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Abstract: As a major group of algae, diatoms are responsible for a substantial part of the primary
production on the planet. Pennate diatoms have a predominantly benthic lifestyle and are the most
species-rich diatom group, with members of the raphid clades being motile and generally having
heterothallic sexual reproduction. It was recently shown that the model species Seminavis robusta
uses multiple sexual cues during mating, including cyclo(L-Pro-L-Pro) as an attraction pheromone.
Elaboration of the pheromone-detection system is a key aspect in elucidating pennate diatom life-cycle
regulation that could yield novel fundamental insights into diatom speciation. This study reports
the synthesis and bio-evaluation of seven novel pheromone analogs containing small structural
alterations to the cyclo(L-Pro-L-Pro) pheromone. Toxicity, attraction, and interference assays were
applied to assess their potential activity as a pheromone. Most of our analogs show a moderate-
to-good bioactivity and low-to-no phytotoxicity. The pheromone activity of azide- and diazirine-
containing analogs was unaffected and induced a similar mating behavior as the natural pheromone.
These results demonstrate that the introduction of confined structural modifications can be used
to develop a chemical probe based on the diazirine- and/or azide-containing analogs to study the
pheromone-detection system of S. robusta.
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1. Introduction

Diatoms play a key role in the biosphere. As an important group of phytoplankton,
they account for about one-fifth of the photosynthesis on earth and form the basis of
many of the aquatic ecosystems that exist on our planet [1,2]. In addition, they present
opportunities for biotechnological applications [3-6].

The benthic diatom Seminavis robusta is an experimental model organism for diatom
research [7,8]. S. robusta has a typical diatom life cycle: the cell size declines during mitotic
division and is restored after sexual reproduction, using a heterothallic mating system
(Figure 1) [9]. Once the cell size reaches the sexual size threshold, both mating types
start producing a sex inducing pheromone (SIP). The presence of SIP* induces mating
type — (MT ™) to produce an attraction pheromone: the diketopiperazine cyclo(L-Pro-L-Pro)
(1) (Figure 2) [10].
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Figure 1. Lifecycle of Seminavis robusta. (A) Vegetative cell division leads to a diminution of the
diatom’s cell size. (B) Once the cell size shrinks below the sexual size threshold of about 52 pum,
both mating types (MT* and MT ™) start producing a sexual inducing pheromone (SIP). (C) MT~
starts producing attraction pheromone cyclo(L-Pro-L-Pro) (1) when it detects SIP*. After sensing
SIP~, MT* becomes motile and is attracted to the pheromone producing MT . The physiological
concentration of the pheromone is 100 nM. (D) Cell size restitution: mating is followed by pairing
of gametangial cells, gamete formation and fusion, followed by expansion of the zygotes into two
auxospores which subsequently germinate to produce a large vegetative cell each [7,9-11].

Figure 2. (left) Sex pheromone cyclo(L-Pro-L-Pro) (1) of S. robusta [10], a symmetrical cyclic dipeptide.
(right) Trans-4-hydroxy-L-proline 2 was used to synthesize proline analogs with a C-4 modification.
Modified compounds were then coupled with proline to create analogs of 1.

The diketopiperazine scaffold is present in a plethora of metabolites [12-14]. Regardless of
the broad occurrence of these cyclopeptides, their receptors are not extensively character-
ized. Bilcke et al. [11] found that in S. robusta MT* genes encoding for transmembrane
proteins were upregulated in response to SIP~, suggesting that a G protein-coupled recep-
tor (GPCR) is responsible for the perception of 1.

We evaluated the possibility of modifying the pheromone to a chemical probe, in order
to identify the putative receptor. However, certain structural restrictions should be taken
into account. Lembke et al. [15] described that the diketopiperazine structure of 1 can be
modified while retaining its activity, but only if both of the flanking ring structures were
present. The authors also tested a hydroxyl-substituted analog of 1 (cyclo(4-OH-Pro-4-OH-
Pro) that proved to be inactive. This observation demonstrates the confined chemical space
in which the pheromone is positioned.

