different
views [33].

2.3. Biochemical Assays

All biochemical investigations were performed using commercially available kits at
the laboratories of thalassemia centres where the patients were treated.

Genotyping was done using DNA sequencing techniques. Genomic DNA was ex-
tracted from peripheral blood leucocytes using the salting-out method [34]. All coding
and noncoding regions of the β-globin gene were amplified by polymerase chain reac-
tion (PCR) in different fragments. The PCR conditions were different, depending on the
specific protocol adopted by the laboratory of thalassemia centre. B-thalassemia muta-
tions were identified by reverse hybridization assay (β-globin strip assay, Nuclear Laser,
Vienna Lab, Austria).

The patients were monitored for glucose dysregulation according to the TIF guide-
lines [5], recommending an annual oral glucose tolerance test (OGTT) screening starting at
age 10. Venous plasma glucose was measured fasting and 2 h after and oral glucose load
(dose of 1.75 g/kg, with a maximum of 75 g).
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2.4. Diagnostic Criteria

The compliance was collected by the investigators of each thalassemia center and,
based on the correspondence between the patient’s actual dosing and the prescribed
regimen, it was defined as excellent (> 80%), good (60–80%) or insufficient (<60%).

An MRI LIC ≥3 mg/g/dw was considered indicative of a significant iron load [35]. It
was previously determined that 26 ms is the lowest threshold of a normal global pancreas
T2* value [21]. A T2* measurement of 20 ms was taken as a “conservative” normal value
for segmental and global values [24,36,37].

Liver fibrosis was diagnosed if the liver stiffness assessed by transient elastography
was >7.0 kPa, while a liver stiffness >12.5 kPa was indicative of cirrhosis.

Diabetes mellitus (DM) was defined by fasting plasma glucose ≥126 mg/dL or 2-h
plasma glucose ≥200 mg/dL during an OGTT, or a random plasma glucose ≥200 mg/dL
with classic symptoms of hyperglycemia or hyperglycemic crisis [38].

Hypogonadotropic hypogonadism was defined as luteinizing hormone (LH) and
follicle stimulating hormone (FSH) levels below 2 IU/L, with an estradiol concentration
of below 20 pg/mL in girls or a testosterone concentration of below 3 ng/mL in boys.
Hypogonadism was detected in females by the absence of breast development and in males
by the absence of testicular enlargement (<4 mL) by the age of 16 years [39].

Hypothyroidism was defined as a high serum TSH concentration with normal or
reduced free thyroxine levels (primary form) or normal or low serum TSH concentration
with reduced free thyroxine levels (central form) [40].

Hypoparathyroidism was defined as low serum calcium concentration, increased
serum phosphate, low serum parathyroid hormone or, if normal, inappropriate for the
calcium level [41].

Diagnosis of growth hormone (GH) deficiency required integration of growth criteria,
medical history, laboratory tests (measurements of insulin-like growth factor 1 and insulin-
like growth factor binding protein type 3 levels and provocative testing), and imaging
studies [42].

Heart failure (HF) was identified based on symptoms and signs, according to the
AHA/ACC guidelines [43]. Arrhythmias were diagnosed and classified according to the
AHA/ACC guidelines [44].

2.5. Statistical Analysis

All data were analyzed using the SPSS v27.0 statistical package.
Continuous variables were described as mean ± standard deviation (SD) and categori-

cal variables were expressed as frequencies and percentages.
The normality of distribution of the parameters was assessed by using the Kolmogorov–

Smirnov test.
For continuous values with normal distribution, comparisons among groups were

made by one-way ANOVA. Kruskal–Wallis test was applied for continuous values with no
normal distribution. The χ2 test was used for the comparison of non-continuous variables.
Bonferroni post-hoc test was used for multiple comparisons between pairs of groups.

Correlation analysis was performed using Pearson’s test or Spearman’s test where
appropriate.

Odds ratios (OR) and 95% confidence intervals (CI) were calculated by using logistic
regression.

In all tests, a two-tailed probability value of 0.05 was considered statistically significant

3. Results
3.1. Patients’ Characteristics

All patients were white and 35 (51.5%) were females. Mean age was 11.98 ± 3.67 years
(range: 4–18 years).

