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Abstract

Aging is universal, yet characterizing the molecular changes that occur in aging which lead

to an increased risk for neurological disease remains a challenging problem. Aging affects

the prefrontal cortex (PFC), which governs executive function, learning, and memory. Previ-

ous sequencing studies have demonstrated that aging alters gene expression in the PFC,

however the extent to which these changes are conserved across species and are meaning-

ful in neurodegeneration is unknown. Identifying conserved, age-related genetic and mor-

phological changes in the brain allows application of the wealth of tools available to study

underlying mechanisms in model organisms such as Drosophila melanogaster. RNA

sequencing data from human PFC and fly heads were analyzed to determine conserved

transcriptome signatures of age. Our analysis revealed that expression of 50 conserved

genes can accurately determine age in Drosophila (R2 = 0.85) and humans (R2 = 0.46).

These transcriptome signatures were also able to classify Drosophila into three age groups

with a mean accuracy of 88% and classify human samples with a mean accuracy of 69%.

Overall, this work identifies 50 highly conserved aging-associated genetic changes in the

brain that can be further studied in model organisms and demonstrates a novel approach to

uncovering genetic changes conserved across species from multi-study public databases.

Introduction

Employing a comparative approach to study conserved aging phenotypes across multiple spe-

cies provides a deeper insight into molecular aging signatures than studying aging within a sin-

gle organism. Since aging is the strongest risk factor for developing neurodegenerative
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diseases, identification of conserved molecular signatures in the brain will allow for more

effective study of mechanisms that may underlie neurodegeneration as well as facilitate the

development of novel therapeutic strategies to slow cognitive aging [1].

Age-related cognitive decline varies across individuals. Neuroimaging studies indicate that

cognitive decline is related to changes in the structure of the prefrontal cortex (PFC) [1] and

altered white matter integrity [2]. The PFC is vulnerable to age-related morphology changes

[3], with age-related alterations in the cortex occurring across multiple species [2]. Neuronal

transcription plays a key role in regulating cognitive function and neural transmission [4], but

the extent to which gene expression in the PFC is conserved across species in aging is relatively

unknown. A subset of age-related transcriptome changes in the PFC are known to be con-

served between humans and mice [5]. In Drosophila, study of neurodegenerative diseases fre-

quently utilizes both the brain, containing the mushroom body which is necessary for

olfactory learning and memory [6], and the complex eye of adult Drosophila [7]. Identifying

conserved age-related transcriptome changes across model organisms allows for more efficient

mechanistic study and may uncover novel therapeutic pathways for preventing age-related

cognitive decline or vulnerability to neurodegeneration.

Here, we demonstrate the utility of previously published, publicly available RNA sequencing

datasets from humans and Drosophila to increase statistical power through combining samples

across multiple laboratories. This facilitates the identification of conserved aging genes in the

human PFC/fly head in a unique approach that circumvents the prohibitive cost of collecting hun-

dreds of cross-species samples in a single laboratory. In this work, we examine transcriptome

changes across species to identify conserved genes that are highly correlated with chronological

age in both human and fly. Furthermore, we were able to predict genetic network interactions of

these genes as well as pathways affected by the subset of conserved genes. From a comparative

biology perspective, such conserved genes should play an important role in age-related physiologi-

cal changes in the PFC and comprise a promising target set for future mechanistic analysis in Dro-
sophila, a model organism with a short lifespan and well-established genetic tools. We identify the

target gene set by cross-referencing genes highly correlated with age in humans and Drosophila.

Machine learning algorithms validate the association of these genes with age. Similar techniques

could be used to identify target orthologs in other model organisms and tissues in future analyses.

Materials and methods

Data selection and acquisition

Available sequencing data was identified using the terms “aging”, “RNA-seq”, “brain transcrip-

tome”, “cortex”, and “heads” in articles on PubMed and in the NIH Sequence Read Archive

(SRA) database. All eligible studies were published online before August 2019. The following

inclusion criteria were used to select data for the analysis: (1) tissue (fly head, human prefrontal

cortex); (3) availability of age data; (2) lack of disease (e.g., traumatic brain injury) or treatment;

and (4) Illumina format raw next-generation sequencing files. The following exclusion criteria

were also used to select data for this study: (1) lack of neurologically normal samples; (3) incom-

plete age information or incubation temperature data for fly samples; (2) presence of a treatment

such as injections, traumatic brain injury or sham-surgery procedures; and (4) studies including

only microarray data. When overlapping data of the same study population was encountered in

more than one publication across multiple SRA submissions, only the most complete study was

used for our analysis leaving a single occurrence for each biological sample. To compare ortholo-

gous genes across species, the Drosophila RNAi Screening Center Integrative Ortholog Predic-

tion Tool (DIOPT; http://www.flyrnai.org/diopt) [8], was used to identify orthologs between

humans and Drosophila. Publicly available data downloaded from the NIH SRA included
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multiple Bioprojects outlined in Table 1. Files were downloaded from the SRA using Aspera

Connect and reads that were downloaded in SRA format were converted using fastq-dump from

the NIH SRA-Toolkit [9]. Data were subdivided into three groups for each species. Young was

<30 years in humans and�10 days in Drosophila, Middle-aged was between 30–60 years in

humans and between 10–29 days in Drosophila, Old was classified as above 60 years in humans

and above 30 days in Drosophila. Additional sequencing parameters such as read lengths or

study metadata can be found for each study contained within this analysis in the NIH Sequence

Read Archive (SRA) according to the Bioproject identifiers within Table 1.

