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Abstract: Three different organocatalysts, namely, 1-tert-butyl-4,4,4-tris(dimethylamino)-2,2-bis[tris
(dimethylamino) phosphoranylidenamino]-2Λ5,4Λ5-catenadi(phosphazene) (t-BuP4), 1,5,7-
triazabicyclo[4.4.0]dec-5-ene (TBD) and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), have been used as
1,5-dioxepan-2-one (DXO) ring-opening polymerization (ROP) catalysts at varied reaction conditions.
1H NMR spectra, size exclusion chromatography (SEC) characterizations, and kinetic studies prove
that the (co)polymerizations are proceeded in a controlled manner with the three organocatalysts.
It is deduced that t-BuP4 and DBU catalysts are in an initiator/chain end activated ROP mechanism
and TBD is in a nucleophilic ROP mechanism.
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1. Introduction

During the last several decades, for the ring-opening polymerization (ROP) of cyclic esters,
transition metal and organometallic compounds were commonly used as initiators or polymerization
catalysts [1–4]. Notwithstanding the polymerization processes are very successful in producing
degradable polyesters and polycarbonates, it is clear that the metallic-based compounds are
environmentally sensitive, and a lack of residual metal contaminants is required in biomedical
and microelectronic applications [5–7]. For the last two decades, organocatalysts have provided
a powerful strategy for the ROP of cyclic monomers, e.g., lactones, epoxides or carbonates,
as the advantages of convergence of convenience, fast rates, functional group tolerance, selectivity
and easy separating. Polyesters, polycarbonates, poly(ethylene oxide)s, polyphosphoesters and
polysiloxanes, etc., have been well defined with a controlled manner in molecular weight, molecular
weight distribution, end groups, architecture, stereoregularity and monomers sequence by an
organic acid or base catalysts [8–16]. Among the various organocatalysts, the most studied were
phosphazenes, guanidines, and amidines. Hedrick and coworkers have prepared polycarbonates,
polylactides with excellent controlling and functionality using 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD)
and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) as the organocatalysts [17–22]. Zhao and Zhang’s group
have developed a number of poly(ethylene oxide) based copolymers and polymerization methods
with phosphazene catalysts [23–26]. Although organocatalysts have been widely studied for ROP,
they have not been used as catalyst for ROP of cyclic 1,5-dioxepan-2-one (DXO) as far as we know.

DXO homopolymer is hydrophilic and completely amorphous with a low glass transition
temperature (Tg) of approximately −39 ◦C [27]. DXO based (co)polymers undergo hydrolysis in vitro
and vivo, and is, therefore, a possible candidate in the design of bio-absorbable materials [28–30].
In the same time, these properties are very useful in a degradable copolymer with the hydrophobic
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and semi-crystalline segments, such as poly(ε-caprolactone) (PCL) and poly(lactide) (PLA).
Copolymerization of DXO and other cyclic esters has been investigated to modify and improve
the degradation properties. Statistical copolymers of DXO with lactide have shown interesting
properties on degradation rates and stiffness, which could be easily altered [31].

In the present work, we have studied the ROP of DXO with three different organacatalysts,
1-tert-butyl-4,4,4-tris(dimethylamino)-2,2-bis[tris(dimethylamino)phosphoranylidenamino]-2Λ5,4Λ5-
catenadi(phosphazene) (t-BuP4, MeCNpKa is 42.6), 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD, MeCNpKa
is 26) and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU, MeCNpKa is 24.3), which have verified basicity,
catalytic reactivity and chemical structure (Scheme 1) [8]. We have also explored the copolymerization
of DXO with CL and the initiation with poly(ethylene glycol) monomethyl ether (mPEG) as
macroinitiator, our aim is to well know the ROP process of DXO with organocatalysts which may be
useful in synthesizing biodegradable materials.
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Scheme 1. Ring-opening polymerization of 1,5-dioxepan-2-one (DXO) with t-BuP4, 1,8-diazabicyclo
[5.4.0]undec-7-ene (DBU) and 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) as organocatalysts.