Photoaffinity labeling has, since it was first reported in 1962 by Westheimer et al. [16],
provided the scientific community with a broad array of tools to study ligand-protein inter-
actions [17-19] and has proven to be useful for GPCR characterization [20-23]. In the case of
diketopiperazine 1, the (alkyl) diazirine is an attractive photoreactive group. While having
a lower cross-linking efficiency in comparison to other photoreactive groups, diazirines
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have a small footprint. Therefore, we deemed that the inclusion of an alkyl diazirine would
be the best option to render a bioactive probe.

Photoaffinity labeling (PAL) probes are more useful if means are provided to conjugate
a reporter group to the cross-linked target receptor. An elegant approach is the use of
click chemistry, which has been widely adopted since its introduction by Sharpless et al.
in 2001 [24-27]. The inclusion of a click-chemistry compatible moiety, such as an azide,
could allow for an easy detection of the target.

A chemical probe derived from 1 could also be applied in other disciplines. The dike-
topiperazine was reported to be a constituent of pheromonal secretions in two other species,
namely in the femoral gland of the Sceloporus virgatus lizard [28] and the mating plug of
the Bombus terrestris bumblebee [29], and was also identified in the Aspergillus fumigatus
fungus, the Lucilia sericata blowfly and the Antarctic Pseudoalteromonas haloplanktis bac-
terium [28]. Recently, 1 was also shown to be an effective induced resistance stimulus for
rice plants [30], triggering a systemically enhanced defense against the root-knot nematode
Meloidogyne graminicola.

2. Results

New pheromone analogs were synthesized according to literature protocols. We inte-
grated chemical moieties that could be used for photo-cross-linking and click chemistry
and evaluated the modifiability of the pheromone scaffold at the C-4 position of one of
the two proline rings (Figure 2). Trans-4-hydroxy-L-proline (2, Figure 2) is an inexpen-
sive commercial analog of L-proline and allows a straightforward modification at the
C-4 position.

After synthesis and purification, the phytotoxicity of the analogs was examined
and comparative studies were performed to assess the equivalence of the analogs and
the natural pheromone. The comparative studies were based on an interference assay;,
an attraction assay and a short evaluation of the conformation of the diketopiperazines.

2.1. Diketopiperazine Synthesis

Seven diketopiperazines (3 to 9, Figure 3) were synthesized in close resemblance to 1.
These pheromone analogs contain the same cyclo(L-Pro-L-Pro) backbone with an additional
functional group attached onto the C-4 of one of the L-proline rings, consisting of a diazirine
(3), an azide (4 and 5), a hydroxyl (6), a methoxy (7), and an acetal (8). In analog (9), one of
the proline rings was substituted with its four-membered azetidine equivalent.
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Figure 3. A library of pheromone analogs, which was used in this study. They were synthesized and
evaluated for their pheromonal potency and phytotoxicity. The diazirine (3) was introduced as a
photo-cross-linker and the azide (4 and 5) as a useful handle that is compatible with click chemistry.
Analogs 6-9 allowed us to investigate the chemical space surrounding the hydrophobic ring structure.
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Prior to diketopiperazine synthesis, a small library of six L-proline analogs was
synthesized, starting from commercial trans-4-hydroxy-L-proline 2 as shown in Scheme
1A. A Boc group was introduced [31] and oxoproline 11 and diazirinylproline 12 were
subsequently synthesized according to Van der Meijden et al. [32]. Azidoprolines 16 and
18 were synthesized using a method adopted from Marusawa et al. [33]. Methyl ester 13
was synthesized using the method of Chalker et al. [34].
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Scheme 1. A library of six proline analogs was synthesized and coupled with proline to their corresponding diketopiperazine.
(A) Starting from L-Hyp-OH (2) several proline derivatives were synthesized. Compounds surrounded by a bracket were
used for diketopiperazine synthesis. Compounds 16-18 underwent a N-Boc-deprotection step prior to the coupling reaction.
Reagents and conditions: (a) Boc,O, NaOH, tBuOH/H;O, 16 h, 20 °C, 89%; (b) Jones reagent, acetone, 3 h, 0 °C to 20 °C,
50%; (c) HRNOSO3H, NH3, 6.5 h, A; (d) Ip, EtsN, MeOH, 0 °C, 31%; (e) HCl, MeOH, 16 h, A, 90%; (f) BocO, Et3N, THE 16
h, 20 °C, 79%; (g) MsCl, Et3N, THF, 16 h, 0 °C to 20 °C, 42%; (h) NaN3, DMF, 16 h, 70 °C, 94%; (i) BZONa, DMSO, 17 h,
90 °C, 91%; (j) K,CO3, MeOH, 1 h, 20 °C, 68% (see Supplementary Material S7 [31-41]). (B) Synthesis of diketopiperazine
1 was adopted from Campbell et al. [35]. The same procedure was applied for the synthesis of diketopiperazines 3-9
(see Supplementary Material S7.13 for an overview and Supplementary Material S8 for NMR data [42-45]). Reagents and
conditions: (k) EDC-HCI, OxymaPure, DIPEA, DMF, 16 h, 20 °C; (1) HCl, MeOH, 16 h, 0 °C to 20 °C; (m) piperidine, DMF,
1h,20°C, 29 to 70%.

