
����������
�������

Citation: Zhang, F.; Wu, X.; Ma, P.

Consistent Extended Kalman

Filter-Based Cooperative Localization

of Multiple Autonomous Underwater

Vehicles. Sensors 2022, 22, 4563.

https://doi.org/10.3390/s22124563

Academic Editor: Arturo de la

Escalera Hueso

Received: 13 May 2022

Accepted: 9 June 2022

Published: 17 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Consistent Extended Kalman Filter-Based Cooperative
Localization of Multiple Autonomous Underwater Vehicles

Fubin Zhang 1, Xingqi Wu 1,* and Peng Ma 2

1 School of Marine Science and Technology, Northwestern Polytechnical University, 127 West Youyi Road,
Xi’an 710072, China; zhangfubin@nwpu.edu.cn

2 The 20th Research Institute of China Electronics Technology Group Corporation, 1 Baisha Road,
Xi’an 710075, China; mapeng@mail.nwpu.edu.cn

* Correspondence: wxq@mail.nwpu.edu.cn

Abstract: In order to solve the problem of inconsistent state estimation when multiple autonomous
underwater vehicles (AUVs) are co-located, this paper proposes a method of multi-AUV co-location
based on the consistent extended Kalman filter (EKF). Firstly, the dynamic model of cooperative
positioning system follower AUV under two leaders alternately transmitting navigation information
is established. Secondly, the observability of the standard linearization estimator based on the lead-
follower multi-AUV cooperative positioning system is analyzed by comparing the subspace of the
observable matrix of state estimation with that of an ideal observable matrix, it can be concluded
that the estimation of state by standard EKF is inconsistent. Finally, aiming at the problem of
inconsistent state estimation, a consistent EKF multi-AUV cooperative localization algorithm is
designed. The algorithm corrects the linearized measurement values in the Jacobian matrix for
cooperative positioning, ensuring that the linearized estimator can obtain accurate measurement
values. The positioning results of the follower AUV under dead reckoning, standard EKF, and
consistent EKF algorithms are simulated, analyzed, and compared with the real trajectory of the
following AUV. The simulation results show that the follower AUV with a consistent EKF algorithm
can keep synchronization with the leader AUV more stably.

Keywords: multiple AUVs; cooperative localization; extended Kalman filter; consistency

1. Introduction

Due to the attenuation of underwater GPS signals and the complex marine envi-
ronment, it is a challenge for autonomous underwater vehicles (AUV) to obtain high
positioning accuracy [1]. Traditional acoustic-based positioning technologies, including
long baseline (LBL), short baseline (SBL) and ultra-short baseline (USBL), are often lim-
ited by the operating area, acoustic beacon array arrangement, etc. [2]. The traditional
approach for ocean-bottom monitoring is to deploy oceanographic sensors, record the data,
and recover the instruments. This approach creates long lags in receiving the recorded
information. In addition, if a failure occurs before recovery, all the data are lost. The most
effective solution is established real-time communication between AUVs through underwa-
ter acoustic sensors. Underwater networks can also be used to increase the operation range
of AUVs [3]. Therefore, multi-AUV cooperative positioning is put forward as a feasible
method to improve the autonomous positioning accuracy of AUV [4,5]. In this paper, a
lead-follower multi-AUV cooperative positioning system is adopted. The accuracy of the
navigation sensor carried by the leader AUV is much higher than that of the follower AUV.
Two leader AUVs broadcast their real-time positions alternately, and the follower AUV ob-
tains the relative distance from the leader AUV through underwater acoustic sensors [6,7].
The underwater acoustic sensors equipped with the follower AUV alternately acquire
the position coordinates of the leader AUV and the acoustic signal of the time of sending
each signal. The leader AUV and the follower AUV are clock-synchronized, and one way
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travel time (OWTT) technology can be used to calculate the distance at different times.
As the actual application environment is known, the sound speed is measured and fixed.
If the time of signal transmission and reception and the speed of sound in the medium
are known, the distance between the transmitter and the receiver can be calculated [8]. In
this way, not only can the observability be maintained under the condition of infrequently
changing formation, but the complexity of underwater acoustic communication can also be
reduced [9,10]. In addition, each follower AUV independently receives the position infor-
mation of the leader AUV and then infers its position according to the position information
of the leader AUV. In this process, there is no information exchange between the follower
AUVs [11]. The research results of this paper can be applied to any number of AUV teams
because the actual formation rarely covers the range of 1000 m, so the attenuation of the
signal is negligible [12]. No matter how many leader and follower AUVs are in the system,
each follower AUV is independent, therefore all follower AUVs can obtain measurement
information from the same single leader AUV at each sampling time step. The multi-AUV
cooperative positioning system proposed in this paper can be applied in many aspects, such
as improving ocean exploration, collecting oceanographic data, and ecological applications
such as water quality and biological monitoring [13].