2. Materials and Methods

2.1. Materials

DXO was synthesized through Bayer-Villiger oxidation according to the literature, then purified
by recrystallization from the dry ether, and two subsequent distillations under reduced pressure [32,33].
ε-Caprolactone (CL) from Aldrich (Shanghai, China) was dried over calcium hydride (CaH2) and
distilled under reduced pressure prior to use. Ethylene glycol (EG) and benzyl alcohol (BnOH)
from Sinopharm (Shanghai, China) were dried over sodium with protective nitrogen atmosphere
and distilled under reduced pressure prior to use. Tetrahydrofuran (THF) and toluene (TOL) from
Sinopharm (Shanghai, China) were freshly distilled from sodium/benzophenone and stored under
an argon atmosphere. DBU, TBD, t-BuP4 from Aldrich (Shanghai, China) were used as received, and
other reagents from Sinopharm (Shanghai, China) were also used as received.

2.2. Characterizations

Proton nuclear magnetic resonance (1H NMR) spectra were recorded on a Bruker AV400 NMR
spectrometer (Rheinstetten, Germany) by using deuterated chloroform (CDCl3) or benzene (C6D6)
as the solvent and tetramethylsilane (TMS) as the internal standard. The apparent number average
molecular weight (Mn) and polydispersity index (PDI) were measured at 35 ◦C on a Waters size
exclusion chromatography (SEC) (Milford, USA) equipped with a model 510 pump, two identical PL
gel columns (5 µm, MIXED-C) and a differential refractive index detector model 410 (RI). A series
of monodisperse polystyrenes were used as the standards with THF as the eluent at a flow rate
of 1.0 mL/min.
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2.3. Synthesis of PDXO Homopolymer

A typical polymerization was performed as follows: DXO (0.58 g, 5.0 mmol, 100 equiv) and
BnOH (5.0 µL, 0.05 mmol, 1.0 equiv) were added to a flask with purified THF (2 mL) at room
temperature. t-BuP4 (50 µL, 0.05 mmol, 1.0 equiv in hexane) was then added with a syringe to initiate
the polymerization (most of the polymerization was handled in the glove box). For kinetic study,
aliquots were withdrawn in an argon flow with designed time in order to monitor monomer conversions
and evolution of molar masses. The polymerization was quenched by adding 0.1 mL acetic acid, a small
amount of the polymerization mixture was withdrawn and dissolved with CDCl3 for 1H NMR analysis
and further diluted with THF for SEC measurement to obtain Mn and PDI. The rest polymerization
mixture was diluted with THF and poured into a large excess of cold ether to precipitate the polymer
which was then dried under vacuum. Polymerization of DXO with TBD, DBU and t-BuP4 as the
catalyst under other conditions was carried out in a similar procedure (Table 1). 1H NMR (400 MHz,
CDCl3, δ, ppm): 4.22 (–COCH2CH2OCH2CH2O–, 2H), 3.75 (–COCH2CH2OCH2CH2O–, 2H),
3.65 (–COCH2CH2OCH2CH2O–, 2H), 2.61 (–COCH2CH2OCH2CH2O–, 2H).

Table 1. Characterization data of ring-opening polymerization (ROP) of DXO with three organocatalysts
at various conditions a.