Diketopiperazines 1 and 3-9, presented in Figure 3, were synthesized with a method
modified from Campbell et al. [35], of which a general overview is given in Scheme
1B. OxymaPure [46,47] was used as additive and DMF was used as solvent during the
coupling step. Diketopiperazines 1 and 9 were synthesized by coupling H-Pro-OMe-HCl
(Apollo Scientific) with respectively Boc-Pro-OH [31] and Boc-Aze-OH (ChemPur). Pro-
line analogs 11 and 12 were coupled with H-Pro-OMe-HCI to their corresponding dike-
topiperazines 8 and 3, with analog 11 undergoing acetal formation during the acidic
Boc-removal in methanol. Proline analogs 16 and 18 were coupled with Boc-Pro-OH
after being treated with TFA in DCM or HCl in methanol, yielding respectively 5 and
4. H-Hyp-OMe-HCI (13) was coupled with Boc-Pro-OH and methylated using Mel to-
wards 7 [36]. Proline analog 17 was coupled, after Boc-removal with hydrochloric acid,
with Boc-Pro-OH, yielding 6.

2.2. Diketopiperazine Phytotoxicity

Diketopiperazines are a large class of compounds with a broad range of activities [12].
Recently, some diketopiperazines were reported to be algicidal [48,49]. For this reason,
it was not implausible that small changes to the pheromone scaffold could induce algicidal
effects and thereby could affect the physiology of S. robusta.

We determined the short-term phytotoxicity of the newly synthesized analogs, as the
exposure time to the pheromone analogs during the bioassays is limited. Pulse Ampli-
tude Modulation (PAM) fluorometry was used to measure the chlorophyll fluorescence
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of photosystem II (PSII), a parameter that is related to the overall fitness of algae [50].
The technique has been successfully exploited to assess toxic effects of herbicides [51,52],
heavy metals [53], volatile organic compounds [54], pharmaceuticals [55], and quorum
sensing related compounds [56] towards microalgae.

Cultures of S. robusta were treated with 10 uM of 1, 3-9 and with 1 uM of DCMU,
a PSII inhibitor [57,58]. The quantum yield of PSII (Yy1) was measured for 30 min and the
resulting data of the analogs was interpolated between 1 (set to 0% inhibition) and DCMU
(100% inhibition) (Figure 4, see Supplementary Material S1 for original Yy data).
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Figure 4. One of the tested diketopiperazines (7) shows a significant phytotoxic effect at 10 uM, with an average inhibition

of 10.2%. (left) The represented time-series are an interpolation between the two control treatments (see Supplementary

Material S1 for original data) and are the average over five replicates. The slopes of the inhibition curves of compounds 3,

5, and 9 are positive (< 0.02% min~!, first 10 min not included) but not significant (p > 0.22). (right) The quantum yield

of PSII (Yyy) of the pheromone analogs was compared with those of 1 using a two sample ¢-test. The p-value is shown for

every pheromone analog, the gray line represents a p-value of 0.05. Only one analog, methoxy-substituted analog 7, shows

a significant difference with 1. The data of analog 7 are significant (p < 0.05) for all time points, except the first (p = 0.058).

