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Experimental quantum simulation of fermion-
antifermion scattering via boson exchange in a
trapped ion
Xiang Zhang1,2, Kuan Zhang1, Yangchao Shen1, Shuaining Zhang1, Jing-Ning Zhang1, Man-Hong Yung1,3,4,

Jorge Casanova5, Julen S. Pedernales 6, Lucas Lamata 6, Enrique Solano6,7,8 & Kihwan Kim 1

Quantum field theories describe a variety of fundamental phenomena in physics. However,

their study often involves cumbersome numerical simulations. Quantum simulators, on the

other hand, may outperform classical computational capacities due to their potential scal-

ability. Here we report an experimental realization of a quantum simulation of

fermion–antifermion scattering mediated by bosonic modes, using a multilevel trapped ion,

which is a simplified model of fermion scattering in both perturbative and non-perturbative

quantum electrodynamics. The simulated model exhibits prototypical features in quantum

field theory including particle pair creation and annihilation, as well as self-energy interac-

tions. These are experimentally observed by manipulating four internal levels of a 171Yb+

trapped ion, where we encode the fermionic modes, and two motional degrees of freedom

that simulate the bosonic modes. Our experiment establishes an avenue towards the efficient

implementation of field modes, which may prove useful in studies of quantum field theories

including non-perturbative regimes.
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Quantum simulators are devices designed to predict the
properties of physical models associated with target
quantum systems1, 2. Their intrinsic physical behaviors

are fully governed by the laws of quantum mechanics, making it
possible to efficiently study complex quantum systems that can-
not be solved by classical computers3, 4. Trapped ions and
superconducting circuits have proved to be promising for
experimentally simulating a variety of paradigmatic quantum
models such as various spin models5–9, relativistic Dirac equa-
tions10–13, embedding quantum simulators14–18, and fermionic
models19, 20. More recently, a digital quantum simulation of a
fermionic lattice gauge theory has been performed in trapped
ions21. However, it would be desirable to realize a quantum
simulator that involves interacting fermionic and bosonic fields as
described by quantum field theories (QFTs)22. In this sense,
fermionic modes could be mapped in the ion internal levels,
whereas bosonic modes could be naturally encoded in the
motional degrees of freedom.

Here we report an experimental quantum simulation of
interacting fermionic and bosonic quantum field modes, where
fermions are encoded in four internal levels of an 171Yb+ ion and
the bosonic modes in the motional degrees of freedom, following
the proposal by Casanova et al.23. Therefore, this analog quantum
simulation constitutes a step forward towards a digital-analog
quantum simulator19, 24–27 of perturbative and non-perturbative
QFTs. In this sense, a remarkable feature of our experiment is
that it contains all orders in perturbation theory, which is
equivalent to all Feynman diagrams for a finite number of fer-
mionic and bosonic modes. Moreover, our approach could in
principle be scaled up by progressively adding more ions allowing
the codification of additional fermionic and bosonic field modes,
which may lead to full quantum simulations of QFTs such as
quantum electrodynamics (QEDs)22.

Results
Hamiltonian for quantum simulation of QFT. The common
way to analyze QFTs is via a Dyson series expansion in pertur-
bation theory and Feynman diagrams22. If we consider larger
coupling parameters, standard perturbative methods become
cumbersome for a finite-mode Dyson expansion, mainly because
only a reduced number of perturbative Feynman diagrams can be
calculated. On the other hand, a trapped-ion quantum simulator
with its high degree of quantum control28 could overcome these
limitations and simulate QFTs more efficiently than classical
computers29. Based on the proposal of ref.23, our experimental
quantum simulation of finite-number interacting quantized field
modes includes all terms of the Dyson expansion. We experi-
mentally implement a fundamental QFT model in a single
trapped-ion considering (i) one fermionic and one antifermionic
field mode, (ii) one or two bosonic field modes, which already
reveals interesting QFT features such as self-interactions, particle
creation and annihilation, and perturbative and non-perturbative
regimes. The general Hamiltonian involving the continuum of
fermionic and bosonic fields reads

H ¼
R
dpωp b̂ypb̂p þ d̂ypd̂p

� �
þ
R
dkωkâ

y
kâk

þg
R
dxψyðxÞψðxÞAðxÞ;

ð1Þ

where bp and dp are fermionic and antifermionic annihilation
operators, respectively, whereas ak are the bosonic annihilation
operators. Here, ω (ωk) is the fermion and antifermion free
energy (boson free energy), whereas ψ(x) denotes the fermionic
and A(x) the bosonic fields23.