Samples Cat. f b T (◦C) Time
(min)

Conv.
(%) c

Mn,NMR’ ×
10−4 (g/mol) c

Mn,theo’ × 10−4

(g/mol) d
Mn,SEC × 10−4

(g/mol) e PDI e

H1 t-BuP4 50 25 5 95 0.55 0.56 0.60 1.24
H2 t-BuP4 100 25 15 96 1.10 1.17 1.08 1.28
H3 t-BuP4 200 25 120 >99 1.84 2.32 2.04 1.40
H4 t-BuP4 300 25 180 >99 2.45 3.49 3.25 1.35
H5 t-BuP4 500 25 600 >99 3.41 5.81 3.92 1.42
H6 t-BuP4 100 60 480 – – – gel –
H7 t-BuP4 50 60 800 – – – gel –
H9 t-BuP4 100 40 600 >99 1.13 1.17 1.22 1.28
H10 t-BuP4 50 −20 15 >99 0.58 0.59 0.61 1.31
H11 TBD 50 25 30 >99 0.56 0.59 0.78 1.15
H12 TBD 100 25 50 >99 1.10 1.17 1.04 1.12
H13 TBD 500 25 600 >99 3.25 5.81 3.34 1.15
H14 TBD 50 60 1080 – – – gel –
H15 DBU 50 25 180 >99 0.56 0.59 0.59 1.15
H16 DBU 100 25 600 >99 1.15 1.17 0.98 1.10
H17 DBU 500 25 1200 98 4.01 5.81 2.98 1.13
H18 DBU 50 60 1440 – – – gel –
a BnOH was used as initiator (H6, H7, H9, H14, H18 with EG), T = 25 °C, THF as solvent, other polymerization at
60 ◦C was in bulk; b molar ratio of DXO to initiator; c calculated from 1H NMR analysis; d calculated from ([M]0/[I]0)
×monomer conversion × (MW of DXO) + (MW of initiator); e Obtained from SEC (size exclusion chromatography)
analysis. PDI, polydispersity index.

2.4. Synthesis of Copolymer

A typical procedure for copolymerization was performed as follows: DXO (0.58 g, 5.0 mmol,
50 equiv), CL (0.57 g, 5.0 mmol, 50 equiv) and BnOH (5.0 µL, 0.05 mmol, 1.0 equiv) were added to
a flask with THF at room temperature in glove box. t-BuP4 (50 µL, 0.05 mmol, 1.0 equiv in hexane)
was then added with a syringe to initiate the polymerization. The polymerization was quenched
by adding 0.1 mL acetic acid and diluted with THF, which was then poured into a large excess of
cold ether to precipitate the copolymer. The obtained copolymer was then dried under vacuum for
further analysis. Copolymerization of mPEG and DXO was proceeded in a similar manner. 1H NMR
(400 MHz, CDCl3, δ, ppm): 4.22 (–COCH2CH2OCH2CH2O–, 2H), 4.06 (–COCH2(CH2)3CH2O–,
2H), 3.75 (–COCH2CH2OCH2CH2O–, 2H), 3.65 (–COCH2CH2OCH2CH2O–, 2H), 2.61
(–COCH2CH2OCH2CH2O–, 2H), 2.25 (–COCH2(CH2)3CH2O–, 2H), 1.66 (–COCH2CH2CH2CH2CH2O–,
4H), 1.33 (–COCH2CH2CH2CH2CH2 O–, 2H).
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3. Results and Discussion

3.1. Polymerization

Polymerization of DXO was first proceeded with benzyl alcohol as the initiator because the
incorporation of benzyl-ester end group could be easily detected by 1H NMR measurement. Table 1
presents the results of DBU, TBD and t-BuP4 catalyzed ROP of DXO at varied reaction conditions. The Mn

of PDXO increases with the increasing of monomer/initiator ratio indicates that the polymerization
is in a controlled manner, and we can prepare the polymers with the molecular weight as designed.
The PDI for all the prepared polymers are narrow, and it becomes a little wider with the catalyst
basicity increasing. Reaction time for reaching the designed Mn of these organocatalysts is much
lower compared with other DXO ROP catalysts, and it decreases with the organocatalysts basicity
increasing [34,35]. The conversion can reach 99% even proceeding the polymerization at −20 ◦C
indicates that the reactivity of t-BuP4 catalyzed DXO polymerization is so high. When we raise the
temperature to 60 ◦C, there is some interesting phenomenon for all the three catalysts. We just obtained
gel after the designed reaction time, and this will be discussed below.