Quality control & adapter trimming

All reads were analyzed with FastQC for quality control. Reads with low quality scores (average

quality < 10) were discarded. Adapter sequences were trimmed using BBDUK [26]. Reads that

matched known Truseq or Nextera adapter sequences were removed during trimming. Indi-

vidual study manuscripts and supplemental data were examined to identify if reads were

sequenced using a forward or reverse library preparation kit.

Alignment & read quantification

Reference fasta genome files and genome annotation gtf files were downloaded from the

Ensemble genome browser and Flybase.org browser. Human reads were aligned to the

GRCh38 release 94 of the Ensemble Human Genome, and fly reads were aligned to the DMEL

release 25 Flybase genome using the STAR v2.5.2 aligner [27]. Transcripts aligning to specific

genes were counted using STAR with the quantMode geneCounts function to map transcripts

to each genome. Files containing gene counts for all samples are available on GitHub at:

https://github.com/akbee/Aging-Brain-Transcriptome.

Algorithm selection

Based on previously published work [28, 29], 13 algorithms were selected for regression and

classification. The top performing algorithms using default hyperparameters were then used

for all subsequent analysis. All models were assessed using all available transcriptome data.

Table 1. Study Characteristics: In this table, all publicly available data that were aggregated for this study are described, along with their Sequence Read Archive

bioproject numbers, sample descriptors and average number (#) of reads.

Bioprojects Species Sample Size Age Groups Tissue Type Citation Average # of reads

PRJEB7674 Human 10 Y/M/O Prefrontal Cortex [10] 31M

PRJNA322318 Human 21 Y/M/O Prefrontal Cortex [11] 71M

PRJNA394722 Human 19 Y/M Prefrontal Cortex [12] 31M

PRJNA398545 Human 4 Y Prefrontal Cortex [13] 56M

PRJNA213747 Human 12 Y Prefrontal Cortex [14] 7.3M

PRJNA222268 Human 15 Y/M/O Prefrontal Cortex [15] 9.5M

PRJNA271929 Human 35 M/O Prefrontal Cortex [16–18] 43M

PRJNA505319 Fly 27 Y/M/O Head [19] 2.7M

PRJNA388952 Fly 21 Y Head [20, 21] 9M

PRJNA270175 Fly 32 M/O Head [22] 19M

PRJNA379297 Fly 6 O Head [23] 2.4M

PRJNA432934 Fly 10 M Head [24] 15M

PRJNA320747 Fly 12 O Head [25] 34M

Age groups are abbreviated young (Y), middle (M) and old (O).

https://doi.org/10.1371/journal.pone.0255085.t001
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Regression & classification

To identify correlation with biological age, all data were split into a training set (75%) and a

testing set (25%) by randomly selecting samples using the train_test_split module in Scikit-

learn. Age association models were fit using Scikit-learn v0.23.2 [30] in Jupyter notebooks

v.6.1.4 running Python 3.7.3. XGBoost, Gradient Boosting, ADABoost, Bagging Regressor,

Random Forest, Extra Trees Regressor, K-nearest neighbors (KNN), Logistic Regression, Lin-

ear Discriminant Analysis (LDA), Naive Bayes, Linear Regression, Huber Regression, and

ARD Regression were implemented with their default settings in Scikit-learn. Regression per-

formance was evaluated based on mean absolute error, R2, and median absolute error scores in

Scikit-learn. All analyses were conducted in batches of 1000 random sampling tests with

replacement to estimate the mean for each model performance metric and a 95% confidence

interval for R2. In-depth descriptions of these algorithms can be found in Hastie, et al. [31].

Data normalization approaches

We examined Trimmed Mean of M values (TMM) [32], and the more common Relative Log

Expression (RLE) method [33] for RNA sequencing read counts. We found that TMM nor-

malization provided more robust regression and classification results. Histograms of log read

counts also suggest that TMM normalization removes study effects better than RLE normaliza-

tion (see S1 Fig).

Calculation of conserved genes

All genes within species were ranked according to correlation coefficient according to within-

species age shown in S1 Table. The top 1000 human aging correlated genes were converted

into fly homologs using Diopt version 8.0. Human fly homologs were prioritized according to

highest to lowest score within both human ensembl ID and flybase ID and the highest ranked

homolog for each gene was kept. This left a one to one ‘best match’ between human ensembl

ID and flybase ID. This list was cross-referenced to the top 1000 fly aging correlated genes to

find matches between the two lists.

Heatmap construction

Expression data of human prefrontal cortex at young, middle, and old was input to the Next-

Generation Clustered Heat map (NG-CHM) version 2.16.0 [34].