The inhibition of Yy was significant for methoxy-substituted analog 7, with an average
inhibition of 10%. The other pheromone analogs can be categorized in two groups. The first
group comprising of compounds 3, 5, and 9 shows little phytotoxicity, with an average
inhibition of 6, 3.9, and 4.8% respectively at 10 uM (p > 0.13, Figure 4). The second group,
consisting of compounds 4, 6, and 8, shows an average inhibition of less than 1%.

2.3. Interference Assay

The pheromone potency of the analogs was evaluated according to an interference
assay, in which the attraction of MT* towards a point source of the natural pheromone is
disturbed by the presence of a pheromone analog [10,15]. The MT™ cells were conditioned
with spent medium from a MT ™~ culture, that was evaluated for the presence of the SIP~
conditioning factor [10].

Diketopiperazines 3 to 9 were tested in concentrations of 10 nM, 100 nM, and 10 uM
in three independent experiments. Treatments with compound 1 were included in every
experiment, allowing us to compare the outcome of the pheromone analogs interexperi-
mentally. Oasis HLB beads, that were coated with a load of 2 nmol of 1 per mg of beads,
were used as a pheromone point source.

Each experiment included two control treatments. In the first control treatment
(positive control), no pheromone (analog) was added. The attraction towards the coated
beads was not disturbed and maximal. For a second control treatment, blank beads were
added (negative control) to measure coincidental contact of the algae with the beads.
The total amount of treatments per experiment was 11 or 14, equaling to respectively
three or four analogs at three concentrations and two control treatments. In the case of
experiments A and B, two replicates were provided per multi-well plate, occupying 22 of
the available 24 wells. In experiment C, every multi-well plate was provided with only one
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replicate (14 out of 24 wells). The activity screening of the pheromone analogs was spread
over three independent experiments according to their availability.

The interference caused by adding 1 to the culture medium (Figure 5) was significant
for all three of the tested concentrations, except in experiment C. A normal dose-response
relationship, where a low concentration yields a limited interference and a high concen-
tration yields an increased interference, was expected. However, it was noted that the
dose-response trend of 1 was variable.
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Figure 5. Interference assays performed on S. robusta with seven asymmetrical pheromone analogs. Numbers on top
represent the different experiments that were carried out. The presented values are the estimated average fraction of
attractive beads over 6 (experiments A and B) or 4 (experiment C) replicates, based on a Binomial generalized linear
model (details can be found in the Supplementary Material S5.1). Error bars represent the 95% confidence interval of the
estimates. Significance is expressed compared to the positive control. Significance levels: - (p <0.1), * (p < 0.05), ** (p < 0.01),
*** (p < 0.001).

The pheromone analogs were also compared to 1 at 100 nM, the physiological concen-
tration of the pheromone (Figure 6). The analogs’ estimated average fraction of attractive
beads was interpolated between the positive control (no interference) and 1 at 100 nM
(set as 100% interference). The interpolation makes it possible to compare the pheromonal
potency of the analogs relative to the natural pheromone and irrespective of the experiment
in which they were measured (see Supplementary Material S5.2).

Y DN
1 )\/> 100% 7 ;Q"OMe 50%
A A
N N SN
3 )\/><N >100% 9: | 48%
A A
DN N
4 ;Q--'Na >100% 6 ;):><OH 17%
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5 )\/>‘Na 69% 8 :):><0Me 16%
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Figure 6. Chemical modifications alter the pheromonal affinity. The interference values of the
analogs at 100 nM were interpolated between the positive control and the interference of 1 at 100 nM.
The calculated 95% confidence intervals of the interpolated values can be found in Supplementary
Material 55.3. The actual values of analogs 3 and 4 are 113% and 108%.

2.4. Attraction Assay

Diketopiperazines 3, 4, and 5 were also evaluated using an attraction assay, where the
attraction towards pheromone-analog-coated beads was assessed (Figure 7). Beads were
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coated in the same manner as was previously done with diketopiperazine 1 (with a load of
2 nmol mg~!). As demonstrated by Figure 7, the beads coated with compounds 3-5 gave
similar results as the positive control.