As a stepped experimental demonstration, we first consider the
simplest situation with only one bosonic mode, which can be

implemented by a single vibrational mode of the ion. The fermion
and antifermion modes are considered as two comoving modes
describing incoming Gaussian wave packets, which are centered
in the average momentum and have distant average initial
positions23. These modes describe self-interacting dressed states
by emission and absorption of virtual bosons. They also represent
the lowest-order in perturbation theory of the scattering of the
incoming wave packets that will collide in a certain region of
spacetime. The pair creation and annihilation is local and takes
place only when the two wave packets of the fermion and
antifermion overlap, namely, when the particles scatter. A
diagram of these interactions, in the spirit of a Feynman diagram,
is shown in Fig. 1(a). It is noteworthy that the loop of this
diagram includes all terms in a finite-mode Dyson expansion,
which is different from the standard perturbative approach with
only a reduced number of Feynman diagrams. By considering
slow massive bosons, as described in ref.23, the interaction
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Fig. 1 Fermion–antifermion scattering process and its mapping to an 171Yb+

ion system. a Diagram of the interactions between a fermion, an
antifermion, and bosons. The fermion emits and absorbs virtual bosons
through the self-interaction process. In the fermion–antifermion scattering
process, the middle dashed loop represents the summation of all terms in a
finite-mode Dyson series expansion. b Diagram of the encoding and
operations to implement the interaction Hamiltonian HI with an 171Yb+

trapped ion. The vacuum state and the fermionic states are mapped onto
four internal states through the Jordan–Wigner mapping. The bosonic
mode is directly implemented with the vibrational mode along the X radial
direction. The self-interaction is implemented by a displacement operation,
which shifts the center of the harmonic oscillator without changing the
internal states. The fermion and antifermion scattering is simulated by the
combination of the red- and the blue-sideband transitions, which change
the internal states together with the vibrational mode
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Hamiltonian we would like to realize turns into

HI ¼ g1e�iω0t b̂yb̂â0 þ d̂d̂yâ0
� �

þgðtÞ eiδt b̂yd̂yâ0 þ e�i 2ω0þδð Þt d̂ b̂ â0
� �

þH:c:;

ð2Þ

where the associated time-dependent coupling strength is

gðtÞ ¼ g2e
� t�T=2ð Þ2= 2σ2tð Þ; ð3Þ

and δ ¼ ωf þ ωf � ω0. Here, ωf, ωf , and ω0 represent the energy
of the fermionic field mode b, the antifermionic field mode d, and
the bosonic field mode a0, respectively. The ratio g2/g1 gives the
relative strength between pair creation and self-interaction. T is
the total time of the pair-creation process, whereas σt is the
temporal interval of the interaction region. Our formalism,
explained in detail in ref.23, involves considering incoming
comoving fermionic and antifermionic modes at the lowest order
in perturbation theory. The time dependence of the interaction of
the incoming particles, as they collide, maps onto a time
dependence of the interaction Hamiltonian coupling.

Applying a Jordan–Wigner mapping23 from the fermionic
modes to a 2 × 2 Hilbert space,

b̂y ¼ Î � σ̂þ; b̂ ¼ Î � σ̂�; ð4Þ

d̂y ¼ σ̂þ � σ̂z; d̂ ¼ σ̂� � σ̂z; ð5Þ

the vacuum state and fermionic states are represented by

##j i ¼ 0f 0f
�� �

; #"j i ¼ 1f 0f
�� �

;

"#j i ¼ � 0f 1f
�� �

; ""j i ¼ � 1f 1f
�� �

;
ð6Þ

where 1f 1f
�� �

denotes the state containing one fermion and one

antifermion. Thus, the interaction Hamiltonian reads

HI ¼ g1 0f 0f
�� �

0f 0f
� ��þ 2 1f 0f

�� �
1f 0f
� ���

þ 1f 1f
�� �

1f 1f
� ���â0e�iω0t

�gðtÞ 0f 0f
�� �

1f 1f
� ��ây0e�iδt

�
þ 0f 0f
�� �

1f 1f
� ��â0e�i 2ω0þδð Þt�þH:c:

ð7Þ

Trapped ion implementation. We point out that, due to the
asymmetric role of fermionic annihilation and antifermionic
creation operators in the fermionic field, the one-antifermion
state is a dark state of the Hamiltonian in equation (2) and
therefore the antifermion does not have self-energy at first order
(it has, when considering more modes and higher orders). We
implement the Hamiltonian on a single 171Yb+ ion trapped in a
three-dimensional harmonic potential as shown in Fig. 1(b). The
radial harmonic potential is generated by an oscillating electric
field VRF in the radial direction with the two trapping frequencies
along X and Y directions being (ωX, ωY) = (2π) (2.4, 1.9) MHz.
The bosonic modes are mapped onto these radial vibrational
modes and we choose the X mode for experiments involving a
single bosonic mode. The vacuum state 0f 0f

�� �
is mapped

to the hyperfine state |F = 0, m = 0〉. Fermionic states are
mapped onto Zeeman states as F ¼ 1;mF ¼ �1j i � 1f0f

�� �
,

F ¼ 1;mF ¼ 1j i � 0f 1f
�� �

, and F ¼ 1;mF ¼ 0j i � 1f 1f
�� �

. With
the mapping of the bosonic mode and the fermionic states onto
the 171Yb+ ion system, the Hamiltonian (7) is naturally divided
into three parts: displacement, red-sideband, and blue-sideband
operations.

The operations of the self-interaction and scattering processes
of the fermion and the anti-fermion are realized by σ+-polarized
Raman laser beams30–32 counter-propagating along the direction
of the magnetic field ~B. The strength of the magnetic field at the
position of the ion is around 7 G, which produces ωZM = (2π)10
MHz Zeeman splitting. The magnetic field is generated by a pair
of Helmholtz coils and is aligned along the angle bisector
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Fig. 2 Schematic of the experimental implementation. a Experimental setup of the four-rod ion trap inside an octagon vacuum chamber and the geometry
of Raman laser beams through the acousto-optic modulators (AOM R1 and R2). The two AOMs are driven with different frequencies ωR1 and ωR2, where
ωR1 is fixed at (2π)231MHz and ωR2 is adjusted in the range of (2π)233 ~ 253MHz. Quarter-wave plates are used for polarization adjustment of the laser
beams. b, c Frequency combs of the pico-second pulsed lasers and choice of the effective Raman beat-note frequency. The frequency interval of the
“comb” is the repetition rate of the laser pulse, which is stabilized at ωrep= (2π)76.51MHz. The frequency difference between the two AOMs is tuned near
to the trap frequency ωX (b) for the displacement operation or (c) to produce the hyperfine frequency with the addition of 165 intervals, ωHF. d, e The basic
level structure and transitions of 171Yb+ system coupled by σ+ polarized Raman laser beams. The beat-note frequency of the Raman beams (d) for the
displacement operation is Δ1=ωX −ω0, where ω0= (2π)0.01MHz. Thick lines represent the two times stronger displacement operation on state 1f0f

�� �
.

e The frequency difference between the carrier transition and the red-sideband (blue sideband) operation is Δ2=ωX − δ (Δ3=ωX − (2ω0 + δ))
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direction of the X and Y axes, which allows the laser beams to
couple both of the vibrational modes, as shown in Fig. 2(a). The
laser beams are modulated with acousto-optic modulators
(AOMs), which are driven with different frequencies ωR1 and
ωR2.

For the Raman transitions, the mode-locked picosecond laser is
used with a wavelength of 375 nm, which is Δ = (2π)12 THz red
detuned from the optical transition 2S1/2↔ 2P1/2. The train of
laser pulses in the time domain can be considered as an equally
spaced frequency “comb”33, which in our experiment had a
repetition rate of ωrep = (2π)76.51MHz. As shown in Fig. 2(b, c),
we use the frequency “comb” to select a Raman beat-note
frequency according to the relation ωR =Δω + n ×ωrep, where
Δω =ωR2 −ωR1 and n = 0, ± 1, ± 2, …. For transitions between
different motional levels of the same electronic state, we simply
use n = 0 and make Δω close to ωX or ωY. For transitions between
two different electronic states, we use n = 165.