Thirty-three different genotypes were recorded and the commonest were homozygous
CD39, CD39/IVS-1,110, and homozygous IVS-1,110 (Table 1).
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Table 1. Frequency of different genotypes (based on type of mutation) in our pediatric TDT patients.

Genotype HGVS Nomenclature Type Cases (N) Frequency (%)

CD39/CD39 HBB:c.118C > T/HBB:c.118C > T β0 β0 11 16.2

CD39/IVS-1,110 HBB:c.118C > T/HBB:c.93-21G > A β0 β+ 7 10.3

IVS-1,110/IVS-1,110 HBB:c.93-21G > A/HBB:c.93-21G > A β+ β+ 6 8.8

IVS-1,110/IVS-2,745 HBB:c.93-21G > A/HBB:c.316-106C > G β+ β+ 4 5.9

CD5/CD5 HBB:c.17_18delCT/HBB:c.17_18delCT β0 β0 3 4.4

CD39/IVS-1,1 HBB:c.118C > T/HBB:c.92 + 1G > A β0 β0 3 4.4

IVS-1,6/IVS-1,110 HBB:c.92 + 6T > C/HBB:c.93-21G > A β+ β+ 3 4.4

CD39/IVS-1,6 HBB:c.118C > T/HBB:c.92 + 6T > C β0 β+ 3 4.4

CD6/-87 HBB:c.20delA/HBB:c.-137C > G β0 β+ 2 2.9

CD39/IVS-2,1 HBB:c.118C > T/HBB:c.315 + 1G > A β0 β0 2 2.9

IVS-1,6/IVS-1,6 HBB:c.92 + 6T > C/HBB:c.92 + 6T > C β+ β+ 2 2.9

IVS-2,1/IVS-1,110 HBB:c.315 + 1G > A/HBB:c.93-21G > A β0 β+ 2 2.9

Others
β+ β+
β0 β+
β0 β0

4
10
6

5.9
14.8
8.8

HGVS = Human Genome Variation Society; N = number.

Each allele belonging to genotype was classified according to the corresponding
phenotypic expression (β+ or β0) and patients were divided into three groups: homozygous
β+ (N = 19; 27.9%), compound heterozygous β0β+ (N = 24; 35.3%), and homozygous β0
(N = 25; 36.8%).

3.2. Genotype and Clinical Correlates

The clinically relevant findings in the three groups are summarized in Table 2. Age, gender,
frequency of splenectomy, mean pre-transfusion hemoglobin and serum ferritin levels were
comparable among the groups. Age at the start of regular transfusions and chelation therapy
tended to be lower in the homozygous β0 group, but the difference was not significant.

Table 2. Demographic, transfusion, chelation and clinical characteristics in the three groups identified
on the basis of the β-globin gene phenotypic expression.

β+β+
(N = 19)

β0β+
(N = 24)

β0β0
(N = 25) p

Age (years) 12.45 ± 3.69 13.13 ± 3.30 10.53 ± 3.65 0.071

Males/Females 10/9 13/11 10/15 0.559

Age at start of regular transfusion (months) 20.46 ± 29.78 19.74 ± 17.69 12.44 ± 11.83 0.339

Chelation starting age (years) 4.92 ± 5.62 3.41 ± 2.24 2.94 ± 0.93 0.958

Splenectomy, N (%) 1 (5.3) 3 (12.5) 3 (12.0) 0.696

Positive HCV RNA (%) 0 (0.0) 0 (0.0) 1 (4.0) 0.418

Chelation therapy, N (%) 0.299
DFO 2 (10.5) 0 (0.0) 0 (0.0)
DFP 4 (21.1) 3 (12.5) 2 (8.0)
DFX 12 (63.2) 18 (75.0) 21 (84.0)

Combined DFO + DFP 0 (0.0) 1 (4.2) 2 (8.0)
Sequential DFO/DFP 0 (0.0) 1 (4.2) 0 (0.0)
Combined DFP + DFX 1 (5.3) 1 (4.2) 0 (0.0)