Figure 1 shows the 1H NMR spectra of DXO and PDXO with t-BuP4 as the catalyst. The signals,
due to the protons of DXO, PDXO main chain along with minor signals at 7.34, 5.20 ppm, due to the
phenyl protons of BnO– and the methylene protons adjacent to the ester linkage for BnOH moiety of
the initiator are observed. In addition, the peak, due to the methylene protons being adjacent to the
ω-chain end of the hydroxyl group, is clearly observed at 3.70 ppm, and the peak area is comparable to
that of the methylene protons of BnOH, indicating good chain-end fidelity. Moreover, the number
average molecular weight of the polymer estimated from 1H NMR fairly agrees with that calculated
from the monomer/initiator ratio and the monomer conversion (Table 1). These results indicate that
polymers have the expected structure with a ω-chain-end hydroxyl group and α-chain-end benzyl
group, providing one way to synthesize telechelic PDXO and PDXO-based block copolymers. Similar
results could also be concluded from TBD and DBU catalyzed ROP of DXO.
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Figure 1. 1H NMR spectra for DXO and PDXO (Table 1, H1).

3.2. Ether Bond Fragmentation

Figure 2 shows 1H NMR spectrum of PDXO synthesized in bulk at 60 ◦C with t-BuP4 as the
catalyst (Table 1, H6). The aliquot sample was taken out of reaction flask after 2 h and quenched for
1H NMR analysis. In addition to the signals for PDXO main chain, three new signals appear at 5.8, 6.2,
6.5 ppm which could be attributed to the three protons of double bonds, respectively. Albertsson et al.
have reported this phenomenon in stannous 2-ethylhexanoate (Sn(Oct)2) catalyzed ROP of DXO with
a temperature high than 120 ◦C and the unsaturated chain-end were deduced from the ether bond
fragmentation [36]. However, in our experiments, the ether bond fragmentation proceeded only at 60
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◦C when using the three organocatalysts, and the resulted double bonds reacted spontaneously to form
crosslinks between the polymer chains producing a gel after 6, 16 and 24 h, respectively. We speculate
that the organocatalysts with high basicity could accelerate the ether bond fragment, and a suggested
fragment pathway is shown in Scheme 2. The spontaneous reaction of unsaturated double bonds
induced during thermal fragmentation of ether bonds may provide one new way for synthesizing
degradable hydrogels.
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3.3. Kinetic Study

To further confirm the controlled manner of organo-catalyzed ROP of DXO, we analyzed the
Mn and PDI of the resulting PDXO as a function of the monomer conversion. The plot of Mn versus
conversion is almost linear up to a high monomer conversion suggesting that the depletion of monomer
in the reaction system is constant during the polymerization process (Figure 3A). The PDI of PDXO
remains constant narrow throughout the polymerization, indicating that the transesterification effect
is faint for the three organacatalysts. In addition, Mn increases to higher value with the increase in
monomer conversion and the final Mn becomes higher with higher monomer to initiator ratio while
maintaining narrow PDI with t-BuP4 as the catalyst (Figure 3B). These results clearly indicate that the
organo-catalyzed ROP of DXO is in a controlled manner.

Kinetics experiments were carried out to verify the kinetic order throughout the polymerization
process. As shown in Figure 4A, the first-order relationship between ln([DXO]0/[DXO]) and the reaction
time with DBU, TBD and t-BuP4 as the ROP catalysts of DXO is observed. When TBD is used as
a catalyst, the conversion of DXO reaches a level of more than 75% within 20 min, and the conversion
is just 38% with DBU as the catalyst. Nevertheless, the conversion of DXO reaches a level of more than
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99% within 10 min when t-BuP4 is used as the catalyst. We speculate that the highest catalytic activity
for t-BuP4 is attributed to its super basicity.Polymers 2019, 11, x FOR PEER REVIEW 6 of 11 
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3.4. Copolymerization and Macroinitiator Initiation