Many multi-AUV (or robot) cooperative localization algorithms have been proposed
and successfully implemented in the literature, including standard-based extended Kalman
filter (EKF) [14], particle filter (PF) [15], maximum a posteriori (MAP) [16], and moving
horizon estimation (MHE) [17]. However, in these studies, the observability matrix of
state estimation has a subspace with higher dimensions than the ideal observability matrix.
The key problem of consistency has not been solved in these algorithms. According to
the definition in [18], if the estimation error is zero mean, and the actual estimation error
covariance (that is, the expected value of the square of the difference between the real state
and the estimated state) is less than or equal to the updated state error covariance, then
the state estimation of the dynamic system (such as EKF, UKF, and PF) is called consistent.
Therefore, if the state estimation is inconsistent, it may lead to unreliable estimation and
even divergence of estimation error. The inconsistency (over-trust) estimation problem
of muti-AUV distributed cooperative positioning (that is, using the algorithm based on
distributed EKF) is discussed, which is caused by data reuse and the correlation between
AUVs, and an interleaved update (IU) algorithm for consistent cooperative positioning is
proposed [19]. Compared with the above methods, Ref. [20] discussed the co-localization of
isomorphic multi-robots, and proved that the mismatch between unobservable directions
(for actual nonlinear systems and linearized systems) would lead to inconsistent estimation
of global directions when using linearized estimators (such as EKF). The Jacobian matrix of
state propagation was improved and the observability constraint was applied to the two
algorithms. In order to improve the consistency, algorithm 1 needs extra storage space to
store the last propagated state estimate, and algorithm 2 needs an additional variable which
contains the running sum of all previous state corrections [21]. It shows that, for positioning
and vision-assisted inertial navigation based on camera and inertial measurement unit
(IMU), on the basis of observability analysis of the linearized system, one of the main
sources of inconsistency is the false information obtained when the directional information
is incorrectly projected, along with the direction corresponding to the rotation of the gravity
vector [22]. To ensure that the observability of the proposed estimator matches that of the
actual linear system, an observable constrained EKF algorithm was designed by modifying
the state propagation and measurement Jacobian matrix. It is consistent with the methods
of [20,21].

Underwater acoustic communication between AUVs is always limited by large delay
and low bandwidth. Many kinds of research on homogeneous multi-robots, such as
Huang’s work, are not suitable for underwater scenes. The lead-follower multi-AUV
cooperative positioning discussed in this paper is less limited by underwater acoustic
communication and more suitable for the underwater environments. Based on observability
analysis, the measurement Jacobian matrix is obtained under the constraint of relative
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position. A consistent linearization estimator is designed for cooperative localization. If
the motion conditions and alternating communication means are met in this paper, the
proposed state estimator can also be applied to cooperative navigation in other situations,
such as unmanned aerial vehicles and robots.

To sum up, the main contributions of this work are as follows.

(1) In this paper, the cooperative localization of heterogeneous AUVs based on underwa-
ter acoustic communication is studied. In order to improve the positioning accuracy
of the follower AUV, the follower AUV can only alternately obtain the relative range
measurement values with the two leading AUVs through OWTT, thus reducing the
complexity of acoustic communication. This can result not only in better observability
than the single leader with the same communication load, but also in avoiding chang-
ing the formation frequently. In addition, the research results can be easily extended
to any number of AUV teams and the acoustic communication load will not increase.

(2) According to different distance measurement information, the observability matrix of
the whole system is decomposed into two independent parts. The whole positioning
system is observable, two state estimation and decomposition subsystems related to a
single leader are observable, and two ideal decomposition subsystems related to a
single leader are not observable. As the rank of observability matrix of decomposition
subsystem calculated by standard linearization estimator (such as EKF) is larger than
that calculated by the ideal state value, it will lead to inconsistent estimation of the
position state of follower AUV.