Compliance, N (%) 0.905
optimal 10 (52.6) 10 (41.7) 11 (44.0)

good 8 (42.1) 12 (50.0) 11 (44.0)
insufficient 1 (5.3) 2 (8.3) 3 (12.0)

Pre-transfusion hemoglobin (g/dL) 9.93 ± 0.46 9.52 ± 0.51 9.59 ± 0.58 0.072

Ferritin levels (ng/L) 1684.14 ± 1276.53 1655.56 ± 1518.69 1886.17 ± 1805.39 0.901

N = number; HCV = hepatitis C virus; RNA = ribonucleic acid; DFO = desferrioxamine; DFP = deferiprone;
DFX = deferasirox.
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The number of transfusional units in the 12 months before the MRI scan was available
for 14 patients with homozygous β+ genotype (mean value: 31.79 ± 11.13), 18 patients
with heterozygous β0β+ genotype (mean value: 37.18 ± 10.40), and 17 patients with
homozygous β0 genotype (mean value: 38.89 ± 12.79) and, besides the trend, no association
with the genotype was detected (p = 0.258).

No difference was found in the distribution of the different chelation regimens or in
the compliance.

3.3. Genotype and MRI Findings

Mean MRI LIC was 7.19 ± 8.79 mg/g dw and hepatic iron overload was detected
in 44 (64.7%) patients. In the 71 patients in whom pancreatic T2* images were available,
mean global pancreas T2* value was 19.82 ± 11.54 ms, and pancreatic iron overload had an
incidence of 73.1%. Mean global heart T2* value was 33.75 ± 10.49 ms. All seven (10.3%)
patients with myocardial iron overload had both hepatic and pancreatic iron overload.

Mean serum ferritin levels were directly correlated with MRI LIC values (R = 0.715;
p < 0.0001) and inversely correlated with global pancreas T2* values (R = −0.442; p = 0.001)
and global heart T2* values (R = −0.512; p < 0.0001). No association between iron overload
in the different organs and age at start of regular transfusions or chelation was detected.

MRI LIC values were inversely correlated with global pancreas T2* values (R = −0.561;
p < 0.0001), as well as global heart T2* values (R = −0.595; p < 0.0001), and a positive correlation
was detected between global pancreas and heart T2* values (R = 0.609; p < 0.0001).

Table 3 summarizes the MRI findings in the three groups. MRI LIC values were
comparable among the three groups.

Table 3. MRI findings in the three groups identified on the basis of the β-globin gene phenotypic
expression.

β+β+
(N = 19)

β0β+
(N = 24)