Genetic interactome analysis with cytoscape

Cytoscape version 3.8.0 was used to generate a genetic interactome of 50 human ensembl IDs

with a medium confidence score [35]. STRING (Search Tool for the Retrieval of Interacting

Genes/Proteins)—Protein Query generated a node network that allowed functional enrich-

ment data of all 50 genes to be generated. The Kyoto Encyclopedia of Genes and Genomes

(KEGG) database was queried to identify the functional pathways corresponding to each gene

in each species. We report those pathways with a false discovery rate (FDR) corrected signifi-

cance of p� 0.005. Aging correlated genes were cross-referenced to STRING–disease database

[36] using a threshold of 1000 genes annotated as disease associated.

Phylogenetic tree mapping

Cyverse DNA Subway was utilized to map all 50 conserved human genes to 49 Drosophila
genes. URL: www.cyverse.org [37]. Protein sequence similarity of all conserved genes was
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included. Bootstrapped scores of 100 trials are indicated as numerical representations connect-

ing genes to each other.

Panther analysis

Panther (Protein ANalysis THrough Evolutionary Relationships) Classification System (ver-

sion 15) was used to categorize molecular and cellular classification of genes of interest [38]

(http://www.pantherdb.org). Gene Ontology (GO) Analysis was used to group genes accord-

ing to cellular location, function and biological processes.

Data and software availability

The data used in this study are publicly accessible through the National Institutes of Health

Sequence Read Archive (SRA) [39]. All Ascension numbers can be found in the supplementary

data files, along with BioProject numbers in Table 1. The Jupyter notebook describing the

Table 2. Algorithm evaluation.

Algorithm Mean R2 Mean square error Median absolute error R2 (95% CI)

A. Algorithm Evaluation—Human

XGBoost 0.62 217.05 8.28 34.6%-80.5%

Gradient Boosting 0.61 218.12 8.72 36.71–75.52

Adaboost 0.58 235.78 9.27 24.43–78.04

Bagging Regressor 0.52 269.16 10.56 52.31–52.32

Random Forest 0.52 269.70 10.68 52.01–52.02

Extra Trees Regressor 0.48 290.43 10.75 47.84–48.89

KNN 0.38 341.94 14.10 22.48–60.16

Logistic Regression 0.21 440.48 11.06 0.0–64.73

LDA 0.13 481.82 12.37 13.4–21.84

Naive Bayes -0.08 605.21 15.15 .-8.94–7.3

Linear Regression -0.43 876.33 16.95 .-12.74–2.4

Huber Regression -1.01 1115.84 18.40 -2.87

ARD Regression -2.75 2084.02 16.16 -22.95

B. Algorithm Evaluation—Drosophila
XGBoost 0.89 29.23 0.40 71.0–99.0

Gradient Boosting 0.89 29.03 0.49 63.3–99.3

Adaboost 0.94 14.72 0.59 82.0–99.5

Bagging Regressor 0.86 34.85 1.14 60.1–98.1

Random Forest 0.87 34.15 1.14 63.0–98.0

Extra Trees Regressor 0.94 13.82 0.48 86.0–99.2

KNN 0.66 88.50 2.92 31–86.9

Logistic Regression 0.88 29.01 0.00 57.2–100

LDA 0.77 57.10 0.00 26.0–97.9

Naive Bayes 0.64 89.64 0.01 1.4–93.5

Linear Regression -0.61 411.27 5.06 0.0–70.4

Huber Regression -0.21 310.11 7.03 0.0–45.5

ARD Regression 0.07 235.55 6.01 0.0–77.8

In this table, algorithms were evaluated according to their ability to predict chronological age using gene expression data from all available genes. Rows indicate the

results for an individual regressor across 1000 bootstrapped random draws training on 75% of the samples and testing on 25%. A) Human algorithm selection. B).

Drosophila algorithm selection. All values are reported as the mean across 1000 iterations.

https://doi.org/10.1371/journal.pone.0255085.t002
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workflow, as well as other scripts to conduct analyses within this manuscript are publicly avail-

able on GitHub at: https://github.com/akbee/Aging-Brain-Transcriptome.

Ethics approval and consent to participate

All studies contained within this manuscript received ethics approval from their respective

IRB ethics committees prior to study initiation. See citations in table one for additional infor-

mation on each published study. Iowa State University Institutional Review Board does not

require approval for the secondary data analysis of anonymous publicly available data used in

this work.

Results

Combination of publicly available transcriptome datasets

To obtain a higher analytical power than typically feasible from a single experiment in human

prefrontal cortex and Drosophila head, we explored methods and constraints for combining

data from the National Institutes of Health Sequence Read Archive. We identified key inclu-

sion and exclusion requirements for the combination of data from this publicly available

repository. These factors are described in detail in the methods section. The studies meeting

these criteria and used for further analysis are described in Table 1. In total, 289 raw fastq files

were downloaded from NCBI and processed. Ninety-four percent of the Drosophila reads and

ninety-six percent of the human reads were mapped to their respective reference sequences. In

our analysis of the combined data sets, 9,650 genes in Drosophila and 16,879 genes in humans

had read values of greater than 10 in at least 50% of the samples.