(3) In order to improve the consistency of state estimation, this paper designs a consistent
EKF algorithm for multi-AUV cooperative positioning. As the ideal state value cannot
be used to calculate the Jacobian matrix, in order to improve the consistency of the
standard linearization estimator, the algorithm uses the designed initial zero space
vector related to the relative position to construct the constrain conditions of each
recursive time step, and then obtain the modified measurement Jacobian matrix under
the constraint conditions and prove that the state propagation Jacobian matrix is not
affected by the initial zero-space vector.

The rest of this paper is organized as follows. Section 2 describes the formulation of a
discrete-time nonlinear model of the cooperative positioning system and the corresponding
standard EKF algorithm. In Section 3, the observable matrix is constructed and the incon-
sistency of the standard linearized system is analyzed. In Section 4, a consistent algorithm
based on EKF is proposed. Section 5 gives a series of numerical simulation and analysis
results, to verify the performance of the algorithm. Finally, in Section 6, the conclusions
and future research directions are drawn.

2. Theoretical Basis of Multi-AUV Cooperative Positioning

In this multi-AUV cooperative positioning system, all AUV clocks are synchronized
before transmission, as shown in Figure 1. In the process of formation navigation, follower
AUV can alternately obtain position information from two leader AUVs. For example, the
leader AUV1 starts broadcasting its position at t1 time, and leader AUV2 starts broadcasting
its position at t2 time, and the time interval between two leader AUVs broadcasting their
positions is the same. A follower AUV can alternately obtain relative distance measure-
ments from two leader AUVs through the OWTT characteristics of acoustic broadcast [23].
As one of the most commonly used co-location filtering algorithms, the standard EKF can
make full use of the statistical information of measurement equation and measurement
error to recursively solve the follower AUV state estimation based on the linearization of
the nonlinear co-location system model. Moreover, the algorithm is simple to implement
and the estimation accuracy is high. Generally speaking, the standard EKF state estimator
is divided into two steps, as follows.
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Figure 1. Architecture of multiple AUVs cooperative localization based on two leaders alternately.

2.1. Motion State Prediction

As the actual depth information can be directly measured by the pressure sensor in
real-time, the depth does not need to be considered in the system equations and the practical
working environment of an AUV can be simplified to a two-dimensional (2D) space [24].
In the local level coordinate system, the two-dimensional state (2D) vector follower the
AUV at time k is Xk =

[
pT

k φk
]T , in which pk =

[
xk yk

]T is the location, xk and yk
follow the east and north positions of AUV, respectively, and φk is the heading angle. The
kinematic equation follower AUV can be expressed by a nonlinear discrete-time system:

Xk+1 = f (Xk, uk, ωk) =

 xk + δt · vk · cos(φk)
yk + δt · vk · sin(φk)

φk + δt ·ωk

 (1)

Equation (1) is the AUV motion model under the ideal condition, δt is a constant
sampling time interval. Assuming that the measured input of the sensor in the actual
model is interfered with by Gaussian white noise, the measured input, real input, and
sensor noise are, respectively:

umk =

[
vmk
ωmk

]
, uk =

[
vk
ωk

]
, wk =

[
wvk
wφk

]
(2)

uk = umk + wk. The noise covariance matrix is:

Qk = E
[
wkwT

k

]
=

[
σ2

v,k 0
0 σ2

φ,k

]
(3)

We adopted X̂k−1 as the state estimate; the predicted state estimate X̂k/k−1 at time step
k can then be expressed via the kinematic Equation (1). We consider F̂k/k−1 and Ĝk/k−1
to be Jacobian matrices (i.e., system matrices for the linearized system) for f

(
X̂k−1, uk−1

)
,

with respect to X̂k−1 and ûk−1, respectively. These can be expressed as:

F̂k−1 =
∂ f

∂X̂k−1
=

 1 0 −δt · vk−1 · sin
(
φ̂k−1

)
0 1 δt · vk−1 · cos

(
φ̂k−1

)
0 0 1

 (4)
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Ĝk−1 =
∂ f

∂uk−1
=

 δt · cos
(
φ̂k−1

)
0

δt · sin
(
φ̂k−1

)
0

0 δt

 (5)