β0β0
(N = 25) p

MRI LIC (mg/g dw) 5.39 ± 5.59 6.67 ± 10.29 9.07 ± 9.19 0.140

MRI LIC > 3 mg/g dw, N (%) 12 (63.2) 13 (54.2) 18 (72.0) 0.433

Global pancreas T2* (ms) 24.80 ± 12.95 21.60 ± 8.89 14.38 ± 10.68 0.006

Global pancreas T2* < 26 ms, N (%) 8 (42.1) 19/23 (82.6) 22 (88.0) 0.001

Global heart T2* (ms) 36.93 ± 7.78 35.53 ± 9.17 29.61 ± 12.35 0.042

Global heart T2* < 20 ms, N (%) 1 (5.3) 2 (8.3) 4 (16.0) 0.472

Left atrial area (cm2/m2) 12.54 ± 1.21 12.65 ± 1.96 13.49 ± 3.97 0.881

Right atrial area (cm2/m2) 11.97 ± 2.51 11.53 ± 1.29 12.29 ± 3.98 0.964

LV EDVI (mL/m2) 80.84 ± 12.82 80.65 ± 12.89 79.87 ± 15.02 0.874

LV ESVI (mL/m2) 34.26 ± 11.85 31.57 ± 6.85 29.23 ± 7.69 0.238

LV SVI (mL/m2) 49.05 ± 8.92 50.80 ± 9.14 49.73 ± 8.22 0.899

LV mass index (g/m2) 51.02 ± 13.66 52.00 ± 12.95 51.23 ± 10.38 0.963

LV EF (%) 60.62 ± 6.69 61.87 ± 4.39 62.99 ± 4.31 0.334

LV cardiac index (L/min/m2) 4.35 ± 0.81 4.02 ± 1.04 4.24 ± 0.75 0.484

RV EDVI (mL/m2) 82.41 ± 12.52 80.48 ± 15.49 76.36 ± 14.23 0.390

RV ESVI (mL/m2) 32.98 ± 7.99 30.57 ± 6.78 27.64 ± 6.28 0.062

RV SVI (mL/m2) 49.80 ± 9.89 49.78 ± 10.67 49.72 ± 8.91 0.950

RV EF (%) 60.27 ± 7.83 61.35 ± 5.29 63.57 ± 3.50 0.181

Replacement myocardial fibrosis, N (%) 0/1 (0.0) 1/5 (20.0) 0/5 (16.7) 0.517

N = number; MRI = magnetic resonance imaging; LIC = liver iron concentration; LV = left ventricular; EDVI = end-
diastolic volume index; ESVI = end-systolic volume index; SVI = stroke volume index; LV = ejection fraction;
RV = right ventricular.

Global pancreas T2* values were significantly lower in the homozygous β0 group
than in the homozygous β+ group (p = 0.024) (Figure 1A). The percentage of patients
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with global pancreas T2* < 26 ms was significantly higher in both heterozygous β0β+
and homozygous β0 groups than in the homozygous β+ group (p = 0.018 and p = 0.003,
respectively) (Figure 1B). The OR for abnormal global pancreas T2* values was 6.53 (1.59–
26.79 95%CI; p = 0.009) for patients with the heterozygous β0β+ genotype and 10.08
(2.22–45.71%CI; p = 0.003) for patients with the homozygous β0 genotype versus patients
with the homozygous β+ genotype.

Figure 1. (A) Mean global pancreas T2* values in the three groups identified based on the β-globin
gene phenotypic expression. (B) Frequency of patients with global pancreas T2* < 26 ms in the three
phenotypic groups. The p-value for each significant pairwise comparison is indicated.

The homozygous β0 group showed significantly lower global heart T2* values than the
homozygous β+ group (p = 0.048) (Figure 2). In homozygous β0 patients, the frequency of
myocardial iron overload was about three times higher than in patients with homozygous
β+ genotype and two times higher than in patients with β0β+, but this difference was
not significant.

Figure 2. Mean global heart T2* values in the three groups identified based on the β-globin gene
phenotypic expression. The p-value for each significant pairwise comparison is indicated.

Biventricular function parameters were assessed in 63 patients, because for five pa-
tients a short MRI protocol was chosen to avoid sedation. There were not significant
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differences among groups in bi-atrial areas, biventricular volume indexes and ejection
fractions, and LV mass index.

Eleven patients completed the MRI protocol with acquisition of the LGE images and
only one of them showed replacement myocardial fibrosis.

3.4. Genotype and Complications

No patient had liver fibrosis or cirrhosis.
Diabetes mellitus was not diagnosed in any patient. Hypogonadism, hypothyroidism,

and GH deficit developed in 5.9% of patients and prevalence of hypoparathyroidism was
4.4%. At least one endocrine complication was detected in 13 (19.1%) patients. Frequency
of hypogonadism, hypothyroidism, hypoparathyroidism, GH deficit, and endocrinopathies
globally considered was comparable among the three groups (Table 4).

Table 4. Hepatic, endocrine and cardiac complications in the three groups identified on the basis of
the β-globin gene phenotypic expression.

β+β+
(N = 19)

β0β+
(N = 24)

β0β0
(N = 25) p

Liver fibrosis or cirrhosis, N (%) 0 (0.0) 0 (0.0) 0 (0.0) –

Diabetes mellitus, N (%) 0 (0.0) 0 (0.0) 0 (0.0) –

Hypogonadism, N (%) 0 (0.0) 2 (8.3) 2 (8.0) 0.438

Hypothyroidism, N (%) 1 (5.3) 2 (8.3) 1 (4.0) 0.805

Hypoparathyroidism, N (%) 0 (0.0) 2 (8.3) 1 (4.0) 0.414

GH deficit, N (%) 1 (5.3) 1 (4.2) 2 (8.0) 0.842

At least one endocrinopathy, N (%) 2 (10.5) 6 (25.0) 5 (20.0) 0.483

Heart failure, N (%) 0 (0.0) 0 (0.0) 0 (0.0) –

Arrhythmias, N (%) 0 (0.0) 0 (0.0) 1 (4.0) 0.418

N = number; GH = growth hormone.