Positive control '.
Beads coated with 3 — —
Negative control . |l—{
Positive control }—-.—I
Beads coated with 4 |—-._|
Negative control }—l|—|
Positive control "I._‘
Beads coated with 5 I‘Il_|
Negative control mm
1 | J
0 0.4 0.8

Rel. amount of attractive beads

Figure 7. Asymmetrical pheromone analogs 3, 4, and 5 attract S. robusta MT™ in a similar fashion
as the natural pheromone 1. The diketopiperazines were tested in three separate and independent
experiments (n = 6 for diketopiperazine 3 and n = 4 for diketopiperazines 4 and 5). The beads were
coated with a load of 2 nmol mgfl, - = outlier.

3. Discussion

The data from the PAM fluorometry measurements (Figure 4) showed that diketopiper-
azine 7 caused a significant 10% reduction of Yy7. Although it is unclear how compound
7 could affect the physiology of S. robusta, the results from the interference assay might
be impaired due to the slightly toxic nature of 7. The other analogs showed a small but
non-significant inhibition of Yy;. We therefore assumed that the use of these compounds
would not alter the physiological behavior of S. robusta.

The impact of adding a diazirine (3) or an azide (4 and 5) to the cyclo(L-Pro-L-Pro)
scaffold was rather limited. In case of the diazirine 3, the interference at 100 nM equals that
of 1 (100 nM). This suggests that the small, though polar, symmetrical increase in molecular
volume of 3% (or 5.9 A3) at position C-4 does not affect its activity (see Supplementary
Material S6 for molecular volumes and molecule models [59]). However, when the volume
is further incremented, the activity of the compound decreases as demonstrated by acetal 8.
The two methoxy substituents increase the molecular volume by 52.7 A3, yielding an
overall volume increase of 30% compared to 1.

In the case of the azides 4 and 5, a slight difference between both diastereomers was
observed. Our interference data suggests that a substitution of the azide on the pseudo-
axial position of the L-proline ring (compound 4), causes less steric hindrance between
the ligand and its putative receptor than on the pseudo-equatorial position (compound 5).
The significance of this difference could not be determined because the compounds were
evaluated in two independent experiments. Moreover, an interaction between the treatment
and experiment is to be expected due to differences in diatom cell size and density.

The limited impact of the diazirine and azide moieties is also reflected by the outcome
of the attraction assay. Beads coated with compounds 3, 4, or 5 had an attractiveness that
was comparable to diketopiperazine 1. The results of both assays demonstrate that these
compounds could interact with the putative GPCR in the same manner as 1.

The interference caused by hydroxy analog 6 was less pronounced. Lembke et al.
reported that a symmetrical hydroxy analog did not show any activity [15]. Here we
observed a significant interference, albeit only at the highest concentration tested. The in-
troduction of a polar hydroxy group clearly decreases the pheromonal activity, but the
pseudo-equatorial positioning of the substituent could be a contributing factor. In com-
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parison: the pseudo-axial positioning of the methoxy group (7) seems to have less impact
on the pheromonal activity. Yet, it is not clear how much of the interference effect of 7 is
caused by the toxic nature of this compound.

The remaining azetidine analog 9, with a two-carbon side-chain, showed a reduced
activity compared to 1, though still significant at 10 pM. This result validates the structural
restrictions defined by Lembke et al. and suggests a preference of a three-carbon side-chain
over a two-carbon side-chain [15].

While Figure 6 shows that the negative impact of some of the substitutions can be
quite pronounced, all analogs (3-9) cause significant interference at 10 uM, which suggests
that the modifications can still be tolerated. We also tried to evaluate whether the substi-
tutions on the flanking ring structures impacted the conformation of the analogs’ central
diketopiperazine ring, possibly affecting the interaction with the receptor.