In the process of state estimation using EKF, the predicted state covariance matrix
P̂k/k−1 can then be computed as:

P̂k/k−1 = F̂k−1P̂k−1 F̂T
k−1 + ĜT

k−1 (6)

2.2. Measurement Update Model

We consider Xi,k =
[

pT
i,k φi,k

]T
=
[

xi,k yi,k φi,k
]T
(i = 1, 2) to be the state

vector for leader AUVi. The control inputs for all leader and follower AUVs are equal and
fixed (i.e., ui,k = uk) to maintain motion formation. In the presence of acoustic range-only
measurements, the measured range model at time step k can be expressed as:

Zi,k = h(Xi,k, Xk) + υi,k =
∥∥pi,k − pk

∥∥+ υi,k (7)

where di,k =
∥∥pi,k − pk

∥∥ is the Euclidean distance between the positions of leader AUV
i and follower AUV. The term υi,k is the range measurement noise following the Gaus-
sian distribution N(0, Ri). The index i = λ(k) ∈ {1, 2} will alternate with time; when
k = 2γ(γ ∈ N+), we set λ(k) = 2, otherwise λ(k) = 1.

By linearizing Equation (7) with first-order Taylor expansion, the Jacobian matrix of
the measurement model can be obtained as follows:

Ĥi,k =
∂h
∂X

∣∣∣∣
X̂k/k−1

=

[
− (pi,k− p̂k/k−1)

T

‖pi,k− p̂k/k−1‖ 0
]

(8)

Subsequently, we employ a direct range measurement (Equation (7)) to update the
EKF and correct the accumulated dead-reckoning errors for follower AUVs. The resid-
ual measurement between measured and predicted ranges and the Kalman gain can be
calculated as follows:

ri,k = Zi,k − h
(
Xi,k, X̂k/k−1

)
(9)

Kk = P̂k/k−1ĤT
i,k

(
Ĥi,k P̂k/k−1ĤT

i,k + Ri,k

)−1
(10)

Using Equations (9) and (10), the state estimation and covariance are updated by
distance measurement information can be obtained as follows:

X̂k = X̂k/k−1 + Kkri,k (11)

P̂k =
(

I − Kk Ĥi,k
)

P̂k/k−1 (12)

3. Observability and Consistency Analysis of Multi-AUV Cooperative Positioning

Traditionally, system observability is determined by whether the state of a system can
be determined from the output (and input) measurements. If the initial state of a system can
be uniquely determined for any time in a finite interval, the system is observable, otherwise
it is not observable [25]. Thus, if a cooperative localization system is observable, follower
AUVs will be localizable. Based on this observability analysis, we describe the influence of
observability properties on standard EKF consistency.

A local observability matrix [26] can be adopted for linearized time-varying systems
to analyze observability by computing rank conditions. If the observability matrix is full
rank (i.e., the rank of the observability matrix equals the dimension of the system state),
the linearized time-varying system is locally weakly observable. This indicates the matrix
is observable in one local time interval but does not mean it exhibits observability in every
time interval. The observability matrix of cooperative localization can be decomposed into
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two corresponding components [27], according to exteroceptive measurement information
alternately acquired from two leader AUVs. For a linearized time-varying systems, the
observable matrix consists of state transition matrix and measurement Jacobian matrix.
The state transition matrix and measurement Jacobian matrix are calculated at the selected
linearization point. In other words, the observability matrix is a function of the linearization
point. Therefore, the choice of linearization point will affect the observability of linearized
time-varying system, which is the key fact that the comparison between ideal state value
and state estimation value is the basis for analyzing observability. Generally speaking,
although it is impossible to calculate the Jacobian matrix with the ideal state value, the
linearization point should still be as close as possible to the ideal state value.

This article will be in the time interval [1, k] (k = 2γ, γ ∈ N+), the observable matrix
based on state estimation is constructed as follows:

Ô =


Ĥ1,1

Ĥ2,2 F̂1
...

Ĥ1,k−1 F̂k−2 · · · F̂1
Ĥ2,k F̂k−1 · · · F̂1

 =


Ĥ1,1

0
...