Figure 2(d, e) shows the Raman schemes needed to implement
Hamiltonian (7), which are naturally divided into three parts,
namely,

g1 0f 0f
�� �

0f 0f
� ��þ 2 1f 0f

�� �
1f 0f
� ���

þ 1f 1f
�� �

1f 1f
� ���a0e�iω0t

ð8Þ

�gðtÞ 0f 0f
�� �

1f 1f
� ��ay0e�iδt ð9Þ

�gðtÞ 0f 0f
�� �

1f 1f
� ��a0e�i 2ω0þδð Þt : ð10Þ

Here, the first part is ω0-detuned displacement operation, the
second part is δ-detuned red-sideband operation between
0f 0f
�� �

$ 1f 1f
�� �

, and the last part is (2ω0 + δ)-detuned blue-
sideband operation between 0f 0f

�� �
$ 1f 1f
�� �

.

The first part corresponds to a displacement operation with 1 :
2 : 1 : 0 relative ratios among the strength coefficients of states
0f 0f
�� �

, 1f 0f
�� �

, 1f 1f
�� �

, and 0f 1f
�� �

. Figure 2(d) shows how to
implement the displacement operation through the counter-
propagating Raman laser beams shown in Fig. 2(a). The σ+-
polarized Raman beams produce the exact ratios in the strength
of displacement operations, as state 1f 0f

�� �
is coupled to two levels

in the 2P1/2 manifold, states 0f 0f
�� �

, and 1f 1f
�� �

to one level, and
state 0f 1f

�� �
to no level. The strength coefficient of a Raman path

is given by ΩR = g1g2/2ΔR, where g1 and g2 are Rabi frequencies of
the two Raman beams coupled to the transition between 2S1/2 and
2P1/2 and the detuning ΔR ≈ Δ = (2π)12 THz. The coefficients of
all possible Raman paths are added, as all optical transitions
between 2S1/2↔ 2P1/2 states have the same coefficients in absolute
values. We note that the frequency difference ωHF = (2π)12.6 GHz
between states 0f 0f

�� �
and 1f 1f

�� �
is much smaller than the

detuning Δ of the Raman laser beams acting on the manifold
2P1/2, which produces around a 0.1% difference in the strength of
the displacement operations. Finally, we measure the strength of
the displacement operations and observe the ratios (see Methods).
In principle, we can also implement other ratios of displacement
operations by applying additional σ- and π-polarized Raman
beams (see Methods).

The second and third parts are realized by the red- and the
blue-sideband transitions as shown in Fig. 2(e). The time-
dependent strength-coefficient g(t) in equation (3) is implemen-
ted by the change of laser intensity, which is proportional to the
RF power on the AOMs of Fig. 2(a). We generate the time-
dependent RF signal from an arbitrary waveform generator
(AWG) and apply it to the AOM R2. By using the AWG, we can
generate all the necessary RF frequencies and powers, which

realizes the full Hamiltonian (7) containing the displacement
operation, red-, and blue-sideband transitions.

Experimental procedure of the quantum simulation. In the
experiment, we initialize the motional and internal state of the ion
to the state 0f 0f ; n ¼ 0

�� �
by standard Doppler cooling, resolved

sideband cooling, and optical pumping34, 35. The residual average
phonon number and the heating rate are measured to be 〈n〉 =
0.016± 0.025 and 3.8± 1.2 quanta s−1, respectively. The heating
effect can be neglected in the typical duration of a single simu-
lation, which is of < 2 ms. Then we implement the target
Hamiltonian (7) and let the system evolve for a time t. Finally, we
measure the average boson number 〈n〉 and the populations of
various fermionic states, as well as the correlation between the
bosonic mode and the fermionic state. A detailed discussion of
the measurement procedures can be found in the Methods sec-
tion. We compare the experimental results with the ideal theo-
retical calculations. In our simple situation of single bosonic,
fermion, and anti-fermion modes, we are able to numerically
calculate the exact evolution with the full Hamiltonian and find a
perturbation method that works for a short time dynamics. The
whole evolution is then computed by accumulation of the latter.
We note that such numerical methods would not be allowed as
the system size grows. Typically, one considers the size corre-
sponding to 50 qubits to be intractable. For example, a realistic
situation with 16 ions, 16 modes, and 8 considered levels per
mode would be beyond the capabilities of classical computers.

Self-interaction and particle creation and annihilation. We first
study the fermion self-interaction processes by setting g2 = 0,
starting from the initial state 1f 0f ; 0b

�� �
. Then the self-interacting

dynamics occurs via the couplings 1f ; 0f ; nb
�� �

! 1f ; 0f ; nb ± 1
�� �

.
Figure 3(a) shows experimental data for the time-dependent
bosonic vacuum populations and the average boson numbers for
different self-interaction strengths g1/ω0 = 0.1 and 0.15, which
quantitatively coincide with the theoretical calculations within
experimental errors. We clearly observe the expected emission
and reabsorption processes of virtual bosons and the growth of
the average number of virtual bosons with the self-interaction
strength g1.