Siemion and coworkers found an empirical relationship between the torsion of the
Cp-Co-C'=0 fragment (0) of the proline moiety and the difference between the '>C chemi-
cal shifts of Cg and C, in proline-containing cyclic peptides (Adg, = 0.081 101 +2.47) [60].
The authors were also able to use the established relationship to determine the equilibrium
between the boat and planar conformation of several proline-containing diketopiper-
azines [61].

The calculated torsion values of the pheromone analogs are smaller or equal to 30° and
within the Aég., prediction interval for the postulated torsion angle of diketopiperazine
1 (4.91 ppm =+ 1.48, see Supplementary Material S6) [60]. Based on these calculations,
there are no indications that the adopted conformation of the central diketopiperazine ring
of the diketopiperazines deviates from the preferred boat conformation of 1. Additionally,
there was no significant correlation found between the torsion angles and the bioactivity
(data presented in Figure 6) of the analogs (Pearson correlation coefficient = 0.41, p = 0.3).
These observations suggest that the introduced chemical moieties could have a minor to
no effect on the diketopiperazine conformation.

Aside from the molecular dimensions and conformation, the substitutions also impact
the lipophilic character of the pheromone analogs. The LogP values of the analogs were
calculated (see Supplementary Material S6) and a positive correlation between these LogP
values and the bioactivity (data presented in Figure 6) was found, however the correlation
was not significant (Pearson correlation coefficient = 0.57, p = 0.14).

In conclusion, we have shown that it is possible to modify the pheromonal scaffold in
an asymmetrical fashion, while retaining its pheromonal activity. Although structural re-
strictions demand hydrophobic ring flanking structures, nitrogen-containing substitutions,
such as diazirines or azides, are tolerated as presented in the structure activity relation-
ship map (Figure 8). The substitution with a hydroxy group seems to be less favored.
The available space in the binding pocket of the putative pheromone receptor is limited,
as demonstrated earlier by Lembke et al. [15], where a symmetrical variant of diketopiper-
azine 6 was found to be inactive. Though this could be a combined effect of the increased
molecular volume and the less favored hydroxy substitution, the volumetric restriction
reflects in our findings; the introduction of the acetal in diketopiperazine 8 largely reduces
the bioactivity of the pheromone scaffold. The results of diazirine and azide analogs 3
to 5 demonstrate that these substituents can be incorporated into the cyclo(L-Pro-L-Pro)
scaffold to probe the putative diatom pheromone receptor and to possibly characterize the
action of 1 on other organisms as well.
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Flanking ring structures are required, ——
5-membered rings are preferred, 4- and
6-membered rings are tolerated.

R, R%: small nitrogen-containing
substitutions are well tolerated.
Hydroxy and methoxy substituents
decrease the compound's activity.

\— Stereochemistry: the pseudo-axial

position is preferred.

Diketopiperazine stereochemistry: the (S,S)
and (R,R) enantiomers have a comparable
activity; their diastereomers are less active.

Figure 8. A structure activity relationship map for cyclo(L-Pro-L-Pro) analogs. This study reflects on the functionality and

stereochemistry of both R groups and on the effect of the inclusion of a 4-membered flanking ring structure. The general

requirement of the flanking ring structures was described by Lembke et al. The diketopiperazine stereochemistry was
studied by Gillard et al. and Lembke et al. [10,15].

4. Methods
4.1. Strain and Culture Conditions

Seminavis robusta DCG 0105 (85A, MT*) and DCG 0107 (85B, MT~) were used in
this study. Both are available in the diatom culture collection of the Belgian Coordi-
nated Collection of Microorganisms (BCCM/DCG, bcem.belspo.be/about-us/bcem-dceg)
at Ghent University. Cultures were grown in artificial sea water: 34.5 g L1 of Tropic Marin
(Wartenberg, Germany), 0.08 g L~! NaHCO3 (Sigma-Aldrich, St. Louis, Missouri, USA)
enriched with Guillard’s F/2 solution (Sigma-Aldrich, St. Louis, Missouri, USA) at 20 mL
L1 inside a 250 mL cell culture flask. Light was provided in a 12 h:12 h light/dark cycle,
using cool white fluorescent lamps (Philips, Amsterdam, Netherlands) with an intensity of
20 to 30 pmol m 2 s~ ! and the temperature was held at 18 °C. Cultures were kept axenically
by treating them regularly with antibiotics (0.5 g L~! Penicillin, 0.5 g L~! Ampicillin, 0.1 g
L~! Streptomycin and 0.05 g L' Gentamycin, Sigma-Aldrich, St. Louis, Missouri, USA).
Stock cultures were kept at 4 °C with a light intensity of 2 to 5 umol m~2 s~1. All cultures
used in this study had a mean cell length between 20 and 35 um.