Copolymerization is the most-used route to modify and improve the properties of polymers,
we proceeded the copolymerization of DXO/CL, and mPEG (Mn = 2000) was also used as the
macroinitiator with the three catalysts. From Table 2 we can see that mPEG with one chain-end
hydroxyl could initiate the ROP of DXO successfully; thus, a new kind of amphiphilic copolymers
could be obtained. The Mn of the copolymers are as designed, the PDI are narrow, and the monomer
molar ratio in the final copolymers are consistent with the initial monomers feeding calculated from
1H NMR (Figure 5). These results deeply demonstrate that the organo-catalyzed ROP of DXO is in
a controlled manner.

Table 2. Characterization data of DXO based copolymers a.

Samples Initiators Catalysts f b Mn × 10−4 (g/mol) c PDI c

S1 mPEG2000-OH t-BuP4 DXO 0.72 1.24
S2 mPEG2000-OH TBD DXO 0.70 1.14
S3 mPEG2000-OH DBU DXO 0.73 1.10

S4 c BnOH t-BuP4 CL/DXO 1.03 1.37
S5 BnOH TBD CL/DXO 1.03 1.27
S6 BnOH DBU CL/DXO 1.12 1.09

a T = 25 ◦C, THF as solvent; b Molar ratio of monomer to initiator is 100:1, molar ratio of CL:DXO = 1:1; c Obtained
from SEC.
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3.5. Proposed Mechanism

We finally focused on the mechanism of these polymerizations, and 1H NMR was used to explore
the possible interaction of the components in the polymerization system. Hedrick and coworkers have
also used NMR to elucidate the mechanism of ROP with organocatalysts, and they indicated that
MTBD form hydrogen bonds to the alcohol of an initiator [20]. Figure 6A shows the 1H NMR spectra
of BnOH, t-BuP4 and their 1:1 complex in C6D6. For the mixture, the downfield shift of the peaks for
the methylene protons of benzyl alcohol is observed from 4.3 to 5.4 ppm, while the upfield shift for
tert-butyl protons of t-BuP4 is observed from 1.80 to 1.36 ppm and from 2.74 to 2.48 ppm for methyl
protons. These results indicate that BnOH is deprotonated by t-BuP4 to form BnO−·[t-BuP4,H]+ as
shown in Scheme 3, which act as the initiating activation center in the ROP process of DXO. ROP of
DXO with t-BuP4 catalyst then occurs through an initiator/chain-end polymerization mechanism by
activation initiator or chain-end hydroxyls. Figure 6B shows the 1H NMR spectra of BnOH, DBU and
their 1:1 complex in C6D6 and we conclude the similar results as in t-BuP4.
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4. Conclusions

1-tert-butyl-4,4,4-tris(dimethylamino)-2,2-bis[tris(dimethylamino) phosphoranylidenamino]-
2Λ5,4Λ5-catenadi(phosphazene) (t-BuP4), 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) and
1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), were used as the 1,5-dioxepan-2-one (DXO) ring-opening
polymerization (ROP) catalysts at varied reaction conditions. Both 1H NMR spectra and kinetic studies
prove that the polymerization was proceeded in a controlled manner. We have also synthesized the
copolymers of DXO with CL and mPEG by the above catalysts. Among them, t-BuP4 shows the
highest catalytic behavior and DBU plays the lowest one, which is attributed to the much higher
basicity of t-BuP4 than DBU. It is demonstrated that t-BuP4 and DBU proceed the ROP of DXO in
an initiator/chain-end mechanism and TBD is in a nucleophilic mechanism, which can also explain the
higher catalytic activity of TBD than DBU while with comparable basicity. The organocatalyzed ROP
of DXO may provide one useful way for preparing PDXO based biodegradable materials and the
application of polyurethane with PDXO as the soft segments are under investigation.
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