No patient had heart failure. One patient had an ectopic atrial tachycardia which
resulted in left ventricular dysfunction and required hospitalization and treatment with
anti-arrhythmic drugs. This patient was a nine-year-old male with a homozygous β0
genotype and elevated iron levels (MRI LIC = 9.05 mg/g dw, global pancreas T2* = 4.20 ms,
and global heart T2* = 2.40 ms).

4. Discussion

The knowledge of the molecular background of β-thalassemia can play a key role in the
understanding of the factors affecting the diverse clinical manifestations. In the present study,
we evaluated the impact of an underlying genetic defect on the development of disease
complications in children with TDT. To the best of our knowledge, few studies, involving
mainly patients from a limited area of Egypt, have explored this issue [14,16]. The children
represent an ideal study population, due to the absence of the “aging” effect, with age “per
se” being a powerful risk factor for the development of several complications [45,46].

We analyzed a representative sample of the Italian pediatric population with TDT, in
which 33 different genotypes were identified. In line with previous studies on adult Italian
patients [15,47], the most common mutations were CD39 and IVS-1,110. In the Egyptian
studies, the commonest mutations were IVS-1,1, IVS-1,110, and IVS-1,6 [16].

Patients were divided into three groups according to their genotype: homozygous
β0, with two severe mutations and consequently a high alpha-non alpha globin chain
imbalance, heterozygous β0β+, characterized by a combination of mild/severe mutations,
and homozygous β+, with two mild mutations and a lower imbalance between alpha and
beta globin chains.

The three groups were homogeneous for age, sex, and hemato-chemical parameters.
The transfusion demand tended to be lower in the homozygous β+ group than in the other
two groups, but the difference was not statistically significant, likely because the datum was
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not available for all patients and the transfusion burden may change from center to center,
depending also on red blood cell preparation and concentration. Moreover, it has been
suggested that other factors (i.e., the spleen status) could contribute, more accurately than
the genotype, to provide a basal evaluation of residual erythropoietic activity, and therefore,
of the blood consumption [48]. Other studies found a significant association between
genotype and frequency of blood transfusions, since in β0 homozygotes the complete
absence of β-hemoglobin chains increases the degree of hemolysis and blood requests, also
leading to a higher iron overload [16,49].

MRI LIC values tended to be higher in the homozygous β0 group, but the difference
among the group was not significant. Conversely, global heart T2* values were significantly
lower in the homozygous β◦ group than in the homozygous β+ group. Liver and heart
have not only different iron uptake mechanisms, resulting in a “delay” in cardiac iron
overload, but also different rates of iron clearance [50]. The capacity of the chelation therapy
to remove iron from the liver in a faster way than from the heart is a potential explanation
of our finding. In contrast with our study, Hassan et al. found that the homozygous
β0 genotype was associated with significantly higher liver iron content compared to the
heterozygous β0β+ and homozygous β+ genotypes [16]. These inconsistent results can be
explained by differences in study populations. We considered only TDT patients, while
16.4% of their patients, all in the homozygous β+ group, had non-transfusion-dependent
thalassemia (NTDT). Although iron overload can occur also in NTDT patients, due to the
increased intestinal iron absorption, it occurs at a slower rate than in TDT patients [51].
Iron seems to be less adequately controlled in the Egyptian population in comparison to
our patients, as highlighted by the higher mean serum ferritin levels (3385.8 vs. 1742.51
ng/mL) and mean MRI LIC values (17.4 vs. 7.19 mg/g dw). Moreover, the homozygous β0
group had a significantly worse compliance than the other two groups [16], and treatment
efficacy and success are highly dependent on patient compliance [52].