Ĥ1,k−1 F̂k−2 · · · F̂1
0


︸ ︷︷ ︸

Ô1

+


0

Ĥ2,2 F̂1
...
0

Ĥ2,k F̂k−1 · · · F̂1


︸ ︷︷ ︸

Ô2

(13)

As such, it is not difficult to determine the submatrices Ô1 and Ô2 constructed by
decomposing the observability matrix Ô. In Equations (4) and (8), we observe that Ĥi,k and
F̂k−1 are related to the information broadcasted by the leader AUVi only. This demonstrates
the measurement information of submatrices Ôi results only from the leader AUVi.

In the case that the leader AUV remains to maneuver, the control input of the vehicle
υk 6= 0. We consider pT

k =
[

xk yk
]

to be the state vector for the follower AUV. To
simplify this analysis, we substitute Equation (14) and (15) into Equation (4) to rearrange
the Jacobian matrices F̂k−1 and Ĥi,k equivalently, as follows:

x̂k/k−1 − x̂k−1 = δt · vk−1 · cos
(
φ̂k−1

)
(14)

ŷk/k−1 − ŷk−1 = δt · vk−1 · sin
(
φ̂k−1

)
(15)

F̂k−1 =

 I2

[
−ŷk/k−1 − ŷk−1
x̂k/k−1 − x̂k−1

]
01×2 1

 =

[
I2 C( p̂k/k−1 − p̂k−1)

01×2 1

]
(16)

Ĥi,k = −d̂−1
i,k
[
(pi,k − p̂k/k−1)

T 0
]

(17)

where C =

[
0 −1
1 0

]
, d̂i,k = ‖pi,k − p̂k/k−1‖.

Furthermore, we define δ p̂s = p̂s − p̂s/s−1, which are not equal to 0 in practice. The
following expression can then be derived using (16) and (17):

Ĥ1,1 = −d̂−1
1,1
[
(p1,1 − p̂1/0)

T 0
]
= −d̂−1

1,1
[
(p1,1 − p̂1)

T 0
]

(18)

Ĥi,k F̂k−1 · · · F̂1 = −d̂−1
i,k
[
(pi,k − p̂k/k−1)

T (pi,k − p̂k/k−1)
TC( p̂k/k−1 − p̂k−1 + p̂k−1/k−2 − · · · − p̂1)

]
= −d̂−1

i,k

[
(pi,k − p̂k + δ p̂k)

T (pi,k − p̂k + δ p̂k)
TC( p̂k/k−1 −

k−1
∑

s=2
δ p̂s − p̂1)

] (19)

p̂1 = p̂1/0 is the follower AUV initial position estimate. Then, by substituting (18) and (19)
into the linearized observable matrix (13) at the same time, it can be proved by determinant
transformation that:

rank
(
Ô
)
= rank

(
Ô1
)
= rank

(
Ô2
)
= 3 (20)
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Therefore, the observability matrix Ô and Ôi are full rank and the cooperative posi-
tioning system is observable, which ensures that the follower AUV state can be solved by a
linearization estimator (such as EKF).

Next, the observability of the cooperative position system is analyzed using the ideal
state value instead of the estimated value, in this description:

Xk = X̂k = X̂k/k−1 pk = p̂k = p̂k/k−1 (21)

By substituting Equation (21) into Equation (13), a linearized observability matrix
based on the ideal state values can be obtained.

O =


H1,1

H2,2F1
...

H1,k−1Fk−2 · · · F1
H2,kFk−1 · · · F1

 =


H1,1

0
...

H1,k−1Fk−2 · · · F1
0


︸ ︷︷ ︸

O1

+


0

H2,2F1
...
0

H2,kFk−1 · · · F1


︸ ︷︷ ︸

O2

(22)

Its corresponding determinant matrix becomes:

H1,1 = −d−1
1,1
[
(p1,1 − p1)

T 0
]

(23)

Hi,kFk−1 · · · F1 = −d−1
i,k
[
(pi,k − pk)

T (pi,k − pk)
TC(pk − p1)

]
, k ≥ 2 (24)

By substituting Equations (23) and (24) into the observability matrix (Equation (22)),
we denote the submatrices O1 =

[
m1 m2 m3

]
and O2 =

[
n1 n2 n3

]
. While

keeping the motion formation constant (i.e., ui,k = uk), the submatrix column vectors will
remain m1 = β1m2 and n1 = β2n2, in which β1 and β2 are related to the relative positions
between leader AUVi and follower AUVs [28]. At this point, the observability matrix is full
rank, but submatrix O1 and O2 are not full rank, therefore:

rank(O) = 3 rank(O1) = rank(O2) = 2 (25)

Note: In a large underwater task region, requiring all AUVs to maintain a constant
motion formation along the same linear direction is an effective planning strategy to ensure
full-region coverage. In addition, due to the sea water resistance, frequently changing the
motion formation of AUVs will accelerate energy consumption and require additional time.