Predictive algorithms for chronological age regression and classification

For regression analysis, we compared 13 distinct algorithms in the Python Scikit-learn library

for predicting human chronological age as shown in Table 2A and 2B.

XGBoost performed best with a mean R2 of 0.62 and a median absolute error of 8.28 years

on held out data. The standard gradient boosting regressor through Scikit-learn performed

similarly with a mean R2 of 0.61 and a median absolute error of 8.72 years (Table 2A). Within

Drosophila, XGBoost performed among the best algorithms, with a mean R2 of 0.89. Linear

regression, which has been shown previously to predict age from the transcriptome in periph-

eral blood [40], performed poorly on our data set of complex heterogeneous tissue samples

(Table 2A and 2B). Additional details of human and Drosophila regression results using

XGBoost can be found in S2 Table. Given its superior predictive power on this specific data

set, XGBoost was selected for downstream analysis.

Comparison of algorithms within Drosophila resulted in several algorithms with similar

predictive abilities. Four algorithms had a mean R2 value of 0.89 or greater. Of these, XGBoost

had the lowest median absolute error. Due to its strong predictive ability in both human and

Drosophila in comparison to our other algorithms, XGBoost was selected for downstream

analysis.

Algorithms were also compared for classifying samples. This approach is valuable in data

sets where exact age is unknown. In a previous report examining machine learning to classify

human age groups, an ensemble classifier using linear discriminant analysis (LDA) most accu-

rately classified human chronological age [41]. In our analysis of human PFC and whole fly

head, we found that LDA resulted in a mean accuracy of .85 for fly and .73 for human data,

respectively. XGBoost performed better with a mean accuracy of .93 for fly and .80 for human

PLOS ONE Identification of conserved transcriptome features between humans and Drosophila

PLOS ONE | https://doi.org/10.1371/journal.pone.0255085 August 11, 2021 6 / 20

https://github.com/akbee/Aging-Brain-Transcriptome
https://doi.org/10.1371/journal.pone.0255085


data, respectively (S3 Table). Overall, classification of both human and Drosophila samples

was possible with a high degree of accuracy (S2 Fig).

Identification of conserved genomic predictors of chronological age in

human and Drosophila
A workflow depicting our approach for conserved gene identification can be found in Fig 1.

First, we established that gene expression data in the human PFC and fly head were predictive

of chronological age within species. Fig 2A shows a sample regression result for human data.

These results were obtained using 75% of the samples to train and the remaining 25% for test-

ing. To eliminate the chance of a “lucky draw,” we repeated the 75/25 split 1000 times to assess

average performance. Fig 2B depicts the resulting histogram of R2 values. The mean R2 was

0.61, and the median absolute error was 8.07 years. Fig 2C and 2D shows results for fly data,

where a mean R2 of 0.93 and a median absolute error of 0.46 days were obtained. The average

accuracy of classifying samples as young, middle-aged, or old was 80% for humans and 93%

for flies (S3 Table). We repeated this procedure using the 1000 genes most correlated with

aging in humans and the 1000 genes most correlated with aging in flies. Using this technique

to reduce the number of features in our models resulted in a slight boost in R2 on the testing

data for both species, illustrating the potential for error due to overfitting in machine learning

models (Compare Figs 2 and 3).

After determining that aging correlated genes retain predictive ability within species, we

wanted to identify a smaller set of genes that could be validated in future animal studies exam-

ining their role in aging. Cross referencing the 1000 genes most important in aging within

both human and Drosophila through Diopt, we identified genes shared among both lists. This

narrowed our window of conserved genes to 50 which were highly predictive of aging in both

Fig 1. Workflow of biological age prediction using XGBoost across species. Depicting selection of genes for both aging involvement and conservation between

Human and Drosophila.

https://doi.org/10.1371/journal.pone.0255085.g001
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humans and flies. Fig 4 illustrates the ability to identify human and Drosophila age based on

expression levels of these 50 genes. Fig 4A and 4B depicts the human results, where these 50

genes identified chronological age with a mean R2 of 0.46 and median absolute error of 10.79

years. Fig 4C and 4D depicts the results for Drosophila, where a mean R2 = 0.85 and median

absolute error of 0.99 days was obtained. In both cases, we pay a small penalty in regression

accuracy for reducing the number of genes from 1000 to 50, however both predictions remain

strong (see S2 Table). Similar results hold for classification accuracy (see S3 Table). For exam-

ple, reducing the number of genes used in the prediction by 95% results in only a 15% drop in

human age classification accuracy and a 10% drop in fly classification accuracy.

Correlated genes enriched in aging signaling pathways

A heatmap of mean human expression data from the prefrontal cortex vs. age in the 50 highly

conserved genes indicates an overall increase in expression from young to old age groups in

Fig 2. Biological age prediction using XGBoost across species. A) Sample regression analysis using all human genes to predict human age. B)

Histogram of R2 values for predicting human age with all available human genes with a mean R2 of 0.61. C) A sample regression analysis with all

Drosophila genes to predict Drosophila age. D) Histogram of R2 values for predicting Drosophila age using all available Drosophila genes with a

mean R2 of 0.93. All results calculated using XGBoost. Histograms represent averages across 1000 bootstrapped random samplings where the

regressor or classifier was trained on 75% of the samples and tested on 25% with values reported as the mean across 1000 iterations. Median AE

stands for Median Average Error.

https://doi.org/10.1371/journal.pone.0255085.g002
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the 50 highly correlated conserved genes (Fig 5A). Higher expression is indicated in red with

lower expression indicated in blue.