To the best of our knowledge, this is the first study to show an association between
genotype and levels of pancreatic iron overload. Likely, this link was not masked by
the effects of the iron chelation therapy, since it seems extremely hard to remove iron
from the pancreas [53]. We found out that, compared to patients with the homozygous β+
genotype, patients with the homozygous β0 genotype and patients with the β0β+ genotype
had a risk ten and six times higher, respectively, to develop pancreatic iron overload. It
could be hypothesized that the presence of at least one β+ allele, independently from the
transfusional load, could be representative of a non-transfusion-dependent thalalassemia-
like phenotype, characterized by the tendency to limit extrahepatic iron distribution [54–57].
Surprisingly, besides the young age, more than 80% of our patients with at least one β0 allele
had pancreatic iron overload. Pancreatic iron is a powerful predictor for the alterations
of glucose metabolism, although a latency time exists before pancreatic iron could cause
impaired glucose tolerance and overt diabetes [53,58]. Moreover, pancreatic iron has a
profound link with heart disease, being a good predictor for myocardial dysfunction in
the absence of cardiac iron, for cardiac iron, for heart failure, and for arrhythmias [53,59–
61]. Accordingly, it seems paramount to incorporate the pancreatic T2* assessment in the
evaluation and monitoring of young children with TDT, especially in the presence of a β0
allele. Thalassemic children were shown to be prescribed a lower mean dose of chelating
drug and a delayed dose increase in comparison with adult patients [62], but in the presence
of pancreatic iron overload it would be prudent to modify or intensify the iron chelation
therapy to prospectively ward off both alterations of glucose metabolism and cardiac iron
accumulation.

We failed to detect a correlation between genotype and biventricular volumes and
ejection fractions and LV mass index, likely because all patients had normal or near-normal
values of these parameters.

In our study population, no patient had liver fibrosis or cirrhosis and only one patient
had hepatitis C virus (HCV) infection, confirming that in Italy the implemented measures
to improve blood transfusion screening have significantly reduced the risk of getting an
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infection. Indeed, in an Italian study involving 1079 TDT patients with a mean age of 37.79
± 10.11 years, only 37.1% had never contracted the HCV infection [53]. In the same study,
the prevalence of diabetes mellitus was 17.5%. Conversely, none of our pediatric patient
showed diabetes mellitus. In thalassemia, diabetes is a late complication, and its prevalence
is significantly associated with the age of the patient [63–65].

The prevalence of the other endocrine complications in our pediatric population was
hypogonadism, hypothyroidism and GH deficit—5.9%, and hypoparathyroidism—4.4%.
This prevalence was consistent with some studies [66,67], while other studies reported a
significantly higher incidence of endocrinopathies [14,16]. These discrepancies could be
attributed to differences in age distribution and therapeutic management, and to genetic,
geographical, cultural, and economic factors. In pediatric as well as in adult thalassemia
patients, the β0β0 genotype was previously demonstrated to be associated with a higher
rate of endocrinopathies [14,16,49,63,68], likely due to a greater rate of iron loading through
higher red cell consumption and a higher vulnerability to free radical damage. It is highly
probably that, in the present study, this association is hidden by the low number of patients
with endocrinopathies.

We were not able to explore the association between genotype and cardiac complica-
tions, since no patient had heart failure and only a single patient had arrythmias. Of note,
this patient had a homozygous β0 genotype, which, in a prospective multicenter study,
emerged as a risk factor for the development of cardiac arrhythmias and complications
globally considered [69].

The main limitation of this study is the small sample size. Moreover, the previous com-
plete transfusion history and chelation therapy, as potential determinants of the described
pattern of iron organ distribution, were not available.

5. Conclusions

In pediatric TDT patients there is an association between genotype and cardiac and
pancreatic iron overload. Patients with homozygous β+ genotype had significantly lower
myocardial iron levels than β0β0 patients and significantly lower pancreatic iron levels
than β0β+ and β0β0 patients. So, the knowledge of the genotype can be valuable in
predicting some patients’ phenotypic features and in helping the clinical and instrumental
management of TDT patients.
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