Subsequently, we realize the annihilation of a
fermion–antifermion pair and the creation of bosons with
parameters g1 = 0.01ω0, g2 = 0.21ω0, and σt = 3/ω0. We choose
the initial state to be the state with a fermion–antifermion pair
and no bosons: 1f 1f ; n ¼ 0

�� �
. Figure 3(b) shows the dynamics of

the fermion–antifermion scattering process via the population of
the fermionic-pair state and the average boson number. It can be
clearly seen that the initial fermion–antifermion pair disappears,
creating a single boson.

Next, we realize the process of scattering with parameters g1 =
0.1ω0, g2 =ω0, σt = 4/ω0, where g2 ≥ω0. In this regime, the
interaction Hamiltonian ((2)) cannot be regarded as a perturba-
tion. In such a strong coupling situation, we cannot easily
discriminate the contributions from the self-interaction and pair
production processes. When the initial fermion–antifermion pair
disappears, more than a single boson is created in the process as
shown in Fig. 3(c), which is qualitatively different from the
dynamics shown in Fig. 3(b). As the size of the Hilbert space is
not too large, we numerically calculate the dynamics of the
Hamiltonian by direct numerical integration (see Methods),
which is in agreement with the experimental results shown in
Fig. 3(c). However, as the number of fermion–antifermion pairs
and bosons increases, the exact numerical calculation will be
intractable by classical means. We have also developed a
perturbation method based on the observation that, for a
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reasonably small time g2t � 1, the effect of the coupling term g2
does not produce a divergence in the dynamics. We divide the
total time of the process by 100 and apply the perturbation
method (see Methods) to the unitary evolution operator in each
time slice. We find that after including terms up to the 7th order
in the perturbation parameter, the deviation of the perturbative
dynamics from the complete one is below 10−4. However, even
this approach, based on a perturbative expansion within time
slices, would be difficult to use for large Hilbert space dimensions
with more fermions and bosons.

Finally, as a demonstration of scalability, we realize fermion
self-interaction processes extended to two bosonic modes by
using both X and Y phonon modes of a single trapped ion. We set
g1 = 0.15ω0, the first boson mode frequency ω1 =ω0, and the
second boson mode frequency ω2 = 0.9ω0. We note that the g1
(g2) coupling to the mode Y (X) is negligible, as the detuning to
the mode Y (X) is larger by a factor of 50, which effectively
suppresses the strength by the same amount. We choose the
initial state to contain one fermion and no bosons,
1f 0f ; n1 ¼ 0; n2 ¼ 0
�� �

. Then the self-interacting dynamics is
given by the transition 1f 0f ; n1; n2

�� �
$ 1f 0f ; n1 ± 1; n2 ± 1
�� �

. As
the bosonic modes have different frequencies, we observe that the
considered fermion emits and reabsorbs bosons differently from
the single-boson case. Instead of a sine curve, we see a clear beat-
note behavior of the fermionic population as shown in Fig. 3(d).
We also clearly observe the dynamics of both bosonic modes in a
good agreement with the theoretical expectation. By increasing

the number of bosonic modes, we would simulate the continuous
regime of bosonic modes, which would be related to scattering
experiments. In such large number of bosonic modes, the non-
perturbative behavior of fermionic or antifermonic mode could
be intractable. On the way of increasing bosonic modes, a
technology of correlation measurement of multiple phonon
modes could be applied36, 37.

Discussion
In conclusion, this work considers an experimental quantum
simulation of interacting fermionic and bosonic quantum field
modes. Our approach could be in principle scaled up by pro-
gressively incorporating more fermionic and bosonic field modes,
which may lead to a full-fledged digital-analog quantum simu-
lation of QFTs such as QED22–24 or the Holstein model38, where
correlations between multiple fermions and phonons have critical
relevance. In our current experimental system, an extension to
multi-fermion and multi-phonon (bosonic) modes could in
principle be implemented by loading a number of ions in a single
trap, where the spins of ions map the fermionic modes through
Jordan–Wigner transformation24 and the vibrational modes of
ions directly map the bosonic modes. The many-body operators
or spin–spin interactions appearing after mapping of the fer-
mionic modes onto spins can be efficiently implemented via a
combination of two Mølmer–Sørensen gates and a local gate as
shown in ref.24. Other than the spin–spin interactions in the
Holstein model, e.g., the couplings between fermionic modes and
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parameters g1= 0.1ω0, 0.15ω0, g2= 0, δ= 0, and T= 30/ω0, where ψðtÞj i is the state at time t, evolved from ψð0Þj i ¼ 1f0f ; n ¼ 0