Genetic interactions and enrichment of genes in pathways previously known to play an

important role in brain aging are revealed using STRING analysis of the 50 highly conserved

correlated genes. Fig 5B represents a genetic interactome in which genes are connected based

on a STRING confidence score reflecting functional associations. Functional enrichment with

KEGG pathways was referenced to identify pathways associated with the 50 genes. Two key

pathways known to play an important role in aging were revealed in this analysis. These

included the PI3K-akt (9 genes) and MAPK (6 genes). The enrichment of these signaling path-

ways was found to be significant and survived FDR multiple testing correction (p� 0.005).

We observed a high amount of overlap with the genes represented in these two pathways and

other significantly enriched pathways such as cancer and focal adhesion as is indicated by the

highly connected group of genes which are found in each of these pathways Fig 5B (color

coded circles).

Fig 3. Feature selection using aging correlated genes across species. A) Sample regression analysis using the top 1000 human aging correlated genes

to predict human age. B) Histogram of R2 values using the top 1000 human aging correlated genes to predict human age with a mean R2 of 0.62. C)

Sample regression analysis predicting Drosophila age using the top 1000 aging correlated Drosophila genes. D) Histogram of R2 values predicting

Drosophila age using the top 1000 Drosophila aging correlated genes with mean R2 of 0.95. All results calculated using XGBoost. All histograms

represent averages across 1000 bootstrapped random samplings where the regressor or classifier was trained on 75% of the samples and tested on 25%.

All histogram values are reported as the mean across 1000 iterations. Median AE stands for median average error.

https://doi.org/10.1371/journal.pone.0255085.g003

PLOS ONE Identification of conserved transcriptome features between humans and Drosophila

PLOS ONE | https://doi.org/10.1371/journal.pone.0255085 August 11, 2021 9 / 20

https://doi.org/10.1371/journal.pone.0255085.g003
https://doi.org/10.1371/journal.pone.0255085


As age is one of the greatest predictors of neurodegeneration, our list of 50 genes identified

from PFC and fly head were referenced to a STRING disease database. 1000 Genes with a

reported association with either Parkinson’s or Alzheimer’s disease were cross-referenced to

the list of 50 conserved genes. Within the 1000 genes associated with Alzheimer’s disease and

Parkinson’s disease, a total of 7 genes were also identified in our conserved list. The genes asso-

ciated with Alzheimer’s disease were Erb-B2 receptor tyrosine kinase 2 (ERBB2), Cystatin B

(CSTB), and Caspase 6 (CASP6). Those associated with Parkinson’s disease were DNA damage

inducible transcript 4(DDIT4), Bone morphogenic protein 4 (BMP4), Coiled-coil-helix-

coiled-coil-helix domain containing 10 (CHCHD10), Dilochyl-phosphate mannosphyltrans-

ferase 3 (DPM3) and caspase 6 (CASP6) (See orange outline in Fig 5B).

We utilized the Panther Gene Ontology database to reveal evolutionarily relevant functions

of our aging correlated genes. Panther Gene Ontology utilizes phylogenetic information to

Fig 4. Intersection of homologous aging-correlated genes. A) Sample regression analysis of the overlapping 50 aging correlated genes across humans. B)

Histogram of R2 values of human age prediction using the conserved 50 aging correlated genes with a mean R2 of 0.46. C) Sample regression analysis of the

mean R2 values predicting Drosophila age using the 50 aging correlated genes. D) Histogram of R2 values predicting Drosophila age using the conserved 50

aging correlated genes with a mean R2 of 0.85. All results calculated using XGBoost. All histogram results represent averages across 1000 bootstrapped

random samplings where the regressor or classifier was trained on 75% of the samples and tested on 25%. All histogram values are reported as the mean

across 1000 iterations. Median AE stands for Median Average Error.

https://doi.org/10.1371/journal.pone.0255085.g004
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infer evolutionary function of genes that have yet to be well characterized. Genes highly corre-

lated with aging were mapped to Panther pathways as shown in S3A Fig. Panther analysis of

the top 1000 human aging-correlated genes indicated that the most highly represented genetic

pathway was Gonadotropin-releasing hormone (P06664) with 10 genes represented. Reducing

our input to the 50 conserved human genes, 4 remained in the Gonadotropin pathway (S3B

Fig). Although the Gonadotrophin pathway is emerging as a possible therapeutic target in

aging and neurodegeneration in Humans [42], The gonadotropin-releasing hormone pathway

has not been well characterized in Drosophila.