4.2. Interference Assay

The interference assay was adopted from Lembke et al. [15] and a diagram of the
assay is provided in the Supplementary Material S4. Oasis HLB beads were coated with
cyclo(L-Pro-L-Pro) as described by Gillard et al., with a load of 2 nmol mg~! [10]. In short,
a 10 mg SPE cartridge was washed with methanol (1 mL) and Milli-Q water (2 mL). A 2 mL
solution of cyclo(L-Pro-L-Pro) (20 nM) was eluted over the cartridge. The SPE material was
suspended in 2 mL Milli-Q water and was stored as a stock solution at —20 °C in 50 pLL
aliquots. Before usage, a dilution was made by adding 20 uL of the stock suspension to
980 uL of Milli-Q water.

Axenic S. robusta 85A cultures were inoculated in a 24-well culture plate with a total of
1 mL medium per well and dark-synchronized for 40 h by wrapping the plate in aluminum
foil. After synchronization, the cultures were conditioned by adding 1 mL 85B filtered
medium (see Supplementary Material S2). Cyclo(L-Pro-L-Pro)—coated beads (50 pL of the
diluted suspension) were added after 6 to 7 h and images were taken of the cell cultures
with the BioTek Cytation3 Cell Imaging Multi-Mode Reader. For this study, pheromone
(analogs) were applied in concentrations of 10 nM, 100 nM and 10 pM, starting from a
5 mM stock solution. After addition of the pheromone (analogs), the cell medium was
mixed gently by pipetting the cell medium up and down.
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In every interference experiment a positive and negative control is included. The pos-
itive control is the response of conditioned 85A cells towards cyclo(L-Pro-L-Pro)—coated
beads, whereas the negative control assesses the attractiveness of non-coated beads.

Beads were assigned attractive or not attractive depending on a defined threshold,
being a number of cells attached to a bead. In an effort to maximize the response difference
between the positive control and the highest cyclo(L-Pro-L-Pro) 1 concentration tested
(10 uM), an interference assay was set-up with 4 different cell densities. Aliquots of an
exponentially growing stock culture were inoculated in a 24-well plate containing 2 mL
of f/2 medium and incubated for 48 h. The cell medium was renewed with 1 mL of f/2
medium, cell densities were determined and the cultures were dark-adapted for 40 h.
The interference test was carried out and the response towards the beads was assessed.
The number of cells attached to every bead were evaluated after manual image capturing
and categorized with the number attached cells varying from 1 to 9. The differences
between both treatments, the positive control and 10 pM of cyclo(L-Pro-L-Pro) 1, for every
density and threshold were calculated (see Supplementary Material S3).

The highest difference in response can be found at a density of 7 x 107 cells m~2 and
a threshold of 1 cell per bead. The choice of a low threshold gives a higher difference
between both treatments, but the downside is that the variance on the data is also higher
(see Supplementary Material S3). This could explain the high variability in the interference
test that was discussed in this study (Figure 5).

2

4.3. Attraction Assay

The attraction assay was adopted from Gillard et al. [10]. The procedure is sim-
ilar to the interference assay described above, without the addition of (a) pheromone
(analog) into the culture medium. Oasis HLB beads loaded with synthetic pheromone
analogues 3-5 were made using the same procedure as for cyclo(L-Pro-L-Pro)—coated beads.
Binding efficiencies were not determined.