�� �
. Red curves and left

axis are for the population of state 1f0f ; n ¼ 0
�� �

. Blue curves and right axis are for the average number of virtual bosons ay0a0
D E

. b Fermion and antifermion
annihilation process for parameters g1= 0.01ω0, g2= 0.21ω0, σt= 3/ω0, where ψðtÞj i is the state evolved from ψð0Þj i ¼ 1f 1f ; n ¼ 0

�� �
. Red curves and left

axis are for the population of state 1f 1f
�� �

. Blue curves and right axis are for the average number of bosons ay0a0
D E

. c The process in the strong coupling,
where both of self-interaction and pair production processes strongly influence on the dynamics. Parameters are g1= 0.1ω0, g2=ω0, and σt= 4/ω0, and the
initial state the same as for b. Solid lines are obtained by exact numerical simulation using the built-in solver of the ordinary differential equation in
Mathematica (see Methods). Dashed lines are computed by a Dyson series expansion with Feynman diagrams up to 1st and 3rd orders after dividing the
whole time by 100 (see Methods). By including the Dyson series up to the 7th order, the deviations from the exact numerical calculation below 10−4 (see
Methods and Fig. 4). d Self-interaction process for two bosonic modes ω1=ω0, ω2= 0.9ω0, with parameters g1= 0.15ω0, g2= 0, δ= 0, and T= 30/ω0,
where ψðtÞj i is the evolved state from ψð0Þj i ¼ 1f0f ; n1 ¼ 0; n2 ¼ 0

�� �
. Red curves and left axis are for population of 1f0f ; n1 ¼ 0; n2 ¼ 0

�� �
. Blue, green

curves, and right axis are for average number of virtual bosons aykak
D E

, k= 1, 2. All error bars in experimental data above represent the SD of 100
measurements
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bosonic modes can be implemented by the same Raman laser
beams that are individually addressing single ions and tuned to
specific mode frequencies. In this respect, it has been shown that
the number of gates grows polynomially as the number of fer-
mions and bosons38. Ref.38 also discussed the estimated infide-
lities from the gate errors in realistic experimental decoherence
condition up to four sites, which clearly showed the degree of
control is more demanding when the coupling strengths between
the modes increase. As demonstrated in our experiment, we do
not observe any clear degradation of the simulation when using
two modes, although here we do not have the technical problem
of individual addressing. We may implement the model in a fully
analogue way together with proper spin–spin interactions39–41,
which would allow us to study the pairing or polaron physics
occurring in many unconventional superconducting systems42, 43

with the controls of various parameters. In particular, we remark
that already with 16 two-level ions and 8 phononic levels per ion,
one could perform quantum simulations of interacting quantum
field modes that are beyond the reach of classical computations,
i.e., a Hilbert space dimension of 1616~264, which would other-
wise require a lengthy quantum algorithm with 64 qubits44, 45.
This experiment opens an avenue that aims at out-performing the
limitations of classical computers, with in principle scalable
quantum simulations.

We also point out that there are no known efficient classical
algorithms for simulating interacting fermionic models in arbi-
trary spatial dimensions, whereas with our approach, with a
trapped-ion quantum simulator, fermionic models in arbitrary
dimensions could be analyzed with polynomial resources24. The
verification of our proposed scalable experiment requires poly-
nomial resources, as for the detection of the number of bosonic
excitations produced, or the population of the fermionic or
antifermionic states, only a polynomial number of measurements
is required.

Methods
Uniform red sideband. The “uniform red sideband”46–48 is implemented as an
adiabatic transition where the transfer speed between 0f 0f ; n

�� �
and 1f 1f ; n� 1

�� �
is

the same for all n = 1, 2, …. It is realized by adding a time-dependent amplitude A
(t) = sin(πt/d) and a time-dependent phase φ(t) = −1/β sin(πt/d) to the normal red-
sideband operation, and some additional terms to compensate for the AC Stark
shift. Here, d = c πred is the duration of the transition, and β = ((l + 1) (h + 1))−1/4/c is
an empiric parameter depending on the lower bound l and the upper bound h of the
phonon number n. We typically choose c to be 10, such that the transition duration
d is c/2 = 5 times the red-sideband operation period. Therefore, we achieve more
than 99% of theoretical fidelity for all phonon numbers between l and h.