To elucidate roles of the conserved Gonadotropin-hormone genes in Drosophila, we con-

structed a phylogenetic tree using our 50 conserved genes of Human and Drosophila. Protein

sequences of our conserved genes were input into Cyverse–DNA Subway to generate a full

phylogenetic tree. S3C Fig depicts a sub-cluster of genes from our phylogenetic tree. Interest-

ingly, 2 of our genes from the Gonadotropin-releasing hormone pathway appeared to share

Fig 5. A) A heat map of gene expression in young, middle aged, and old human prefrontal cortex of the 50 conserved genes. Shift of color from blue to red indicates an

increase in expression relative to all gene expression in the dataset as indicated B) Interactome representing STRING Network interactions of 50 conserved genes.

Networks connected through ‘edge’ lines represented by STRING confidence score. Line thickness indicates interaction confidence scores with greater thickness

indicating higher confidence interaction. The table on the right indicates KEGG pathways represented by the STRING network. Colors in nodes represent involvement

in pathway, see table. Orange border surrounding a node indicates occurrence within 1000 genes with a reported association of either Parkinson’s or Alzheimer’s

disease.

https://doi.org/10.1371/journal.pone.0255085.g005
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sequence similarity, including ENSG00000123999 (INHA) and ENSG00000125378 (BMP4),

along with its homolog FBgn0000490 (dpp).

Discussion

In this work, we developed a method for combining datasets across multiple studies and

organisms giving us the ability to harness the power of a larger dataset than is typically feasible

to obtain in a single lab. We then examined several machine learning algorithms to identify

the best model for predicting age via highly conserved transcriptome signatures. Using this

method, we analyzed publicly available RNA sequencing data from aging Drosophila and

humans to reveal aging-associated genes with greater statistical power than can typically be

obtained from a single laboratory. Our transcriptome profiling across species uncovered 50

genes whose expression is strongly correlated with aging in both Drosophila and humans.

Twenty-two of these genes had not been previously associated with aging (S4 Table).

Previous work supports a cross-species approach to the discovery of gene function in aging.

Zullo et al. [43] demonstrated that longevity in humans is related to cortex transcriptome sig-

natures, where genes underlying neural excitation and synaptic regulation are downregulated

during aging. By comparing C. elegans with humans, they demonstrate that neural excitation

increases as a function of age and inhibiting the excitation of neurons increases longevity.

Other key mechanistic relationships such as NADH dehydrogenase expression and longevity

[44] as well as dysfunction of mitochondrial proteins and aging [45] have been shown to be

highly conserved between invertebrates and humans.

Important consideration must be taken when examining equivalence of invertebrate age to

human age. There are several published reports comparing both mouse [46] and rat age [47,

48] to humans, each of which describe different methods for comparing chronological age

across species. Although there is not a well-accepted formula for direct conversion between

Drosophila age in days to human age in years [49], Drosophila is a common model of aging as

denoted by De Nobrega and colleagues [50]. For our work, we created chronological age

group cutoffs as indicated in methods based on a similar age comparison to previously pub-

lished work [51].

Predicted genetic pathways

Our analysis identified an enrichment of two established key aging-related pathways. The

PI3K-Akt signaling pathway was heavily represented in our list of 50 genes with 10 being

known players in this signaling pathway. This pathway has previously been shown to indirectly

promote mTOR complex 1 and mTOR complex 2 kinases [52, 53] as well as decreased levels of

Telomeric repeat-binding factor 1 (TRF1) [54]. TRF1 is part of a telomere protective complex

which, if lost, results in increased telomere damage. Of the 10 genes found in the PI3K-Akt

pathway, two were present in neurodegenerative disease designated datasets in STRING.

ERBB2 has previously been shown to decrease expression in the hippocampus of normal adult

mice and humans with increased expression in the hippocampus linked to Alzheimer’s disease

[55]. Our study demonstrates an increase of ERBB2 expression in the PFC in normal aging,

supporting further study into the role that this gene may be playing in the PFC as a risk factor

in Alzheimer’s disease. Abnormal signaling in the PI3K-Akt pathway has been shown to lead

to hyperphosphorylation of tau, one of the trademarks of Alzheimer’s disease [52]. One of the

functions of the PI3K-Akt pathway is regulation of telomere health [53]. Telomere shortening

has been demonstrated as a risk factor of various types of neurodegeneration [56] making

ERBB2 an interesting target for further study.
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Six of our 50 genes were found to be involved in the MAPK signaling pathway. The MAPK

signaling cascade has known involvement in neurodegenerative diseases. Activation of MAPK

has been shown to increase oxidative stress, which is a key risk factor in both Alzheimer’s and

Parkinson’s diseases [57]. Our data also indicated ERBB2 involved in the MAPK signaling

pathway. Proper MAPK signaling is crucial for maintaining homeostasis of cell proliferation

and differentiation. Over-activation of MAPK signaling has been linked to neuronal inflam-

mation, neuronal death, autophagy, and general Parkinson’s disease phenotypes [58]. Observ-

ing levels of ERBB2 with respect to the PI3k-Akt and MAPK signaling pathway could elucidate

its role in neurodegenerative diseases. Mutations of ERBB2 could provide key answers into its

role in Alzheimer’s and Parkinson’s diseases.