4.4. Microscopy and Image Processing
4.4.1. Automatic Image Capturing

Images were captured using a Cell Imaging Multi-Mode Reader (Cytation3, BioTek,
Winooski, Vermont, USA), mounted with a 10x objective and controlled using Gen5 soft-
ware (3.03.14, BioTek, Winooski, Vermont, USA). For the interference assays, image mon-
tages (7 by 7 images) were captured using three image channels: bright field, Cyanine 5
(CY5), and Green Fluorescent Protein (GFP). The CY5-channel was used to image the cell
chlorophyll while the GFP-channel was used to image the beads. The bright field was
used to autofocus the image and as reference. An algorithm was written in Python 3.6
(Python Software Foundation, https:/ /www.python.org/) to assess the attractiveness of
the beads (visualized in Figure 9). In short: both CY5 and GFP images were converted to a
binary image after applying a threshold (Otsu’s method [62]). Next, beads were identified
in the GFP image and if there was overlap between a bead and a cell, the bead was assigned
as attractive. This method was used by default, unless mentioned otherwise.

4.4.2. Manual Image Capturing

Images were captured on a Zeiss Observer Al inverted microscope (Zeiss, Jena,
Germany) equipped with a Zeiss EC plan-NEOFLUAR 10x or 4x lens (Zeiss, Jena, Germany)
and coupled to a Nikon DS-Fi2 U3 camera (Nikon, Tokyo, Japan), operated by the NIS-
elements software package (Nikon, Tokyo, Japan). Beads were classified attractive after
manual evaluation.

4.5. Data Analysis

The statistical analysis of the interference assays was done in R 3.5 [63]. The number of
attractive beads (summarized per well) were modeled as a Poisson generalized linear model
in function of treatment (positive control, negative control and different compound effects)
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and a fixed plate effect that captures the variability between plates (replicates). The different
treatment concentrations were modeled as separate treatment effects, effectively allowing
for an interaction between the treatment and concentration. The total number of beads
were added as offset to the model, thereby effectively modeling the fraction of attractive
beads. In every experiment, one replicate per treatment was present per 24-well plate in a
randomized fashion; four to six plates were used per experiment. Statistical inference was
based on Wald tests using the asymptotic Chi-squared null distribution.
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Figure 9. Assignment of (non-)attractive beads. (A) One bright field image of the 7 by 7 image montage that was recorded

during a typical interference assay (bar = 100 pm). (B) An overlay of the bright field image and both Green Fluoreschent

Protein (GFP, green) and Cyanine 5 (CY5, red) image channels. Some of the red areas are shifted due to motile nature of the

algae (bar = 100 um). (C) The bead is represented by a green disc on the GFP channel. In this particular case, the green area

overlaps with two red areas and the bead is classified as attractive (bar = 25 pm). (D) The bead does not overlap with an

alga and is classified as not attractive (bar = 25 um).

4.6. Phytotoxic Evaluation

The short-term phytotoxicity of the synthesized pheromone analogs was estimated
using Pulse-Amplitude-Modulation fluorometry. Axenic S. robusta 85A cultures were
inoculated in a 48-well plate (Greiner Bio-One, Kremsmdinster, Austria). Diketopiperazine
1 and the seven analogs were added to a concentration of 10 uM. A treatment with PSII
blocker DCMU (1 uM) was added as a control [57,58]. After addition of the compounds, the
plate was incubated for 10 min at room temperature and Yy was monitored with a MAXI
Imaging PAM M-series fluorometer (Walz Mess- und Regeltechnik, Effeltrich, Germany) for
30 min, with a saturation pulse every 2 min and actinic light turned on (15 pmol photons
m~2 s 1); sequential data were averaged over five replicates. The results are reported
as relative inhibition of Yy, after interpolating the Yy values of the pheromone analogs
between those of 1 and DCMU (DCMU is 100% inhibition). The statistical analysis was
done in R 3.5.2 using the Im() function.

Supplementary Materials: Supplementary materials can be found at https:/ /www.mdpi.com /1422
-0067/22/3/1037/s1.
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Abbreviations

CY5 Cyanine 5

GFP Green Fluorescent Protein
GPCR G protein-coupled receptor
MT Mating type

PAL Photoaffinity labeling

PAM  Pulse amplitude modulation
PSII Photosystem II

SIp Sex inducing pheromone

Yy Quantum yield of PSII
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