Displacement strength adjustment. We experimentally measure several strength
coefficients to check the strength ratios depending on the electronic states. We first
prepare the initial state m; n ¼ 0j i, where mj i is either 0f 0f

�� �
or 1f 0f
�� �

. Then we
apply the displacement operation for a small period τ. After this, we should obtain
a coherent state m; αj i, α =Ωτ, where Ω is the desired strength coefficient. Sub-
sequently, with several different τ, we fit the parameter Ω by measuring each time
the remaining population on state m; n ¼ 0j i with the “uniform red sideband”
method, which should be e�α2 ¼ e�Ω2τ2 . After careful beam alignment and quarter
wave plate adjustment, the measured strength coefficients of 0f 0f

�� �
and 1f 0f

�� �
are

(2π)7.2 and (2π)14.4 kHz, respectively, which are consistent with the theory ratio
1:2.

As the magnetic quantum number is conserved during the displacement
operation, two virtual optical transitions in a Raman path should have the same
polarization. If both polarizations are purely σ−, then the relative strength-
coefficient ratio between states 0f 0f

�� �
, 1f 0f
�� �

, 1f 1f
�� �

, and 0f 1f
�� �

is 1 : 0 : 1 : 2. If
both polarizations are purely π, then the relative strength-coefficient ratio between
states 0f 0f

�� �
, 1f 0f
�� �

, 1f 1f
�� �

, and 0f 1f
�� �

is 1 : 1 : 1 : 1. In general, if the ratio between
σ+, σ−, and π polarization is a : b : c, then the relative strength-coefficient ratio
between states 0f 0f

�� �
, 1f 0f
�� �

, 1f 1f
�� �

, and 0f 1f
�� �

is a + b + c : 2a + c : a + b + c : 2b + c.

Fermionic state measurement. To measure P 1f 1f
�� �� �

, we simply apply a π
rotation between states 0f 0f

�� �
and 1f 1f

�� �
to swap their populations, with a

microwave horn. Then the measured population of state 0f 0f
�� �

is equal to the
original P 1f 1f

�� �� �
.

To measure P 1f 0f ; n ¼ 0
�� �� �

, however, we need a phonon projective
measurement46–48. Instead of using fluorescence detection together with a post-
selection scheme, which may introduce significant heating errors because of photon
scattering, here we use an auxiliary state as a swap buffer. It is noteworthy that the
interaction Hamiltonian (7) does not have terms related to state 0f 1f

�� �
. Therefore,

we employ state 0f 1f
�� �

as the auxiliary state and always initialize it to zero. We first
apply three consecutive π swap gates between 0f 0f

�� �
and 0f 1f

�� �
, and between

1f 1f
�� �

and 1f 0f
�� �

. After these operations, 1f 1f
�� �

is swapped with 1f 0f
�� �

, and 0f 1f
�� �

is swapped with 0f 0f
�� �

. Then we apply a “uniform red sideband” π rotation to swap
the population in 0f 0f ; n>0

�� �
with that of 1f 1f ; n� 1

�� �
. Then, we measure the

remaining vacuum-state population, P 0f 0f
�� �

; n ¼ 0
� �

, which is equal to the
original population, P 1f 0f ; n ¼ 0

�� �� �
. The uncertainty of the measurement mainly

comes from the quantum projection noise of binary result of single
measurements49.

For the experiment involving two boson modes, we first measure P 1f 0f ; n1 ¼ 0
�� �� �

using the same method as that of the single-boson case. Next we consecutively apply
a “uniform red sideband” to the first mode and another “uniform red sideband” to
the second mode. Then, we measure the population of the upper state, which should
be P 1f 0f ; n1 ¼ 0; n2>0

�� �� �
. Therefore, we obtain the desired population from the

relation: P 1f 0f ; n1 ¼ 0; n2 ¼ 0
�� �� �

¼ P 1f 0f ; n1 ¼ 0
�� �� �

� P 1f 0f ; n1 ¼ 0; n2>0
�� �� �

.
It is noteworthy that this scheme is clearly scalable in the number of bosonic modes.