Given the strong correlation between aging and neurodegeneration, we were interested in

identifying genes in our list of 50 highly conserved aging genes found in the human PFC that

were known to be associated with neurodegenerative diseases. We referenced our list of 50

highly predictive aging genes with 1000 genes associated with Alzheimer’s and Parkinson’s dis-

eases according to the STRING disease database. Given these genes reported associated in neu-

ronal disease alongside conserved expression changes within aging we would propose further

mechanistic studies of these genes as risk factors for neurodegenerative diseases associated

with aging. These include Caspase-6 (CASP6) whose proteolytically processed form has been

shown to increase in correlation with amyloid beta pathologies in Alzheimer’s disease patients

[59]. We also identified DDIT4, a known inhibitor of the mTOR pathway whose specific role

in aging has not yet been determined [60]. BMP4 has indicated its key role in neurogenesis of

Alzheimer’s disease models through downregulation of neurogenesis in the dentate gyrus [61]

but has not been studied in the PFC where our observed increased expression in aging may

indicate its ability to play a compensatory role. Similarly, decreased expression of CSTB is cor-

related with disease where mRNA abundance in the peripheral blood has been shown to be

decreased in patients with Parkinson’s disease [62]. DPM3 has also been shown to be downre-

gulated in the entorhinal cortex of patients with Alzheimer’s disease [63]. However, all these

genes require further study as to their functional role in the PFC.

In the current study, we focused on the human prefrontal cortex (PFC) and the Drosophila
head due to the morphological changes in the PFC that often accompany neurological decline.

However, comparison of tissue between human PFC and the Drosophila head should be exer-

cised with caution. Numerous tissues outside of the brain exist within the Drosophila head [7].

Our data analysis validated 28 genes previously associated with aging that are conserved

between human and Drosophila. Additionally, we identified 22 genes that do not have a previ-

ously characterized role in aging. This provides exciting insight into potential targets to fol-

low-up utilizing the Drosophila model. The gonadotropin-hormone pathway is not well

studied in Drosophila, yet our data suggests that a small number of conserved age related genes

appear to be involved in this pathway in humans. Further investigation into these genes could

provide more understanding for how the gonadotropin pathway and other pathways which

have not been well studied in aging can be elucidated in the Drosophila model.

Age prediction with machine learning

Other research groups have applied machine learning techniques to predict age from gene

expression and biomarker data [64]. In humans, gene expression data from tissue culture of

human dermal fibroblasts has been used to train an ensemble of linear discriminant analysis

(LDA) classifiers achieving a median absolute error of 4 years and mean absolute error of 7.7

years [43]. We found that LDA performed much worse on our dataset than boosting algo-

rithms (see Table 2). This may be due to the use of heterogeneous tissue samples from the
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human PFC containing several cell types (e.g., glia, neurons, astrocytes, oligodendrocytes) in

the current study compared to tissue culture of a single cell type. Similarly, linear regression

has been used to predict age from gene expression in peripheral blood samples [40] but per-

formed poorly on our dataset. When sufficient training data is available, deep neural networks

are an attractive option, as demonstrated in [29], where standard blood biomarkers were used

to estimate age. With a sample size of 116 human PFC transcriptome profiles, deep learning

approaches were not feasible in the current study. Instead, we sought to use approaches that

require significantly less data to train. We found that the XGBoost algorithm created the best

predictors of human age given human and Drosophila RNA sequencing data among 13 popu-

lar machine learning algorithms, as shown in Table 2. We selected the XGBoost algorithm

because it performed well in age prediction with human and fly data; however, several other

machine learning algorithms could generate models with very high accuracy and low error,

especially in fly.

Due to the nature of data collection in animal experiments, samples are normally collected

at a few specific ages, such as 10 days or 25 days. The variability in gene expression data from a

single time point is likely much less than the variability across a range of ages (e.g., 5–20 days).

As a result, models trained on data from a few time points might generalize poorly to new sam-

ples from time points never seen by the algorithm. This may explain some of the performance

gap between aging via fluorometrically measured pteridine 6-biopterin [65] and our approach.

This limitation of the data did not occur with human samples which display a more continu-

ous span of ages. As is common with the use of secondary data there was some imbalance in

the number of samples between age groups in fly (young: 30, middle: 24, old: 54); however, S2

Fig indicates that misclassification rates were similar in the three age groups.

Reproducibility and transparency are important current issues in the field of machine

learning [66], where models using different random seeds may produce widely different results

from one another, ultimately producing data that look as if they come from completely differ-

ent distributions [67]. To combat this issue, our models were run across 1000 random permu-

tations of data, and we reported averages and confidence intervals for each result.

Additionally, genetic data is highly correlated in nature, which may explain why several classi-

fication models incorrectly identified some subjects across several re-samplings, highlighting

XGBoost’s resilience to bias from multicollinearity. While multicollinearity may explain part

of these results, it is unclear if subjects that were incorrectly classified across multiple random

draws displayed inherently different transcriptome expression profiles than other subjects at a

similar chronological age, or if these errors were due to the inherent random nature of the

model. Future studies examining the predictive utility of neurological transcriptome data

should work toward determining why specific samples in an age category display different

transcriptome signatures, if any arise.