In comparing the rank expressions (20) and (25), it is evident the submatrices Ô1 and
Ô2 in the linearized estimator have observable subspaces of higher dimension than those
of O1 and O2, which are calculated using ideal state values. As a result, the linearized
estimator acquires nonexistent and spurious information alternating along the varied
unobservable directions from each leader AUV range measurement. This can lead to
inconsistent estimation, smaller uncertainties, and larger errors [29]. To solve this problem,
we propose a consistent estimation algorithm for cooperative multiple-AUV localization as
described in the following section.

4. Consistent EKF Algorithm for Multi-AUV Cooperative Positioning

In practice, it is impossible to acquire ideal state values with noise and errors in the
measurement system. As such, we cannot calculate Jacobian matrices using ideal state
values, as opposed to the latest state estimate values in a standard linearized estimator.
Thus, in this paper, by modifying the state transition matrix and measuring the Jacobian
matrix, the observability matching between the actual linearized system and the real system
is ensured.
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4.1. Zero-Space Vector

To ensure that the rank of the observability matrices is consistent with that of the real
state value when calculating the state transition matrix and measuring jacobian matrix with
the state estimate value, the observability constraint Ôi N̂i,1 = 0 can be added to achieve the
purpose that the matrix Ô1 and Ô2 are non-full rank [20,21]. This can be summarized as:

Ĥ1,1N̂1,1 = 0, ∀k = 1

Ĥ2,2 F̂1N̂2,1 = 0, ∀k = 2
...

Ĥi,k F̂k−1 · · · F̂1N̂i,1 = 0, ∀k > 2

(26)

where N̂i,1 is a design choice used to control the observable subspace of submatrices Ôi,
which is the zero-space vector designed by using the initial state estimation value and can
be computed analytically using:

N̂i,1 =
[

1 −β̂i,1 0
]T

β̂i,1 =
(xi,1−x̂1)
(yi,1−ŷ1)

(27)

According to the constraint expressions (26) and (27) described above, we can further
define the following recursive expressions as in [30]:

N̂i,k = F̂k−1 · · · F̂1N̂i,1 ∀k ≥ 2 (28)

N̂i,k =
[

1 −β̂i,k 0
]T (29)

where N̂i,k is a design function with respect to the state estimate values.
With the definitions provided in (28), the constraint conditions (26) can be equivalently

satisfied by modifying the Jacobian matrices at each time step, such that:{
F̂k−1 F̂k−2N̂i,k−2 = N̂i,k

Ĥi,k N̂i,k = 0
, ∀k ∈ <i (30)

where <i(i = 1, 2) represents the set of indices for sample times with measurement informa-
tion from only leader AUVi, respectively. Alternating communication refers to information
between leader and follower AUVs, such as <1 = {1, 3, · · · , k− 1} and <2 = {2, 4, · · · , k}.

4.2. Modification of Jacobian Matrices

In computing each covariance prediction (6), we must ensure the constraint condition
F̂k−1 F̂k−2N̂i,k−2 = N̂i,k is satisfied. We define Φ̂(13)

k and Φ̂(23)
k to be unknown elements of

the Jacobian matrix F̂k, Φ̂(13)
k = −δt · vk−1 · cos

(
φ̂k−1

)
, Φ̂(23)

k = δt · vk−1 · sin
(
φ̂k−1

)
. The

matrix F̂k is then reconstructed in the basic row-column structure as follows:

F̂k =

 1 0 Φ̂(13)
k

0 1 Φ̂(23)
k

0 0 1

 (31)

From this relationship (Equation (30)), the following expression can be derived by
substituting Equations (29) and (31) into the constraint equation F̂k−1 F̂k−2N̂i,k−2 = N̂i,k:
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 1 0 Φ̂(13)
k−1