Average boson number measurement. For the average boson number mea-
surement, we first use optical pumping to trace out electronic states48 and then
apply a blue sideband time sweep from t = 0 to t = 12 πblue

50. We get the phonon
number distribution by fitting the result signals through the maximum likelihood
method with parameters of the Fock state populations46, 47. The main uncertainty
in the average phonon measurement comes from fitting and we include one
standard deviation as an uncertainty throughout the manuscript.

Ideal theoretical calculations. The exact dynamics of the Hamiltonian (7) can be
obtained by solving the time-dependent Schrödinger equation
i�h ∂

∂t ψðtÞj i ¼ HIðtÞ ψðtÞj i. We numerically solve the equation with the built-in
function of Mathematica, NDSolve, which finds a numerical solution to the
ordinary differential equation mainly based on Runge–Kutta method. In the
numerical calculation, we include 4 internal levels and up to 10 phonons per mode
for the Hamiltonian (7), which changes the Schrödinger equation to the ordinary
differential equation with 40 and 400 components for single mode and two modes
of the state ψj i, respectively. With the option of infinite Maxsteps in Mathematica,
the numerical calculations converge and do not show any error messages. We point
out that all the parameters in the simulation are experimentally determined, not
obtained via fitting. The main limitation of the numerical calculation would be the
size of the Hilbert space when we scale up the system with multiple fermions and
bosons.

Feynman diagram calculation. In the interaction picture, the evolution operator
UI(t, t0) satisfies the following differential equation

i�h
∂
∂t

UIðt; t0Þ ¼ HIðtÞUIðt; t0Þ; ð11Þ

which can be exactly solved as the so-called Dyson series,

UIðt; t0Þ ¼
X1
n¼0

� i
�h

	 
n Z t

t0

dt1 ¼
Z tn�1

t0

dtnHIðt1Þ¼HIðtnÞ: ð12Þ

By introducing the time-ordering operator T , the above solution can be written

in a formally succinct way UI t; t0ð Þ ¼ T exp � i
�h

R t
t0
HIðsÞds

� �
.

Truncating at some finite N in equation (12) provides a straightforward
perturbation treatment of the evolution operator UI(t, t0). However, when the
evolution time increases, the unitarity of the perturbation expansion becomes
difficult to guarantee, because the truncation error is proportional to (t − t0)N+1. In
order to deal with the long-time dynamics, we make use of the composition
property of the evolution operator and interleave M − 1 equally spaced points
between t0 and t. Then, the evolution operator UI(t, t0) is identically written as the
product of M evolution operators, each of which governs the dynamical evolution
over a short period of time,

UIðt0; tÞ ¼
YM
m¼1

UI tm; tm�1ð Þ; ð13Þ

with tM ≡ t. For any dynamics with finite duration, saying t − t0 is finite, we can
always assign a sufficiently large M so that Δt ≡ tm − tm−1 is a small but finite
quantity. Consequently, UI(tm, tm−1) is readily to be treated perturbatively.
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Denote the n-th order perturbation expansion of UI(tm, tm−1) as U
ðNÞ
I tm; tm�1ð Þ,

U ðNÞ
I ðtm; tm�1Þ ¼

XN
n¼0

� i
�h

	 
n Z tm

tm�1

ds1 ¼
Z sn�1

tm�1

dsnHIðs1Þ¼HIðsnÞ: ð14Þ

Then the whole dynamics can be treated perturbatively as follows,

UIðt; t0Þ ¼
YM
m¼1

U ðNÞ
I ðtm; tm�1Þ þ O ðt � t0ÞNþ1

MN

 !
: ð15Þ

The deviations are related to the number of sliced sections M in time and the
order of perturbations N. In our numerical calculations of the Dyson series, we
divide the total time by M = 100 and apply the perturbations up to N = 9th order.
Figure 4 shows the deviations of the norm from 1 1� UI t; t0ð Þ ψ t0ð Þj ij j2

�� �� and the
infidelity 1� ψ exactðtÞ UIðt; t0Þj jψðt0Þh ij jj j depending on the order of the
perturbations for the case of Fig. 3(c). Here ψexact(t) is the result by the ideal
numerical calculation. From the 7th order, the deviations in the perturbation
calculation are below 10−4 from the ideal norm of 1.

Data availability. The data that support the findings of this study are available
from the corresponding author on request.
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