Several problems are inherent to combining data from publicly available repositories. Per-

forming meta-analysis across multiple RNA sequencing datasets is limited by the lack of nor-

malization standards [68] and limited documentation requirements for submitting data to

these repositories. Numerous other studies posted on the NIH SRA contained potentially

appropriate data to include in our study but did not include any descriptive metadata, prevent-

ing us from evaluating whether inclusion or exclusion criteria were met. Enhancing the avail-

able data descriptors for publicly available data would enable widespread use of these

sequencing data and remove the systematic bias due to the lack of documentation [68].

Another source of bias in meta-analysis of public data is bias towards males. Nearly all the pub-

licly available samples were male, resulting in less than 10% of the samples used in this analysis

being from females. The large, unbalanced distribution of biological sexes may have skewed

the data to overrepresent age-related changes occurring primarily in males. This limitation
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could be addressed by future studies including more samples of both biological sexes and mak-

ing all samples publicly available.

A key strength of this study was that we achieved a large sample size by combining RNA

seq samples across studies to improve the overall statistical power. Additionally, we were able

to overcome challenges of using gene expression data with different underlying read count dis-

tributions due to differences in sample depth across studies through normalizing read counts

using the TMM method. Differences among individual datasets still exist, illustrating the

necessity for new statistical approaches to combine RNA sequencing data more effectively

across multiple studies generated by different sequencers, RNA extraction protocols, library

preparation kits, and experimental design of sequencing.

In this study, we uncovered 50 genes conserved between humans and flies capable of accu-

rately predicting age in both species. Roughly half of these genes have been previously associ-

ated with aging. We demonstrate that of our 50 genes, 22 novel genes have not yet been

published with respect to aging (see S5 Table). Further study of the novel 22 aging-associated

genes may shed light on previously unassociated pathways that are altered during aging pro-

cesses in the PFC. These results position scientists to delve deeper into the underlying con-

served mechanisms of these identified aging genes in the PFC. Manipulating the expression of

these conserved aging genes could potentially extend lifespan or enable development of novel

anti-aging therapeutic compounds. Our dataset combining publicly available transcriptome

data across multiple studies and two species demonstrated successful identification of chrono-

logical age using neurological transcriptome signatures. Using machine learning to model

aging, we identified novel similarities in aging signatures across humans and Drosophila
emphasizing the necessity for additional comparative aging research studies.

Supporting information

S1 Table. Aging correlated genes. This table depicts the aging correlated genes for humans

and flies sorted according to their correlation coefficient.

(XLSX)

S2 Table. Regression tables predicting chronological age. This table depicts the average R2,

mean square error, median absolute error and R2 95% confidence interval across 1000 itera-

tions of training/testing predictions. Each row represents a different way to select genetic fea-

tures for age prediction, where each column represents the metric used for evaluating the

effectiveness in predicting aging.

(XLSX)

S3 Table. Classification tables for age group prediction. This table depicts the average accu-

racy, F1, Precision, and Recall scores for classifying samples into their age groups. The data

contained in these tables represents average scores across 1000 iterations of training/testing

predictions. Each row represents a different way to select genetic features for age prediction,

where each column represents the metric used for evaluating the effectiveness in age group

classification.

(XLSX)

S4 Table. Top 50 conserved aging predictive genes. This table describes whether previous

reports exist linking these genes to aging or neurodegeneration phenotypes in Human or

another model organism.

(XLSX)
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S5 Table. Novel 22 conserved aging predictive genes. This table describes previous literature

of listed genes, along with references.

(XLSX)

S1 Fig. Normalization analysis. Histograms of log2 of read counts by study indicate improved

distribution overlap following normalization. A) Results without normalization applied. B)

Results after applying Relative Log Expression (RLE) normalization. C) Results after applying

Trimmed Mean of M values (TMM) normalization. Each color corresponds to a different

study.

(TIF)

S2 Fig. Biological age prediction using XGBoost across species in classification. Confusion

matrices of average biological age prediction. A) Average age group classification results for

human samples using all available data. B) Average age group classification results for Dro-

sophila samples using all available data. C) Average age group classification results for 1000

genes in human most correlated with aging. D) Average age group classification results for

1000 genes more correlated with aging in Drosophila. E) Average age group classification

results for 50 conserved and correlated genes applied to predict age in humans. F) Average age

group classification results for 50 conserved and correlated genes applied to predict age in

Drosophila. All confusion matrixes depict the average of 1000 trials of age prediction.

(TIF)

S3 Fig. Panther pathway analysis and phylogenetic relationship. Panther pathway analysis

of genes implicated in aging. A) Predicted pathways using 1000 genes most associated with

aging in human data. Threshold set at 5 genes involved in a pathway. B) Pathway analysis of 50

human genes conserved in fly. C) Phylogenetic tree branch depicting gene sequence homol-

ogy. Genes included are found in the Gonadotropin-releasing hormone pathway (P06664).

Numbers throughout the branches indicate bootstrapped scores out of 100 trails testing for

sequence similarity. Higher numbers indicate stronger prediction of phylogenetic relationship.

(TIF)
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