0 1 Φ̂(23)
k−1

0 0 1


 1 0 Φ̂(13)

k−2

0 1 Φ̂(23)
k−2

0 0 1


 1
−β̂i,k−2

0



=

 1 0 Φ̂13
k−1 + Φ̂(13)

k−2

0 1 Φ̂23
k−1 + Φ̂(23)

k−2
0 0 1


 1
−β̂i,k−2

0

 =

 1
−β̂i,k−2

0


(32)

 1 0 Φ̂(13)
k−1

0 1 Φ̂(23)
k−1

0 0 1


 1 0 Φ̂(13)

k−2

0 1 Φ̂(23)
k−2

0 0 1


 1
−β̂i,k−2

0

 =

 1
−β̂i,k

0

⇒ β̂i,k = β̂i,k−2 (33)

We can further determine:

N̂i,k = N̂i,1 =

[
1 − (xi,1−x̂1)

(yi,1−ŷ1)
0
]T

(34)

Finally, the constraint expression Ĥi,k N̂i,k = 0 can equivalently be replaced by:

Ĥi,k N̂i,1 = 0, ∀k ∈ <i (35)

In expressions (34) and (35), we know Ĥi,k is an unknown time-varying vector and N̂i,1
is a fixed-quantity zero-space vector. To fulfil the constraints in Equation (35) and obtain a
modified measurement Jacobian matrix, we solve the following minimization problem:

min
Ĥ∗i,k

∥∥∥Ĥ∗i,k − Ĥi,k

∥∥∥2

F
subject to Ĥ∗i,k N̂i,1 = 0 (36)

where ‖ ‖2
F denotes the Frobenius matrix norm. After employing the method of La-

grange multipliers and analytically solving the corresponding Karush–Kuhn–Tucker (KKT)
optimality conditions, the optimal solution to the minimization problem described by
Equation (36) can be expressed as:

Ĥ∗i,k = Ĥi,k − Ĥi,k N̂i,1

(
N̂T

i,1N̂i,1

)−1
N̂T

i,1 (37)

Notice the zero-space vector N̂i,k is relevant to the geometric configuration between
the leader and follower AUVs. In other words, observability-constrained conditions are
affected by the relative position configurations between AUVs. From this perspective, the
optimal solution Ĥ∗i,k can be considered a modified measurement Jacobian matrix under
relative position constraints.

In the previous sections, we presented only a consistent estimator for 2D linearized
cooperative localization systems, which is related to observability properties and relative
position configurations. In contrast to this 2D system, the position relationships between
AUVs can be expanded to spatial structures with depth information in three-dimensional
(3D) systems. The depth information of the follower AUV can be obtained by using the
depth sensor, and its projection on the leader AUV can be calculated using the Pythagorean
theorem in 3D systems. This method turns a 3D system into a 2D system. Therefore, a
similar analytic method can still be applied in the design of consistent estimators for 3D
linearized systems.

5. Simulation Results

In this section, a series of simulation results will be given to illustrate the effectiveness
of the proposed algorithm. In this paper, it is assumed that follower AUV can alternately
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obtain the distance between two leader AUVs. As acoustic signals cannot carry too much
information, it is necessary to minimize the communication frequency under the premise of
a stable system. In [31], the communication frequency of multi-AUV cooperative navigation
is selected as 1 Hz. In the process of multi-AUV cooperative work, besides cooperative
navigation information between AUVs, some formation control commands need to be
transmitted, and the communication rate decreases with the increase in distance between
communication devices. Therefore, it is feasible to assume that the update frequency
of distance measurement is 0.2 Hz and the covariance is R1 = R2 = (2 m)2. Control
inputs were the same for all AUVs, keeping the navigation formation constant, setting
the constant forward speed as νk = 4 m/s. When all AUVs move along a straight line,
the angular velocity is ωk = 0. When turning, the angular velocity is ±0.015 rad/s, as
shown in Figure 2. In addition, we set the follower AUV covariance of control input to
Q = diag

[
(0.5 m/s)2 (0.001 rad/s)2

]
. In the two-dimensional rectangular coordinate

system, the initial position of the follower AUV is (500, 500), and the initial positions of
the two leader AUVs are (1000, 382) and (1000, 636), respectively. Therefore, the initial
zero-space vector can be obtained with N̂1,1 =

[
1 3.9 0

]
and N̂2,1 =

[
1 −3.7 0

]
.

Figure 2. Real trajectories of leader and follower AUVs.

Localization results from three different algorithms (dead-reckoning, standard EKF,
and consistent EKF) are presented to assess the performance of the proposed consistent
EKF algorithm and provide a comparison with the true follower AUV trajectory shown
in Figure 3. Position information and acoustic range measurements from the leader AUV
demonstrate the cooperative localization trajectories of standard EKF and consistent EKF,
including bounded errors. The dead-reckoning (DR) error divergence for follower AUVs
has been effectively overcome and the estimated trajectory of consistent EKF is superior to
standard EKF. Furthermore, as the relative directions between leader and follower AUVs
are time-invariant, the observability of cooperative localization systems does not change,
and the proposed consistent algorithm is still available in the case of turning.
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Figure 3. Real and localization trajectories of the follower AUV.

To further demonstrate the advantages of the proposed consistent EKF algorithm, the
root-mean-square-error (RMSE) was calculated for two different localization algorithms.
The position and heading of the follower AUV at k time RMSE was determined using 100
Monte Carlo simulations:

pR
k =

√√√√ 1
100

100

∑
l=1

( p̂k,l − pk,l)T( p̂k,l − pk,l) (38)

ϕR
k =

√√√√ 1
100

100

∑
l=1

(ϕ̂k,l − φk,l)T(ϕ̂k,l − ϕk,l) (39)

Through the comparison of Figures 4 and 5, it is found that the RMSE of cooperative
positioning based on the consistent EKF algorithm is lower than that of the standard
EKF, which demonstrates the proposed consistent EKF algorithm is more suitable for
cooperative localization based on multi-AUV under alternate navigation. This is partly
because relative position constraints were introduced into the consistent EKF through
observability-constrained conditions.

The normalized estimation error squared (NEES) is the most common criterion for
evaluating the consistency of state estimators for dynamic systems. Specifically, the NEES
of an N-dimensional Gaussian random variable follows a χ2 distribution with N degrees of
freedom [32]. If the designed cooperative localization algorithm for state estimation (i.e.,
position and heading angle) of a follower AUV is consistent, the NEES expected values for
position and heading angle estimates will be close to 2 and 1, respectively. In other words,
expected values which are closer to actual NEES estimations indicate better consistency
for dynamic system state estimators. The red dashed lines in Figures 6 and 7 represent
NEES expected values. It is evident that the consistency of the proposed consistent EKF
algorithm is significantly higher than that of standard EKF.
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pN
k =

1
100

100

∑
l=1

( p̂k,l − pk,l)
T P−1

1,k,l( p̂k,l − pk,l) (40)

ϕN
k =

1
100

100

∑
l=1

(ϕ̂k,l − ϕk,l)
T P−1

2,k,l(ϕ̂k,l − ϕk,l) (41)

Figure 4. Root mean square errors of position.

Figure 5. Root mean square errors of heading.
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Figure 6. Normalized estimation error squared of position.

Figure 7. Normalized estimation error squared of heading.
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6. Conclusions

In this paper, the observability of cooperative positioning system based on two leaders
that broadcast their position information alternately and a consistent EKF multi-AUV
cooperative positioning algorithm is proposed. Observability analysis results show that the
standard EKF has the problem of obtaining forged measurement information along the un-
observable direction, which leads to inconsistent state estimation. The algorithm proposed
in this paper adds the zero-space vector as the observability constraint, which improves
the consistency of the cooperative positioning system. Simulation results show that the
NEES expected values of position and heading angle estimations are 4 m and 1.015 rad,
respectively, when using the EKF algorithm, and close to 2 m and 1 rad, respectively, when
using the consistent EKF algorithm. Therefore, the consistent EKF algorithm obtained the
NEES expected values closer to the real expected values, and its estimated performance
is better than the EKF algorithm. Moreover, the consistent EKF algorithm improves the
positioning accuracy of the follower AUV, keeps the follower AUV synchronized with the
leader AUV, and then keeps the formation in the process of travelling. At present, we have
completed the simulation of the algorithm, and some experiments will be carried out in
the future. In the future research, we will try to improve the robustness of the system by
reducing the communication frequency. We will also study the practical implementation
problems in real world applications, such as scanning the seabed with a group of AUV,
expanding the working scope and improving the working efficiency.
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